Abstract
Salp swarm algorithm (SSA) is a unique swarm intelligent algorithm widely used for various practical applications due to its simple framework and good optimization performance. However, like other swarm-based algorithms, SSA yields local optimal solutions and has a slow convergence rate and low solution accuracy when dealing with high-dimensional global optimization problems. Based on quadratic interpolation and a local escape operator (LEO), a salp swarm optimization algorithm (QSSALEO) is proposed to address these issues. Quadratic interpolation around the best search agent aids QSSALEO's exploitation ability and solution accuracy, whereas the local escaping operator employs random operators to escape local optima. These tactics complement one another to help SSA promote convergence performance. Furthermore, the algorithm strives for a balance of exploitation and exploration. The proposed QSSALEO method was tested using the CEC 2017 benchmark with 50 and 100 decision variables, as well as seven CEC2008lsgo test functions with 200, 500, and 1000 decision variables, and its performance was compared to that of other metaheuristic algorithms and advanced algorithms, including seven salp swarm variants. The experimental results reveal that QSSALEO outperforms SSA and other population-based algorithms regarding convergence rate and solution correctness. The QSSALEO was then evaluated as a feature selection algorithm on 19 datasets (including three high-dimensional datasets). Friedman and Wilcoxon rank-sum statistical tests are also used to analyze the results. According to experimental data and statistical tests, the QSSALEO algorithm is very competitive and often superior to the algorithms employed in research. Therefore, the proposed method can also be considered a specialized large-scale global optimization optimizer whose performance surpasses state-of-the-art algorithms such as CMA-ES and SHADE. The algorithm source code is available at https://github.com/MohammedQaraad/An-Innovative-Quadratic-interpolation-Salp-Swarm.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Sayarshad HR, Javadian N, Tavakkoli-Moghaddam R, Forghani N (2010) Solving multi-objective optimization formulation for fleet planning in a railway industry. Ann Oper Res 181:185–197. https://doi.org/10.1007/s10479-010-0714-1
Javadian N, Sayarshad HR, Najafi S (2011) Using simulated annealing for determination of the capacity of yard stations in a railway industry. Appl Soft Comput J 11:1899–1907. https://doi.org/10.1016/j.asoc.2010.06.006
Zahrani HK, Nadimi-Shahraki MH, Sayarshad HR (2021) An intelligent social-based method for rail-car fleet sizing problem. J Rail Transp Plan Manag. https://doi.org/10.1016/j.jrtpm.2020.100231
Mahadevan EG (2009) Ammonium nitrate explosives for civil applications: slurries, emulsions and ammonium nitrate fuel oils. Wiley, Hoboken, NJ, USA
Kar AK (2016) Bio inspired computing—a review of algorithms and scope of applications. Expert Syst Appl 59:20–32. https://doi.org/10.1016/j.eswa.2016.04.018
Del Ser J, Osaba E, Molina D et al (2019) Bio-inspired computation: where we stand and what’s next. Swarm Evol Comput 48:220–250. https://doi.org/10.1016/j.swevo.2019.04.008
Ibrahim RA, Abualigah L, Ewees AA et al (2021) An electric fish-based arithmetic optimization algorithm for feature selection. Entropy. https://doi.org/10.3390/e23091189
Zamani H, Nadimi-Shahraki M-H (2016) Feature selection based on whale optimization algorithm for diseases diagnosis. Int J Comput Sci Inf Secur 14:1243–1247
Zamani H, Nadimi-Shahraki M-H (2016) Swarm intelligence approach for breast cancer diagnosis. Int J Comput Appl 151:40–44. https://doi.org/10.5120/ijca2016911667
Taghian S, Nadimi-Shahraki MH, Zamani H (2019) Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In: 2018 international conference on artificial intelligence and data processing IDAP 2018. https://doi.org/10.1109/IDAP.2018.8620828
Mienye ID, Sun Y (2021) Improved heart disease prediction using particle swarm optimization based stacked sparse autoencoder. Electron. https://doi.org/10.3390/electronics10192347
Ewees AA, Al-Qaness MAA, Abualigah L et al (2021) Boosting arithmetic optimization algorithm with genetic algorithm operators for feature selection: case study on cox proportional hazards model. Mathematics. https://doi.org/10.3390/math9182321
Abdollahzadeh B, Gharehchopogh FS (2021) A multi-objective optimization algorithm for feature selection problems. Eng Comput. https://doi.org/10.1007/s00366-021-01369-9
Doumari SA, Givi H, Dehghani M et al (2021) A new two-stage algorithm for solving optimization problems. Entropy. https://doi.org/10.3390/e23040491
Zaman HRR, Gharehchopogh FS (2021) An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Eng Comput. https://doi.org/10.1007/s00366-021-01431-6
Goldanloo MJ, Gharehchopogh FS (2022) A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for solving continuous optimization problems. J Supercomput 78:3998–4031. https://doi.org/10.1007/s11227-021-04015-9
