Skip to main content

Advertisement

Log in

New hybrid GR6J-wavelet-based genetic algorithm-artificial neural network (GR6J-WGANN) conceptual-data-driven model approaches for daily rainfall–runoff modelling

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Rainfall–runoff modeling is significant for efficient water resources management and planning. The hydrological conceptual models can have challenges, such as dealing with nonlinearity and needing more data, whereas data-driven models are generally lacking in reflecting the physical process in the basin. Accordingly, two-hybrid model structures, namely Génie Rural à 6 paramètres Journalier (GR6J)-wavelet-based-genetic algorithm-artificial neural network1 (GR6J-WGANN1) and GR6J-wavelet-based genetic algorithm-artificial neural network2 (GR6J-WGANN2) models, were proposed in this study to develop rainfall–runoff modeling performance. The novel GR6J-WGANN1 model used the routing store outflow (QR), exponential store outflow (QRexp), and direct flow (QD) obtained from the GR6J, and the GR6J-WGANN2 model used the soil moisture index (SMI) obtained from the GR6J as input data. The wavelet transformation and Boruta algorithm were implemented to decompose the input data into components and select important wavelet components, respectively. The performance of the GR6J, standalone WGANN models, and hybrid models were tested in three sub-basins of Konya Closed Basin, Turkey, which generally has arid and changing climate conditions. The hybrid models performed better than the conceptual and data-driven models, particularly regarding the extreme flow predictions. Using soil moisture index, routing store outflow, exponential store outflow, and direct flow as the output of the GR6J in GR6J-WGANN1 and GR6J-WGANN2 improved the rainfall–runoff modeling performance remarkably. The findings of this study indicated that hybrid models, which integrate strong sides of conceptual and data-driven models, can be more useful for producing more accurate forecasting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mosavi A, Ozturk P, Chau KW (2018) Flood prediction using machine learning models: literature review. Water 10(11):1536. https://doi.org/10.3390/w10111536

    Article  Google Scholar 

  2. Kaya CM, Tayfur G, Gungor O (2019) Predicting flood plain inundation for natural channels having no upstream gauged stations. J Water Clim Change 10(2):360–372. https://doi.org/10.2166/wcc.2017.307

    Article  Google Scholar 

  3. Bajirao TS, Kumar P, Kumar M, Elbeltagi A, Kuriqi A (2021) Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins. Theo App Clim 145(3):1207–1231. https://doi.org/10.1007/s00704-021-03681-2

    Article  Google Scholar 

  4. Sreedevi S, Kunnath-Poovakka A, Eldho TI (2021) Comparison of conceptual and distributed hydrological models for runoff estimation in a river basin. In: Chauhan MS, Ojha CSP (eds) The ganga river basin: a hydrometeorological approach. Springer, Cham, pp 135–148. https://doi.org/10.1007/978-3-030-60869-9_9

    Chapter  Google Scholar 

  5. Ghimire U, Agarwal A, Shrestha NK, Daggupati P, Srinivasan G, Than HH (2020) Applicability of lumped hydrological models in a data-constrained river basin of Asia. J Hydrol Eng 25(8):05020018. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001950

    Article  Google Scholar 

  6. Bai P, Liu X, Xie J (2021) Simulating runoff under changing climatic conditions: a comparison of the long short-term memory network with two conceptual hydrologic models. J Hydrol 592:125779. https://doi.org/10.1016/j.jhydrol.2020.125779

    Article  Google Scholar 

  7. Jahandideh-Tehrani M, Jenkins G, Helfer F (2021) A comparison of particle swarm optimization and genetic algorithm for daily rainfall-runoff modelling: a case study for Southeast Queensland. Optim Eng 22(1):29–50. https://doi.org/10.1007/s11081-020-09538-3

    Article  MATH  Google Scholar 

  8. Pushpalatha R, Perrin C, Le Moine N, Mathevet T, Andréassian V (2011) A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J Hydrol 411(1–2):66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034

    Article  Google Scholar 

  9. Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279(1–4):275–289. https://doi.org/10.1016/S0022-1694(03)00225-7

    Article  Google Scholar 

  10. Givati A, Thirel G, Rosenfeld D, Paz D (2019) Climate change impacts on streamflow at the upper Jordan river based on an ensemble of regional climate models. J Hydrol Reg St 21:92–109. https://doi.org/10.1016/j.ejrh.2018.12.004