Asghari K, Masdari M, Gharehchopogh FS, Saneifard R (2021) A chaotic and hybrid gray wolf-whale algorithm for solving continuous optimization problems. Prog Artif Intell 10:349–374. https://doi.org/10.1007/s13748-021-00244-4
Alsalibi B, Abualigah L, Khader AT (2021) A novel bat algorithm with dynamic membrane structure for optimization problems. Appl Intell 51:1992–2017. https://doi.org/10.1007/s10489-020-01898-8
Abd Elaziz M, Elsheikh AH, Oliva D et al (2022) Advanced metaheuristic techniques for mechanical design problems: review. Arch Comput Methods Eng 29:695–716. https://doi.org/10.1007/s11831-021-09589-4
Aloui M, Hamidi F, Jerbi H et al (2021) A chaotic krill herd optimization algorithm for global numerical estimation of the attraction domain for nonlinear systems. Mathematics. https://doi.org/10.3390/math9151743
Gharehchopogh FS, Farnad B, Alizadeh A (2021) A farmland fertility algorithm for solving constrained engineering problems. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.6310
Ivanov O, Neagu BC, Grigoras G et al (2021) A metaheuristic algorithm for flexible energy storage management in residential electricity distribution grids. Mathematics. https://doi.org/10.3390/math9192375
Wang S, Jia H, Abualigah L et al (2021) An improved hybrid aquila optimizer and Harris Hawks algorithm for solving industrial engineering optimization problems. Processes. https://doi.org/10.3390/pr9091551
Hua Z, Xiao Y, Cao J (2021) Misalignment fault prediction of wind turbines based on improved artificial fish swarm algorithm. Entropy. https://doi.org/10.3390/e23060692
Wang S, Liu Q, Liu Y et al (2021) A hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems. Comput Intell Neurosci. https://doi.org/10.1155/2021/6379469
Bacanin N, Bezdan T, Tuba E et al (2020) Optimizing convolutional neural network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms. https://doi.org/10.3390/a13030067
Bacanin N, Bezdan T, Venkatachalam K, Al-Turjman F (2021) Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade. J Real-Time Image Process 18:1085–1098. https://doi.org/10.1007/s11554-021-01106-x
Selvaraj S, Choi E (2021) Swarm intelligence algorithms in text document clustering with various benchmarks. Sensors. https://doi.org/10.3390/s21093196
Pasandideh SHR, Niaki STA, Gharaei A (2015) Optimization of a multiproduct economic production quantity problem with stochastic constraints using sequential quadratic programming. Knowl Based Syst 84:98–107. https://doi.org/10.1016/J.KNOSYS.2015.04.001
Blum C, Roli A (2003) Metaheuristics in combinatorial optimization. ACM Comput Surv 35:268–308. https://doi.org/10.1145/937503.937505
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science (80-) 220:671–680. https://doi.org/10.1126/science.220.4598.671
Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206. https://doi.org/10.1287/ijoc.1.3.190
Hasançebi O, Azad SK (2015) Adaptive dimensional search: a new metaheuristic algorithm for discrete truss sizing optimization. Comput Struct 154:1–16. https://doi.org/10.1016/j.compstruc.2015.03.014
Lourenço HR, Martin OC, Stützle T (2019) Iterated local search: framework and applications. In: International series in operations research and management science. Springer, New York, pp 129–168
Holland JH (1992) Genetic algorithms. Sci Am 267:66–72. https://doi.org/10.1038/scientificamerican0792-66
Chelouah R, Siarry P (2000) Continuous genetic algorithm designed for the global optimization of multimodal functions. J Heuristics 6:191–213. https://doi.org/10.1023/A:1009626110229
Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4:87–112. https://doi.org/10.1007/BF00175355
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328
Beyer H-G, Beyer H-G, Schwefel H-P, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1:3–52. https://doi.org/10.1023/A:1015059928466
Zamani H, Nadimi-Shahraki MH, Gandomi AH (2021) QANA: quantum-based avian navigation optimizer algorithm. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2021.104314
Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput J 11:1679–1696. https://doi.org/10.1016/j.asoc.2010.04.024
Wu G, Mallipeddi R, Suganthan PN et al (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inf Sci (NY) 329:329–345. https://doi.org/10.1016/j.ins.2015.09.009
Wu G, Shen X, Li H et al (2018) Ensemble of differential evolution variants. Inf Sci (NY) 423:172–186. https://doi.org/10.1016/j.ins.2017.09.053
Nadimi-Shahraki MH, Taghian S, Mirjalili S, Faris H (2020) MTDE: an effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106761
Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005
Kaveh A, Talatahari S (2010) A novel heuristic optimization method: Charged system search. Acta Mech 213:267–289. https://doi.org/10.1007/s00707-009-0270-4
Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003
Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl Based Syst 163:283–304. https://doi.org/10.1016/j.knosys.2018.08.030
Abualigah L, Diabat A, Mirjalili S et al (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2020.113609
Azizi M (2021) Atomic orbital search: a novel metaheuristic algorithm. Appl Math Model 93:657–683. https://doi.org/10.1016/j.apm.2020.12.021
Zamani H, Nadimi-Shahraki MH, Gandomi AH (2019) CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2019.105583
Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN'95—international conference on neural networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x
Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1109/MCI.2006.329691
Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 contest by differential evolution. Proc IEEE Conf Evol Comput. https://doi.org/10.1109/icec.1996.542711
Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99. https://doi.org/10.1023/A:1022602019183
Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68. https://doi.org/10.1177/003754970107600201
Yang XS, Deb S (2009) Cuckoo search via Lévy flights. 2009 World congress on nature & biologically inspired computing, NABIC 2009—proceedings, pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
Cheng R, Jin Y (2015) A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern 45:191–204. https://doi.org/10.1109/TCYB.2014.2322602
Yang XS (2010) A new metaheuristic bat-inspired algorithm. Stud Comput Intell 284:65–74. https://doi.org/10.1007/978-3-642-12538-6_6
Jia H, Sun K, Zhang W, Leng X (2022) An enhanced chimp optimization algorithm for continuous optimization domains. Complex Intell Syst 8:65–82. https://doi.org/10.1007/s40747-021-00346-5
Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113917
Chen C, Wang X, Chen H et al (2021) Towards precision fertilization: Multi-strategy grey wolf optimizer based model evaluation and yield estimation. Electron. https://doi.org/10.3390/electronics10182183
Liu Y, Sun J, Yu H et al (2020) An improved grey wolf optimizer based on differential evolution and OTSU algorithm. Appl Sci. https://doi.org/10.3390/APP10186343
Mostafa A, Houssein EH, Houseni M et al (2018) Evaluating swarm optimization algorithms for segmentation of liver images. Stud Comput Intell 730:41–62. https://doi.org/10.1007/978-3-319-63754-9_3
Hashim FA, Houssein EH, Hussain K et al (2020) A modified Henry gas solubility optimization for solving motif discovery problem. Neural Comput Appl 32:10759–10771. https://doi.org/10.1007/s00521-019-04611-0
Houssein EH, Hosney ME, Oliva D et al (2020) A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput Chem Eng. https://doi.org/10.1016/j.compchemeng.2019.106656
Tubishat M, Ja’afar S, Alswaitti M et al (2021) Dynamic Salp swarm algorithm for feature selection. Expert Syst Appl 164:113873. https://doi.org/10.1016/j.eswa.2020.113873
Niu B, Li L (2008) A novel PSO-DE-Based hybrid algorithm for global optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics, vol 5227 LNAI, pp 156–163. https://doi.org/10.1007/978-3-540-85984-0_20
Salgotra R, Singh U, Singh S et al (2021) Self-adaptive salp swarm algorithm for engineering optimization problems. Appl Math Model 89:188–207. https://doi.org/10.1016/j.apm.2020.08.014
Abualigah L, Alsalibi B, Shehab M et al (2021) A parallel hybrid krill herd algorithm for feature selection. Int J Mach Learn Cybern 12:783–806. https://doi.org/10.1007/s13042-020-01202-7
Houssein EH, Saad MR, Hussain K et al (2020) Optimal sink node placement in large scale wireless sensor networks based on Harris’ Hawk optimization algorithm. IEEE Access 8:19381–19397. https://doi.org/10.1109/ACCESS.2020.2968981
Morales-Castañeda B, Zaldívar D, Cuevas E et al (2020) A better balance in metaheuristic algorithms: Does it exist? Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2020.100671
Crepinsek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv. https://doi.org/10.1145/2480741.2480752
Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002
Faris H, Mafarja MM, Heidari AA et al (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67. https://doi.org/10.1016/j.knosys.2018.05.009
Cuevas E, Echavarría A, Ramírez-Ortegón MA (2014) An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl Intell 40:256–272. https://doi.org/10.1007/s10489-013-0458-0
Abualigah L, Shehab M, Alshinwan M, Alabool H (2020) Salp swarm algorithm: a comprehensive survey. Neural Comput Appl 32:11195–11215. https://doi.org/10.1007/s00521-019-04629-4
Mahdavi S, Shiri ME, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: a survey. Inf Sci (NY) 295:407–428. https://doi.org/10.1016/j.ins.2014.10.042
Potter MA, Jong KA (1994) A cooperative coevolutionary approach to function optimization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Springer, pp 249–257
Mahadevan EG (2009) Ammonium nitrate explosives for civil applications: slurries, emulsions and ammonium nitrate fuel oils, vol 74. Wiley, Hoboken
LaTorre A, Muelas S, Peña JM (2011) A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test. Soft Comput 15:2187–2199. https://doi.org/10.1007/s00500-010-0646-3