    Article  Google Scholar 

  11. Lavtar K, Bezak N, Šraj M (2020) Rainfall-runoff modeling of the nested non-homogeneous sava river sub-catchments in slovenia. Water 12(1):128. https://doi.org/10.3390/w12010128

    Article  Google Scholar 

  12. Xiong J, Guo S, Yin J (2021) Discharge estimation using integrated satellite data and hybrid model in the midstream yangtze river. Rem Sens 13(12):2272. https://doi.org/10.3390/rs13122272

    Article  Google Scholar 

  13. Poncelet C, Merz R, Merz B, Parajka J, Oudin L, Andréassian V, Perrin C (2017) Process-based interpretation of conceptual hydrological model performance using a multinational catchment set. Wat Res Res 53(8):7247–7268. https://doi.org/10.1002/2016WR019991

    Article  Google Scholar 

  14. Crochemore L, Ramos MH, Pechlivanidis IG (2020) Can continental models convey useful seasonal hydrologic information at the catchment scale? Wat Res Res 56(2):e2019WR25700. https://doi.org/10.1029/2019WR025700

    Article  Google Scholar 

  15. Flores N, Rodríguez R, Yépez S, Osores V, Rau P, Rivera D, Balocchi F (2021) Comparison of three daily rainfall-runoff hydrological models using four evapotranspiration models in four small forested watersheds with different land cover in south-central chile. Water 13(22):3191. https://doi.org/10.3390/w13223191

    Article  Google Scholar 

  16. Solomatine DP, Ostfeld A (2008) Data-driven modelling: some past experiences and new approaches. J Hydroinf 10(1):3–22. https://doi.org/10.2166/hydro.2008.015

    Article  Google Scholar 

  17. Fu M, Fan T, Ding ZA, Salih SQ, Al-Ansari N, Yaseen ZM (2020) Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation. IEEE Acc 8:32632–32651. https://doi.org/10.1109/ACCESS.2020.2974406

    Article  Google Scholar 

  18. Han H, Morrison RR (2021) Data-driven approaches for runoff prediction using distributed data. Stoc Env Res Risk Ass. https://doi.org/10.1007/s00477-021-01993-3

    Article  Google Scholar 

  19. Cannas B, Fanni A, See L, Sias G (2006) Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth Parts A/B/C 31(18):1164–1171. https://doi.org/10.1016/j.pce.2006.03.020

    Article  Google Scholar 

  20. Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng App Art Int 22(3):466–472. https://doi.org/10.1016/j.engappai.2008.09.003

    Article  Google Scholar 

  21. Patil AP, Deka PC (2017) Performance evaluation of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating evapotranspiration in arid regions of India. Neural Comput Appl 28(2):275–285. https://doi.org/10.1007/s00521-015-2055-0

    Article  Google Scholar 

  22. Shafaei M, Kisi O (2017) Predicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine models. Neural Comput Appl 28(1):15–28. https://doi.org/10.1007/s00521-016-2293-9

    Article  Google Scholar 

  23. Nourani V, Baghanam AH, Adamowski J, Gebremichael M (2013) Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J Hydrol 476:228–243. https://doi.org/10.1016/j.jhydrol.2012.10.054

    Article  Google Scholar 

  24. Humphrey GB, Gibbs MS, Dandy GC, Maier HR (2016) A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network. J Hydrol 540:623–640. https://doi.org/10.1016/j.jhydrol.2016.06.026

    Article  Google Scholar 

  25. Tian Y, Xu YP, Yang Z, Wang G, Zhu Q (2018) Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting. Water 10(11):1655. https://doi.org/10.3390/w10111655

    Article  Google Scholar 

  26. Kumanlioglu AA, Fistikoglu O (2019) Performance enhancement of a conceptual hydrological model by integrating artificial intelligence. J Hydrol Eng 24(11):04019047. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001850

    Article  Google Scholar 

  27. Okkan U, Ersoy ZB, Kumanlioglu AA, Fistikoglu O (2021) Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: a nested hybrid rainfall-runoff modeling. J Hydrol 598:126433. https://doi.org/10.1016/j.jhydrol.2021.126433

    Article  Google Scholar 

  28. Vidyarthi VK, Jain A (2022) Incorporating non-uniformity and non-linearity of hydrologic and catchment characteristics in rainfall–runoff modeling using conceptual, data-driven, and hybrid techniques. J Hydroinf 24(2):350–366. https://doi.org/10.2166/hydro.2022.088

    Article  Google Scholar 

  29. Republic of Turkey Ministry Of Agriculture and Forestry General Directorate Of Water Management (2020) Flood Management Plans. Available from: https://www.tarimorman.gov.tr/SYGM/Sayfalar/Detay.aspx?SayfaId=53. [Accessed 01 Sept 2021].