Zhao SZ, Liang JJ, Suganthan PN, Tasgetiren MF (2008) Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: 2008 IEEE congress on evolutionary computation, CEC 2008. pp 3845–3852
Yang Z, Tang K, Yao X (2011) Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Comput 15:2141–2155. https://doi.org/10.1007/s00500-010-0643-6
Brest J, Maučec MS (2011) Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft Comput 15:2157–2174. https://doi.org/10.1007/s00500-010-0644-5
Hsieh S-T, Sun T-Y, Liu C-C, Tsai S-J (2008) Solving large scale global optimization using improved particle swarm optimizer. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 1777–1784
Mohapatra P, Nath Das K, Roy S (2017) A modified competitive swarm optimizer for large scale optimization problems. Appl Soft Comput J 59:340–362. https://doi.org/10.1016/j.asoc.2017.05.060
Sun Y, Yang T, Liu Z (2019) A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems. Appl Soft Comput J 85:105744. https://doi.org/10.1016/j.asoc.2019.105744
Li Y, Zhao Y, Liu J (2021) Dynamic sine cosine algorithm for large-scale global optimization problems. Expert Syst Appl 177:114950. https://doi.org/10.1016/j.eswa.2021.114950
Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci (NY) 540:131–159. https://doi.org/10.1016/j.ins.2020.06.037
Mirjalili SZ, Mirjalili S, Saremi S et al (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48:805–820. https://doi.org/10.1007/s10489-017-1019-8
Fan Q, Chen Z, Zhang W, Fang X (2020) ESSAWOA: enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization. Eng Comput. https://doi.org/10.1007/s00366-020-01189-3
Wan Y, Mao M, Zhou L et al (2019) A novel nature-inspired maximum power point tracking (MPPT) controller based on SSA-GWO algorithm for partially shaded photovoltaic systems. Electron 8:680. https://doi.org/10.3390/electronics8060680
Zhang J, Wang JS (2020) Improved salp swarm algorithm based on levy flight and sine cosine operator. IEEE Access 8:99740–99771. https://doi.org/10.1109/ACCESS.2020.2997783
Hegazy AE, Makhlouf MA, El-Tawel GS (2020) Improved salp swarm algorithm for feature selection. J King Saud Univ Comput Inf Sci 32:335–344. https://doi.org/10.1016/j.jksuci.2018.06.003
Aljarah I, Mafarja M, Heidari AA et al (2018) Asynchronous accelerating multi-leader salp chains for feature selection. Appl Soft Comput J 71:964–979. https://doi.org/10.1016/j.asoc.2018.07.040
Chen T, Wang M, Huang X, Xie Q (2019) TDOA-AOA localization based on improved salp swarm algorithm. In: International conference on signal processing systems. Proceedings, ICSP 2018-August, pp 108–112. https://doi.org/10.1109/ICSP.2018.8652322
Houssein EH, din Helmy BE, Rezk H, Nassef AM (2021) An enhanced Archimedes optimization algorithm based on local escaping operator and Orthogonal learning for PEM fuel cell parameter identification. Eng Appl Artif Intell 103:104309. https://doi.org/10.1016/j.engappai.2021.104309
Houssein EH, Helmy BED, Elngar AA et al (2021) An improved tunicate swarm algorithm for global optimization and image segmentation. IEEE Access 9:56066–56092. https://doi.org/10.1109/ACCESS.2021.3072336
Oszust M (2021) Enhanced marine predators algorithm with local escaping operator for global optimization. Knowl Based Syst 232:107467. https://doi.org/10.1016/j.knosys.2021.107467
Wang D, Zhou Y, Jiang S, Liu X (2018) A simplex method-based salp swarm algorithm for numerical and engineering optimization. IFIP Adv Inf Commun Technol 538:150–159. https://doi.org/10.1007/978-3-030-00828-4_16
Khamees M, Albakry A, Shaker K (2018) Multi-objective feature selection: hybrid of Salp swarm and simulated annealing approach. Commun Comput Inf Sci 938:129–142. https://doi.org/10.1007/978-3-030-01653-1_8
Asaithambi S, Rajappa M (2018) Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm. Rev Sci Instrum. https://doi.org/10.1063/1.5020999
Ahmed S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algorithm with chaos. ACM Int Conf Proc Ser. https://doi.org/10.1145/3206185.3206198
Meraihi Y, Ramdane-Cherif A, Mahseur M, Achelia D (2019) A chaotic binary salp swarm algorithm for solving the graph coloring problem. Lect Notes Netw Syst 64:106–118. https://doi.org/10.1007/978-3-030-05481-6_8
Ibrahim RA, Ewees AA, Oliva D et al (2019) Improved salp swarm algorithm based on particle swarm optimization for feature selection. J Ambient Intell Humaniz Comput 10:3155–3169. https://doi.org/10.1007/s12652-018-1031-9
Yang B, Zhong L, Zhang X et al (2019) Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J Clean Prod 215:1203–1222. https://doi.org/10.1016/j.jclepro.2019.01.150
Singh N, Son LH, Chiclana F, Magnot JP (2020) A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Eng Comput 36:185–212. https://doi.org/10.1007/s00366-018-00696-8
Ateya AA, Muthanna A, Vybornova A et al (2019) Chaotic salp swarm algorithm for SDN multi-controller networks. Eng Sci Technol Int J 22:1001–1012. https://doi.org/10.1016/j.jestch.2018.12.015