  30. Stekhoven DJ, Bühlmann P (2012) MissForest: non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1):112–118. https://doi.org/10.1093/bioinformatics/btr597

    Article  Google Scholar 

  31. Stekhoven DJ (2013) missForest: nonparametric missing value imputation using random forest. R Package Vers 1:4

    Google Scholar 

  32. Perrin C, Oudin L, Andreassian V, Rojas-Serna C, Michel C, Mathevet T (2007) Impact of limited streamflow data on the efficiency and the parameters of rainfall: runoff models. Hydrol Sci J 52(1):131–151. https://doi.org/10.1623/hysj.52.1.131

    Article  Google Scholar 

  33. Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31(1):13–24. https://doi.org/10.1080/02626668609491024

    Article  Google Scholar 

  34. Kodja DJ, Akognongbé AJS, Amoussou E, Mahé G, Vissin EW, Paturel JE, Houndénou C (2020) Calibration of the hydrological model GR4J from potential evapotranspiration estimates by the Penman-Monteith and Oudin methods in the Ouémé watershed (West Africa). Proc Int Ass Hydrol Sci 383:163–169. https://doi.org/10.5194/piahs-383-163-2020

    Article  Google Scholar 

  35. Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2-towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J Hydrol 303(1–4):290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

    Article  Google Scholar 

  36. Kohler MA, Linsley RK Jr (1951) Predicting runoff from storm rainfall. Res. Paper 34, U.S. Weather Bureau, Washington, D.C

  37. Heggen RJ (2001) Normalized antecedent precipitation index. J Hydrol Eng 6(5):377–381. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(377)

    Article  Google Scholar 

  38. Viessman W Jr, Lewis GL (1996) Introduction to hydrology, 4th edn. HarperCollins, New York

    Google Scholar 

  39. Anctil F, Michel C, Perrin C, Andréassian V (2004) A soil moisture index as an auxiliary ANN input for stream flow forecasting. J Hydrol 286(1–4):155–167. https://doi.org/10.1016/j.jhydrol.2003.09.006

    Article  Google Scholar 

  40. Suribabu CR, Sujatha ER (2019) Evaluation of moisture level using precipitation indices as a landslide triggering factor: a study of coonoor hill station. Climate 7(9):111. https://doi.org/10.3390/cli7090111

    Article  Google Scholar 

  41. Luffman I, Connors D (2022) Stream stage monitoring with community science-contributed stage data. Hydrology 9(1):11. https://doi.org/10.3390/hydrology9010011

    Article  Google Scholar 

  42. Michel C (1991) Hydrologie appliquée aux petits bassins ruraux, Hydrology handbook (in French), Cemagref, Antony, France

  43. Coron L, Thirel G, Delaigue O, Perrin C, Andréassian V (2017) The suite of lumped GR hydrological models in an R package. Env Mod Soft 94:166–171. https://doi.org/10.1016/j.envsoft.2017.05.002

    Article  Google Scholar 

  44. Coron L, Delaigue O, Thirel G, Dorchies D, Perrin C, Michel C (2021) airGR: Suite of GR hydrological models for precipitation-runoff modelling. doi: https://doi.org/10.15454/EX11NA, R package version 1.6.10.4, https://CRAN.R-project.org/package=airGR

  45. R Development Core Team (2015) R: A language and environment for statistical computing; r foundation for statistical computing: Vienna, Austria. URL http://www.R-project.org/

  46. Kang S, Lin H (2007) Wavelet analysis of hydrological and water quality signals in an agricultural watershed. J Hydrol 338(1–2):1–14. https://doi.org/10.1016/j.jhydrol.2007.01.047

    Article  Google Scholar 

  47. Rhif M, Ben Abbes A, Farah IR, Martínez B, Sang Y (2019) Wavelet transform application for/in non-stationary time-series analysis: a review. App Sci 9(7):1345. https://doi.org/10.3390/app9071345

    Article  Google Scholar 

  48. Maheswaran R, Khosa R (2012) Comparative study of different wavelets for hydrologic forecasting. Comp Geo 46:284–295. https://doi.org/10.1016/j.cageo.2011.12.015

    Article  Google Scholar 

  49. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005. https://doi.org/10.1515/9781400827268.442

    Article  MathSciNet  MATH  Google Scholar 

  50. Shensa MJ (1992) The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans Sig Pro 40(10):2464–2482. https://doi.org/10.1109/78.157290

    Article  MATH  Google Scholar 

  51. Percival DB, Walden AT (2000) Wavelet methods for time seriesanalysis. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511841040

    Book  MATH  Google Scholar 

  52. Mouatadid S, Adamowski JF, Tiwari MK, Quilty JM (2019) Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting. Agric Water Manag 219:72–85. https://doi.org/10.1016/j.agwat.2019.03.045

    Article  Google Scholar 

  53. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pat Anal Mach Int 11(7):674–693. https://doi.org/10.1515/9781400827268.494

    Article  MATH  Google Scholar 

  54. Nourani V, Baghanam AH, Adamovski J, Kisi O (2014) Applications of hybrid wavelet: artificial intelligence models in hydrology—a review. J Hydrol 514(6):358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057

    Article  Google Scholar 

  55. Roushangar K, Alizadeh F, Nourani V (2018) Improving capability of conceptual modeling of watershed rainfall–runoff using hybrid wavelet-extreme learning machine approach. J Hydroinf 20(1):69–87. https://doi.org/10.2166/hydro.2017.011

    Article  Google Scholar 

  56. Barzegar R, Adamowski J, Moghaddam AA (2016) Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River. Iran Stoc Environ Res Risk Ass 30(7):1797–1819. https://doi.org/10.1007/s00477-016-1213-y

    Article  Google Scholar 

  57. Nourani V, Tajbakhsh AD, Molajou A (2019) Data mining based on wavelet and decision tree for rainfall-runoff simulation. Hydrol Res 50(1):75–84. https://doi.org/10.2166/nh.2018.049

    Article  Google Scholar 

  58. Wang W, Jin J, Li Y (2009) Prediction of inflow at three gorges dam in Yangtze river with wavelet network model. Wat Res Manag 23(13):2791–2803. https://doi.org/10.1007/s11269-009-9409-2

    Article  Google Scholar 

  59. Nourani V, Paknezhad NJ, Sharghi E, Khosravi A (2019) Estimation of prediction interval in ANN-based multi-GCMs downscaling of hydro-climatologic parameters. J Hydrol 579:124226. https://doi.org/10.1016/j.jhydrol.2019.124226

    Article  Google Scholar 

  60. Farajzadeh J, Fard AF, Lotfi S (2014) Modeling of monthly rainfall and runoff of Urmia lake basin using “feed-forward neural network” and “time series analysis” model. Wat Res Ind 7:38–48. https://doi.org/10.1016/j.wri.2014.10.003

    Article  Google Scholar 

  61. Shoaib M, Shamseldin AY, Khan S, Khan MM, Khan ZM, Sultan T, Melville BW (2018) A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting. Wat Res Manag 32(1):83–103. https://doi.org/10.1007/s11269-017-1796-1

    Article  Google Scholar 

  62. Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Che Int Lab Syst 39(1):43–62. https://doi.org/10.1016/S0169-7439(97)00061-0

    Article  Google Scholar 

  63. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan press, Ann Arbor

    Google Scholar 

  64. Haldurai L, Madhubala T, Rajalakshmi R (2016) A study on genetic algorithm and its applications. Int J Comp Sci Eng 4(10):139

    Google Scholar 

  65. Nunez-Letamendia L (2007) Fitting the control parameters of a genetic algorithm: An application to technical trading systems design. Eur J Oper Res 179(3):847–868. https://doi.org/10.1016/j.ejor.2005.03.067

    Article  MATH  Google Scholar 

  66. Kapoor V, Dey S, Khurana AP (2011) An empirical study of the role of control parameters of genetic algorithms in function optimization problems. Int J Comp App 31(6):20–26. https://doi.org/10.5120/3828-5319

    Article  Google Scholar 

  67. Sedki A, Ouazar D, El Mazoudi E (2009) Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Exp Syst Appl 36(3):4523–4527. https://doi.org/10.1016/j.eswa.2008.05.024