Panda N, Majhi SK (2020) Improved salp swarm algorithm with space transformation search for training neural network. Arab J Sci Eng 45:2743–2761. https://doi.org/10.1007/s13369-019-04132-x
Tubishat M, Idris N, Shuib L et al (2020) Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst Appl 145:113122. https://doi.org/10.1016/j.eswa.2019.113122
Faris H, Heidari AA, Al-Zoubi AM et al (2020) Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Syst Appl 140:112898. https://doi.org/10.1016/j.eswa.2019.112898
Tubishat M, Ja’afar S, Alswaitti M et al (2021) Dynamic salp swarm algorithm for feature selection. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113873
Ewees AA, Al-qaness MAA, Abd Elaziz M (2021) Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times. Appl Math Model 94:285–305. https://doi.org/10.1016/j.apm.2021.01.017
Saafan MM, El-Gendy EM (2021) IWOSSA: an improved whale optimization salp swarm algorithm for solving optimization problems. Expert Syst Appl 176:114901. https://doi.org/10.1016/j.eswa.2021.114901
Qaraad M, Amjad S, Hussein NK, Elhosseini MA (2022) Large scale salp-based grey wolf optimization for feature selection and global optimization. Neural Comput Appl 2022:1–26. https://doi.org/10.1007/S00521-022-06921-2
Deep K, Das KN (2008) Quadratic approximation based hybrid genetic algorithm for function optimization. Appl Math Comput 203:86–98. https://doi.org/10.1016/j.amc.2008.04.021
Li H, Jiao YC, Zhang L (2011) Hybrid differential evolution with a simplified quadratic approximation for constrained optimization problems. Eng Optim 43:115–134. https://doi.org/10.1080/0305215X.2010.481021
Henschke N, Everett JD, Richardson AJ, Suthers IM (2016) Rethinking the role of salps in the ocean. Trends Ecol Evol 31:720–733. https://doi.org/10.1016/j.tree.2016.06.007
Masdari M, Tahani M, Naderi MH, Babayan N (2019) Optimization of airfoil based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm. J Clean Prod 222:47–56. https://doi.org/10.1016/j.jclepro.2019.02.237
Abbassi R, Abbassi A, Heidari AA, Mirjalili S (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manag 179:362–372. https://doi.org/10.1016/j.enconman.2018.10.069
Zhang J, Wang Z, Luo X (2018) Parameter estimation for soil water retention curve using the salp swarm algorithm. Water (Switzerland) 10:815. https://doi.org/10.3390/w10060815
Ali TAA, Xiao Z, Sun J et al (2019) Optimal design of IIR wideband digital differentiators and integrators using salp swarm algorithm. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.07.005
Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8:541–564. https://doi.org/10.1023/A:1016540724870
Mallipeddi R, Suganthan P (2010) Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization. Nanyang Technological University, Singapore, p 24
Ke T, Xiaodong L, Suganthan PN, et al (2010) Benchmark functions for the CEC’2013 special session and competition on large-scale global optimization. Technical report, University of Science and Technology of China, pp 1–21
Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006
Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028
Gupta S, Deep K (2019) A novel random walk grey wolf optimizer. Swarm Evol Comput 44:101–112. https://doi.org/10.1016/j.swevo.2018.01.001
Tang C, Sun W, Wu W, Xue M (2019) A hybrid improved whale optimization algorithm. In: IEEE international conference on control and automation ICCA 2019-July, pp 362–367. https://doi.org/10.1109/ICCA.2019.8900003
Iacca G, dos Santos Junior VC, Veloso de Melo V (2021) An improved Jaya optimization algorithm with Lévy flight. Expert Syst Appl 165:113902. https://doi.org/10.1016/j.eswa.2020.113902
Liu B, Wang L, Jin YH et al (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fract 25:1261–1271. https://doi.org/10.1016/j.chaos.2004.11.095
Fan Y, Wang P, Heidari AA et al (2020) Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Syst Appl 159:113502. https://doi.org/10.1016/j.eswa.2020.113502
Singh G, Singh U, Salgotra R (2021) Effect of parametric enhancements on naked mole-rat algorithm for global optimization. Eng Comput. https://doi.org/10.1007/s00366-021-01344-4
Ghasemi M, Akbari E, Rahimnejad A et al (2019) Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Comput 23:9701–9718. https://doi.org/10.1007/s00500-018-3536-8
Nadimi-Shahraki MH, Taghian S, Mirjalili S, Faris H (2020) MTDE: an effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl Soft Comput J 97:106761. https://doi.org/10.1016/j.asoc.2020.106761
Wilcoxon F (1992) Individual comparisons by ranking methods. Springer, Berlin, pp 196–202. https://doi.org/10.1007/978-1-4612-4380-9_16
Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701. https://doi.org/10.1080/01621459.1937.10503522
Van Den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci (NY) 176:937–971. https://doi.org/10.1016/j.ins.2005.02.003
Qais MH, Hasanien HM, Alghuwainem S (2019) Enhanced salp swarm algorithm: application to variable speed wind generators. Eng Appl Artif Intell 80:82–96. https://doi.org/10.1016/j.engappai.2019.01.011
Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11:1–18. https://doi.org/10.1162/106365603321828970
Loshchilov I (2017) LM-CMA: An alternative to L-BFGS for large-scale black Box optimization. Evol Comput 25:143–171. https://doi.org/10.1162/EVCO_a_00168
Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: 2013 IEEE congress on evolutionary computation, CEC 2013, pp 71–78. https://doi.org/10.1109/CEC.2013.6557555
Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput 10:673–686. https://doi.org/10.1007/s00500-005-0537-1
Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Springer, Boston
Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17:491–502. https://doi.org/10.1109/TKDE.2005.66
Balasaraswathi VR, Sugumaran M, Hamid Y (2017) Feature selection techniques for intrusion detection using non-bio-inspired and bio-inspired optimization algorithms. J Commun Inf Netw 2:107–119. https://doi.org/10.1007/s41650-017-0033-7
Mafarja M, Abdullah S (2015) A fuzzy record-to-record travel algorithm for solving rough set attribute reduction. Int J Syst Sci 46:503–512. https://doi.org/10.1080/00207721.2013.791000
Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324. https://doi.org/10.1016/s0004-3702(97)00043-x
Yang X (2010) Nature-inspired metaheuristic algorithms
Kabir MM, Shahjahan M, Murase K (2011) A new local search based hybrid genetic algorithm for feature selection. Neurocomputing 74:2914–2928. https://doi.org/10.1016/j.neucom.2011.03.034
Chen H, Jiang W, Li C, Li R (2013) A heuristic feature selection approach for text categorization by using chaos optimization and genetic algorithm. Math Probl Eng. https://doi.org/10.1155/2013/524017
Ahmed S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algorithm with chaos. In: ACM international conference proceeding series. Association for Computing Machinery, New York, New York, USA, pp 65–69
Hegazy AE, Makhlouf MA, El-Tawel GS (2019) Feature selection using chaotic salp swarm algorithm for data classification. Arab J Sci Eng 44:3801–3816. https://doi.org/10.1007/s13369-018-3680-6
edu/ml AF ics. uci., 2010 undefined UCI machine learning repository. ci.nii.ac.jp
Sumathi S, HannahGrace G (2020) A novel distance measure for microarray dataset using entropy. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.520
Berchuck A, Iversen ES, Luo J et al (2009) Microarray analysis of early stage serous ovarian cancers shows profiles predictive of favorable outcome. Clin Cancer Res 15:2448–2455. https://doi.org/10.1158/1078-0432.CCR-08-2430
Frank A, Asuncion A (2010) {UCI} Machine learning repository
Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14. https://doi.org/10.1016/j.swevo.2012.09.002
Abdel-Basset M, El-Shahat D, El-henawy I et al (2020) A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst Appl 139:112824. https://doi.org/10.1016/j.eswa.2019.112824
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
1.1 Appendix 1. Comparison results of the QSSALEO on unimodal functions with traditional algorithms during 2500 iterations.
Fun | D | Criteria | CSO | SSA | PSO | WOA | BAT | HHO | SCA | MFO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 50 | Avg | 1.802E+12 | 3.972E+09 | 1.523E+11 | 1.162E+10 | 1.358E+12 | 7.099E+11 | 5.275E+11 | 4.880E+11 | 4.012E+03 |
Std | 2.192E+11 | 2.537E+09 | 4.952E+10 | 4.472E+09 | 3.237E+10 | 7.922E+10 | 5.719E+10 | 1.969E+11 | 2.537E+09 | ||
Med | 1.779E+12 | 3.430E+09 | 1.549E+11 | 1.010E+10 | 7.765E+10 | 7.318E+11 | 5.219E+11 | 5.181E+11 | 5.181E+11 | ||
100 | Avg | 4.618E+12 | 2.357E+11 | 1.125E+12 | 2.261E+11 | 3.489E+12 | 2.066E+12 | 1.871E+12 | 1.377E+12 | 7.085E+03 | |
Std | 2.631E+11 | 4.572E+10 | 1.857E+11 | 4.430E+10 | 4.693E+11 | 1.210E+11 | 1.249E+11 | 5.616E+11 | 8.378E+03 | ||
Med | 4.584E+12 | 2.345E+11 | 1.154E+12 | 2.308E+11 | 3.454E+12 | 2.080E+12 | 1.855E+12 | 1.344E+12 | 1.344E+12 | ||
F2 | 50 | Avg | 7.261E+05 | 1.122E+05 | 1.630E+05 | 1.931E+05 | 4.182E+06 | 2.035E+05 | 1.457E+05 | 3.009E+05 | 1.588E+04 |
Std | 1.585E+06 | 2.506E+04 | 2.967E+04 | 6.001E+04 | 1.505E+04 | 2.757E+04 | 2.341E+04 | 1.047E+05 | 2.341E+04 | ||
Med | 3.806E+05 | 1.095E+05 | 1.616E+05 | 1.825E+05 | 8.602E+04 | 2.003E+05 | 1.420E+05 | 2.793E+05 | 2.793E+05 | ||
100 | Avg | 9.529E+05 | 3.671E+05 | 4.689E+05 | 8.409E+05 | 5.765E+06 | 3.530E+05 | 4.085E+05 | 9.229E+05 | 1.778E+05 | |
Std | 3.647E+05 | 5.821E+04 | 5.168E+04 | 1.550E+05 | 1.475E+07 | 9.945E+03 | 4.767E+04 | 1.626E+05 | 1.639E+04 | ||
Med | 8.541E+05 | 3.633E+05 | 4.553E+05 | 8.447E+05 | 1.174E+06 | 3.567E+05 | 4.085E+05 | 9.321E+05 | 9.321E+05 | ||
Rank | 50 | W/T/L | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 2/0/0 |
100 | W/T/L | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 0/0/2 | 2/0/0 |
1.2 Appendix 2. Comparison results of the QSSALEO on multimodal functions with traditional algorithms during 2500 iterations.