    Article  Google Scholar 

  68. Reshma T, Reddy KV, Pratap D, Agilan V (2018) Parameters optimization using Fuzzy rule based multi-objective genetic algorithm for an event based rainfall-runoff model. Wat Res Manag 32(4):1501–1516. https://doi.org/10.1007/s11269-017-1884-2

    Article  Google Scholar 

  69. Srinivasulu S, Jain A (2006) A comparative analysis of training methods for artificial neural network rainfall–runoff models. Appl Soft Comput 6(3):295–306. https://doi.org/10.1016/j.asoc.2005.02.002

    Article  Google Scholar 

  70. Bozorg-Haddad O, Zarezadeh-Mehrizi M, Abdi-Dehkordi M, Loáiciga HA, Mariño MA (2016) A self-tuning ANN model for simulation and forecasting of surface flows. Water Res Manag 30(9):2907–2929. https://doi.org/10.1007/s11269-016-1301-2

    Article  Google Scholar 

  71. Young CC, Liu WC, Chung CE (2015) Genetic algorithm and fuzzy neural networks combined with the hydrological modeling system for forecasting watershed runoff discharge. Neural Comput Appl 26(7):1631–1643. https://doi.org/10.1007/s00521-015-1832-0

    Article  Google Scholar 

  72. Molajou A, Nourani V, Afshar A, Khosravi M, Brysiewicz A (2021) Optimal design and feature selection by genetic algorithm for emotional artificial neural network (EANN) in rainfall–runoff modeling. Wat Res Manag. https://doi.org/10.1007/s11269-021-02818-2

    Article  Google Scholar 

  73. Kursa MB, Jankowski A, Rudnicki WR (2010) Boruta–a system for feature selection. Fund Inf 101(4):271–285. https://doi.org/10.3233/FI-2010-288

    Article  MathSciNet  Google Scholar 

  74. Kursa MB, Rudnicki W R (2010) Feature selection with the boruta package. J Stat Softw. https://doi.org/10.18637/jss.v036.i11

    Article  Google Scholar 

  75. Prasad R, Deo RC, Li Y, Maraseni T (2019) Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach. CATENA 177:149–166. https://doi.org/10.1016/j.catena.2019.02.012

    Article  Google Scholar 

  76. Hur JH, Ihm SY, Park YH (2017) A variable impacts measurement in random forest for mobile cloud computing. Wirel Commun Mob Comp. https://doi.org/10.1155/2017/6817627

    Article  Google Scholar 

  77. Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinf 9(1):1–11. https://doi.org/10.1186/1471-2105-9-307

    Article  Google Scholar 

  78. Guo P, Lam JC, Li VO (2018) A novel machine learning approach for identifying the drivers of domestic electricity users’ price responsiveness. University of Cambridge

    Google Scholar 

  79. Arjasakusuma S, Swahyu Kusuma S, Phinn S (2020) Evaluating variable selection and machine learning algorithms for estimating forest heights by combining lidar and hyperspectral data. ISPRS Int J Geo-Inf 9(9):507. https://doi.org/10.3390/ijgi9090507

    Article  Google Scholar 

  80. Ebrahimi-Khusfi Z, Nafarzadegan AR, Dargahian F (2021) Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques. Eco Ind 125:107499. https://doi.org/10.1016/j.ecolind.2021.107499

    Article  Google Scholar 

  81. Brocca L, Melone F, Moramarco T (2008) On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol Process 22(5):629–642. https://doi.org/10.1002/hyp.6629

    Article  Google Scholar 

  82. Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin. Malaysia Environ Earth Sci 67(1):251–264. https://doi.org/10.1007/s12665-011-1504-z

    Article  Google Scholar 

  83. Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J For 22(4):679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  84. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I: a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  85. McCuen RH, Knight Z, Cutter AG (2006) Evaluation of the Nash-Sutcliffe efficiency index. J Hydrol Eng 11(6):597–602. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)

    Article  Google Scholar 

  86. Willmott CJ (1981) On the validation of models. Phys Geog 2(2):184–194. https://doi.org/10.1080/02723646.1981.10642213

    Article  Google Scholar 

  87. Young CC, Liu WC, Wu MC (2017) A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events. App Soft Comput 53:205–216. https://doi.org/10.1016/j.asoc.2016.12.052

    Article  Google Scholar 

  88. Narbondo S, Gorgoglione A, Crisci M, Chreties C (2020) Enhancing physical similarity approach to predict runoff in ungauged watersheds in sub-tropical regions. Water 12(2):528. https://doi.org/10.3390/w12020528

    Article  Google Scholar 

  89. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  90. Kalin L, Isik S, Schoonover JE, Lockaby BG (2010) Predicting water quality in unmonitored watersheds using artificial neural networks. J Environ Qual 39(4):1429–1440. https://doi.org/10.2134/jeq2009.0441

    Article  Google Scholar 

  91. Jimeno-Sáez P, Senent-Aparicio J, Pérez-Sánchez J, Pulido-Velazquez D (2018) A comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular Spain. Water 10(2):192. https://doi.org/10.3390/w10020192

    Article  Google Scholar 

  92. Buldur AD, Sarı S (2012) Çarşamba Çayı’nin 15 Aralik 2010 Tarihli Taşkını ve Bozkır’daki (Konya) Etkisi. Mar Coğr Der 25:81–107

    Google Scholar 

  93. Merz R, Blöschl G (2009) A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria. Water Resour Res. https://doi.org/10.1029/2008WR007163

    Article  Google Scholar 

  94. Nazar M (2018) Beyşehir Gölü ve Beyşehir Gölü ile Tuz Gölü arasındaki sulama ve tahliye kanallarındaki su kalitesinin değişimi (Master's thesis)

  95. Sang YF (2012) A practical guide to discrete wavelet decomposition of hydrologic time series. Wat Res Manag 26(11):3345–3365. https://doi.org/10.1007/s11269-012-0075-4

    Article  Google Scholar 

  96. Beven K, Binley A (2014) GLUE: 20 years on. Hydrol Process 28(24):5897–5918. https://doi.org/10.1002/hyp.10082

    Article  Google Scholar 

  97. Tyralis H, Papacharalampous G (2021) Quantile-based hydrological modelling. Water 13(23):3420. https://doi.org/10.3390/w13233420

    Article  Google Scholar 

  98. Tyralis H, Papacharalampous G, Langousis A (2019) A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water 11(5):910. https://doi.org/10.3390/w11050910

    Article  Google Scholar 

  99. Wang J, Bao W, Gao Q, Si W, Sun Y (2021) Coupling the Xinanjiang model and wavelet-based random forests method for improved daily streamflow simulation. J Hydroinf 23(3):589–604. https://doi.org/10.2166/hydro.2021.111

    Article  Google Scholar 

  100. Sarış F, Gedik F (2021) Konya Kapalı Havzası’nda Meteorolojik Kuraklık Analizi. Coğ Der 42:295–308

    Google Scholar 

  101. Tayfur G, Brocca L (2015) Fuzzy logic for rainfall-runoff modelling considering soil moisture. Water Res Manag 29(10):3519–3533. https://doi.org/10.1007/s11269-015-1012-0

    Article  Google Scholar 

  102. Zhao RJ, Liu XR (1995) The Xinanjiang model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, pp 215–232

    Google Scholar 

  103. Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models in watershed modeling. Water Resources Publications, pp 443–476

    Google Scholar 

  104. Jakeman AJ, Littlewood IG, Whitehead PG (1990) Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J Hydrol 117(1–4):275–300. https://doi.org/10.1016/0022-1694(90)90097-H

    Article  Google Scholar 

  105. Pelletier A, Andréassian V (2021) On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation. Hydrol Earth Syst Sci Dis. https://doi.org/10.5194/hess-2021-413

Download references

Acknowledgements

The authors are grateful to the Turkish State Meteorological Service and General Directorate of State Hydraulic Works for providing the data.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cenk Sezen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The equations and detailed description of the GR6J model were given as follows [8, 9, 39, 43, 44, 105]:

The equations regarding the calculation of production store content

In this stage, the capacity of the production store is calculated. Daily precipitation (P) and evapotranspiration (E) data are used as input data. The x1 parameter represents the maximum capacity of the production store. Accordingly,

If \(P \ge E\), then \({\text{P}}_{{\text{n}}} = {\text{P}} - {\text{E ve E}}_{{\text{n}}} = 0\);

Otherwise, \({\text{P}}_{{\text{n}}} = 0{\text{ ve E}}_{{\text{n}}} = {\text{E}} - {\text{P}}\).