Fun | D | Criteria | CSO | SSA | PSO | WOA | BAT | HHO | SCA | MFO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|---|
F3 | 50 | Avg | 6.454E+04 | 8.077E+02 | 4.753E+03 | 1.154E+03 | 5.232E+04 | 2.114E+04 | 8.630E+03 | 5.359E+03 | 5.688E+02 |
Std | 1.402E+04 | 9.771E+01 | 1.296E+03 | 1.460E+02 | 4.641E+02 | 4.230E+03 | 1.756E+03 | 3.475E+03 | 9.771E+01 | ||
Med | 6.602E+04 | 7.918E+02 | 4.930E+03 | 1.123E+03 | 1.190E+03 | 2.077E+04 | 8.607E+03 | 4.342E+03 | 4.342E+03 | ||
100 | Avg | 1.942E+05 | 3.583E+03 | 2.536E+04 | 4.469E+03 | 1.381E+05 | 6.554E+04 | 3.857E+04 | 3.535E+04 | 6.998E+02 | |
Std | 3.139E+04 | 1.059E+03 | 3.986E+03 | 9.564E+02 | 3.221E+04 | 9.588E+03 | 6.727E+03 | 1.472E+04 | 5.576E+01 | ||
Med | 1.911E+05 | 3.450E+03 | 2.566E+04 | 4.359E+03 | 1.314E+05 | 6.742E+04 | 3.837E+04 | 3.418E+04 | 3.418E+04 | ||
F4 | 50 | Avg | 1.481E+03 | 8.506E+02 | 9.740E+02 | 9.764E+02 | 1.176E+03 | 9.511E+02 | 1.092E+03 | 9.908E+02 | 8.515E+02 |
Std | 6.610E+01 | 7.137E+01 | 6.156E+01 | 7.472E+01 | 4.057E+01 | 3.603E+01 | 3.351E+01 | 9.151E+01 | 3.351E+01 | ||
Med | 1.486E+03 | 8.457E+02 | 9.729E+02 | 9.589E+02 | 7.339E+02 | 9.484E+02 | 1.095E+03 | 9.703E+02 | 9.703E+02 | ||
100 | Avg | 2.677E+03 | 1.544E+03 | 1.793E+03 | 1.732E+03 | 2.151E+03 | 1.694E+03 | 1.970E+03 | 1.873E+03 | 1.357E+03 | |
Std | 1.150E+02 | 1.023E+02 | 7.583E+01 | 1.425E+02 | 1.643E+02 | 5.982E+01 | 6.461E+01 | 1.622E+02 | 6.113E+01 | ||
Med | 2.683E+03 | 1.523E+03 | 1.801E+03 | 1.732E+03 | 2.158E+03 | 1.687E+03 | 1.985E+03 | 1.870E+03 | 1.870E+03 | ||
F5 | 50 | Avg | 7.741E+02 | 6.839E+02 | 6.848E+02 | 7.185E+02 | 7.118E+02 | 7.021E+02 | 6.998E+02 | 6.894E+02 | 6.748E+02 |
Std | 1.194E+01 | 1.113E+01 | 8.197E+00 | 1.568E+01 | 1.041E+01 | 6.522E+00 | 5.907E+00 | 1.282E+01 | 5.907E+00 | ||
Med | 7.734E+02 | 6.834E+02 | 6.856E+02 | 7.190E+02 | 6.340E+02 | 7.025E+02 | 6.981E+02 | 6.871E+02 | 6.871E+02 | ||
100 | Avg | 7.678E+02 | 6.909E+02 | 7.041E+02 | 7.110E+02 | 7.114E+02 | 6.936E+02 | 7.138E+02 | 7.023E+02 | 6.754E+02 | |
Std | 8.654E+00 | 6.891E+00 | 6.701E+00 | 1.162E+01 | 1.231E+01 | 4.320E+00 | 6.984E+00 | 1.044E+01 | 4.185E+00 | ||
Med | 7.686E+02 | 6.913E+02 | 7.036E+02 | 7.073E+02 | 7.092E+02 | 6.939E+02 | 7.141E+02 | 7.011E+02 | 7.011E+02 | ||
F6 | 50 | Avg | 4.077E+03 | 1.483E+03 | 1.515E+03 | 1.791E+03 | 3.003E+03 | 1.750E+03 | 1.707E+03 | 2.173E+03 | 1.345E+03 |
Std | 2.826E+02 | 1.626E+02 | 7.016E+01 | 9.950E+01 | 1.004E+02 | 5.799E+01 | 7.866E+01 | 5.200E+02 | 5.799E+01 | ||