If Pn is positive, a part of Pn, namely Ps, which feeds the production store, is calculated as follows:

$${\text{P}}_{{\text{s}}} = \frac{{{\text{x}}_{{1{ }}} \left( {1 - \left( {\frac{{\text{S}}}{{{\text{x}}_{1} }}} \right)^{2} } \right){\text{tanh}}\left( {\frac{{{\text{P}}_{{\text{n}}} }}{{{\text{x}}_{1} }}} \right)}}{{1 + \frac{{\text{s}}}{{{\text{x}}_{1} }}{\text{tanh}}\left( {\frac{{{\text{P}}_{{\text{n}}} }}{{{\text{x}}_{1} }}} \right)}};\;E_{s} = 0$$
(13)

Otherwise, a part of Es of En is taken from the production store:

$${\text{E}}_{{\text{s}}} = \frac{{{\text{S}} \left( {2 - \left( {\frac{{{\text{S}} }}{{{\text{x}}_{1} }}} \right)^{2} } \right){\text{tanh}}\left( {\frac{{{\text{E}}_{{\text{n}}} }}{{{\text{x}}_{1} }}} \right)}}{{1 + \left( {1 - \frac{{{\text{S}} }}{{{\text{x}}_{1} }}} \right){\text{tanh}}\left( {\frac{{{\text{E}}_{{\text{n}}} }}{{{\text{x}}_{1} }}} \right)}}$$
(14)

Thus, the production store content is updated as follows:

$${\text{S}} = {\text{S}} - {\text{E}}_{{\text{s}}} + {\text{P}}_{{\text{s}}}$$
(14)

The Perc, which percolates from the production store to the routing function:

$${\text{Perc}} = {\text{S}}\left\{ {1 - \left[ {1 + \left( {\frac{4}{9}\frac{{\text{S}}}{{{\text{x}}_{1} }}} \right)^{4} } \right]^{ - 1/4} } \right\}$$
(15)

In this regard, production store capacity is updated by:

$${\text{S}} = {\text{S}} - {\text{Perc}}$$
(16)

The SMI time series are sequences of St for x1 production store maximum capacity:

$${\text{SMI}}_{{{\text{x1}}}} \left( t \right) = {\text{S}}_{t}$$
(17)

The water quantity Pr that reaches the routing part is,

$${\text{P}}_{{\text{r}}} = {\text{Perc}} + \left( {{\text{P}}_{{\text{n}}} - {\text{P}}_{{\text{s}}} } \right)$$
(18)

Unit hydrographs in the GR6J model

Pr splits into two parts: 90% are routed through the UH1 one-sided unit hydrograph, and 10% through the UH2 two-sided unit hydrograph. The cumulated ordinates of the UH1 and UH2 unit hydrographs, namely SH1 (t) and SH2 (t), are specified by the base time x4 for tϵN:

$${\text{if}\text{ t}}=0,{\text{ SH}}1{ }\left( {\text{t}} \right) = 0$$
$$\text{if}\ 0 < {\text{t}} < {\text{x}}_{{4{ }}},{\text{ SH}}1\left( {\text{t}} \right) = \left( {\frac{{\text{t}}}{{{\text{x}}_{4} }}} \right)^{5/2}$$
(19)
$${\text{if}\text{ t}} \ge {\text{x}}_{4},{\text{ SH}}1\left( {\text{t}} \right) = 1$$
$${\text{if}\text{ t}}=0,{\text{ SH}}2{ }\left( {\text{t}} \right) = 0$$
$${\text{if}}\ 0 < {\text{t}} \ <{\text{x}}_{{4{ }}},{\text{ SH}}2\left( {\text{t}} \right) = \frac{1}{2}\left( {\frac{{\text{t}}}{{{\text{x}}_{4} }}} \right)^{5/2}$$
(20)
$${\text{if}}{\text{ x}}_{{4{ }}} \le {\text{t}} < 2{\text{x}}_{{4{ }}},{\text{ SH}}2\left( {\text{t}} \right) = 1 - \frac{1}{2}\left( {2 - \frac{{\text{t}}}{{{\text{x}}_{4} }}} \right)^{5/2}$$
$${\text{if}}\ {\text{t}} \ge 2{\text{x}}_{4},{\text{ SH}}2\left( {\text{t}} \right) = 1$$

Accordingly, ordinates of UH1(t) and UH2(t) are calculated based on the differentiating the cumulated ordinates:

$${\text{UH}}1{ }\left( {\text{t}} \right) = {\text{SH}}1\left( {\text{t}} \right) - {\text{SH}}1\left( {{\text{t}} - 1} \right)$$
(21)
$${\text{UH}}2{ }\left( {\text{t}} \right) = {\text{SH}}2\left( {\text{t}} \right) - {\text{SH}}2\left( {{\text{t}} - 1} \right)$$

Consequently, the output of the UH1(t), i.e., Q9, and the output of the UH2(t), i.e., Q1, are calculated as follows:

$${\text{Q}}9\left( {\text{t}} \right) = 0,9.\mathop \sum \limits_{{{\text{k}} = 1}}^{{\text{l}}} {\text{UH}}1\left( {\text{k}} \right).{\text{P}}_{{\text{r}}} \left( {{\text{t}} - {\text{k}} + 1} \right)$$
(22)
$${\text{Q}}1\left( {\text{t}} \right) = 0,1.\mathop \sum \limits_{{{\text{k}} = 1}}^{{\text{m}}} {\text{UH}}2\left( {\text{k}} \right).{\text{P}}_{{\text{r}}} \left( {{\text{t}} - {\text{k}} + 1} \right)$$

where l = int (x4) + 1 and m = int (2.x4) + 1.

The equations for the routing stores

At this stage, the model has two branches where the first branch is composed of the stores fed by Q9 from the UH1(t), and the second one is the direct branch fed by Q1 from the UH2(t). In the routing stores’ branch, Q9 is divided into 60% for the routing store and the remaining part for the exponential store. Furthermore, a possible exchange, F, is calculated based on the routing store water content, R, its maximum capacity,x3, and the exchange parameters x2 and x5:

$$F = x_{2} \left( {\frac{R}{{x_{3} }} - x_{5} } \right)$$
(23)

F can be positive, zero or negative. Because the value of R cannot be under zero, actual F (AF1) is limited by the content of the latter as follows:

$${\text{AF}_{1}} = \left\{ {\begin{array}{*{20}c} {F if R + 0.6Q9 + F \ge 0} \\ { - R - 0.6Q9 \;\;{\text{otherwise}}} \\ \end{array} } \right.$$
(24)

Then, the routing store water content is updated as:

$$R = R + 0.6Q9 + AF_{1}$$
(25)

The output of the routing store, i.e., QR, is calculated as follows:

$${\text{QR}} = {\text{R}}\left\{ {1 - \left[ {1 + \left( {\frac{{\text{R}}}{{{\text{x}}_{3} }}} \right)^{4} } \right]^{ - 1/4} } \right\}$$
(26)

The final water content of the routing store is \(R = R -QR\).

The exponential store is a bottomless reservoir, and water content can be negative in this reservoir. In this regard, the exponential store can be calculated as:

$${\text{Exp}} = {\text{Exp}} + 0.4Q9 + F$$
(27)

The output of the exponential store, QRexp, is computed as follows:

$$Q{\text{Re}} xp = x_{6} \log \left( {1 + \exp \left( {\frac{{{\text{Exp}}}}{{x_{6} }}} \right)} \right)$$
(28)

where x6 (mm) stands for the exponential store depletion coefficient. Thus, the exponential store capacity takes its final form as \({\text{Exp}} = {\text{Exp}} - {\text{QRexp}}\).

Finally, the second branch fed by Q1 can be exposed to exchange AF2:

$${\text{AF}}_{2} = \left\{ {\begin{array}{*{20}c} {F \;\; if\;\; Q1 + F \ge 0} \\ { - Q1\;\;\; {\text{otherwise}}} \\ \end{array} } \right.$$
(29)

In this respect, the output of the second branch, QD, is equal to \({\text{QD}} = Q_{1} - {\text{AF}}_{2}\).

In this regard, the simulated streamflow is obtained by summation of QR, QRexp, and QD:

$$Q{\text{sim}} = QR + QR{\text{exp}} + QD$$
(30)

For further details and explanations concerning the model structure, one can refer to Perrin et al. [9], Pushpalatha et al. [8], Anctil et al. [39], Pelletier and Andréassian [105], Coron et al. [43], Coron et al. [44].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezen, C., Partal, T. New hybrid GR6J-wavelet-based genetic algorithm-artificial neural network (GR6J-WGANN) conceptual-data-driven model approaches for daily rainfall–runoff modelling. Neural Comput & Applic 34, 17231–17255 (2022). https://doi.org/10.1007/s00521-022-07372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07372-5

Keywords

Navigation