Med | 4.111E+03 | 1.435E+03 | 1.496E+03 | 1.780E+03 | 1.098E+03 | 1.773E+03 | 1.714E+03 | 2.121E+03 | 2.121E+03 | ||
100 | Avg | 9.061E+03 | 3.304E+03 | 3.181E+03 | 3.568E+03 | 6.129E+03 | 3.336E+03 | 3.715E+03 | 5.403E+03 | 2.661E+03 | |
Std | 5.728E+02 | 1.799E+02 | 1.606E+02 | 1.834E+02 | 1.153E+03 | 9.997E+01 | 1.548E+02 | 9.758E+02 | 2.677E+02 | ||
Med | 9.076E+03 | 3.317E+03 | 3.210E+03 | 3.572E+03 | 5.834E+03 | 3.356E+03 | 3.698E+03 | 5.675E+03 | 5.675E+03 | ||
F7 | 50 | Avg | 1.772E+03 | 1.185E+03 | 1.250E+03 | 1.253E+03 | 1.746E+03 | 1.206E+03 | 1.406E+03 | 1.403E+03 | 1.161E+03 |
Std | 7.072E+01 | 7.845E+01 | 5.276E+01 | 5.448E+01 | 8.739E+01 | 3.710E+01 | 3.010E+01 | 7.913E+01 | 3.010E+01 | ||
Med | 1.774E+03 | 1.179E+03 | 1.246E+03 | 1.255E+03 | 1.037E+03 | 1.200E+03 | 1.411E+03 | 1.373E+03 | 1.373E+03 | ||
100 | Avg | 3.134E+03 | 1.967E+03 | 2.134E+03 | 2.094E+03 | 3.010E+03 | 2.017E+03 | 2.339E+03 | 2.570E+03 | 1.770E+03 | |
Std | 1.110E+02 | 1.107E+02 | 9.283E+01 | 1.228E+02 | 1.707E+02 | 6.178E+01 | 7.515E+01 | 1.904E+02 | 8.575E+01 | ||
Med | 3.110E+03 | 1.989E+03 | 2.095E+03 | 2.098E+03 | 2.965E+03 | 2.015E+03 | 2.342E+03 | 2.561E+03 | 2.561E+03 | ||
F8 | 50 | Avg | 7.208E+04 | 1.486E+04 | 1.990E+04 | 2.848E+04 | 1.649E+04 | 1.488E+04 | 2.573E+04 | 1.867E+04 | 1.093E+04 |
Std | 1.002E+04 | 3.043E+03 | 3.964E+03 | 8.005E+03 | 4.102E+03 | 1.171E+03 | 4.033E+03 | 5.450E+03 | 1.171E+03 | ||
Med | 7.268E+04 | 1.459E+04 | 2.026E+04 | 2.641E+04 | 1.189E+04 | 1.463E+04 | 2.542E+04 | 1.782E+04 | 1.782E+04 | ||
100 | Avg | 1.631E+05 | 3.950E+04 | 6.715E+04 | 5.839E+04 | 3.398E+04 | 3.209E+04 | 8.236E+04 | 5.090E+04 | 2.319E+04 | |
Std | 1.543E+04 | 5.132E+03 | 9.643E+03 | 1.183E+04 | 6.300E+03 | 2.894E+03 | 8.021E+03 | 7.859E+03 | 1.293E+03 | ||
Med | 1.645E+05 | 3.988E+04 | 6.611E+04 | 5.779E+04 | 3.335E+04 | 3.143E+04 | 8.189E+04 | 5.055E+04 | 5.055E+04 | ||
F9 | 50 | Avg | 1.570E+04 | 8.175E+03 | 1.457E+04 | 1.194E+04 | 1.147E+04 | 1.140E+04 | 1.502E+04 | 8.900E+03 | 8.472E+03 |
Std | 5.936E+02 | 8.483E+02 | 7.082E+02 | 1.400E+03 | 2.588E+03 | 1.303E+03 | 3.663E+02 | 1.228E+03 | 3.663E+02 | ||
Med | 1.578E+04 | 8.008E+03 | 1.469E+04 | 1.196E+04 | 7.076E+03 | 1.111E+04 | 1.506E+04 | 8.895E+03 | 8.895E+03 | ||
100 | Avg | 3.342E+04 | 2.000E+04 | 3.214E+04 | 2.595E+04 | 2.674E+04 | 2.582E+04 | 3.221E+04 | 1.880E+04 | 1.648E+04 | |
Std | 6.980E+02 | 1.647E+03 | 5.891E+02 | 2.259E+03 | 2.088E+03 | 1.789E+03 | 5.919E+02 | 2.304E+03 | 2.099E+03 | ||
Med | 3.346E+04 | 2.008E+04 | 3.213E+04 | 2.589E+04 | 2.718E+04 | 2.579E+04 | 3.238E+04 | 1.934E+04 | 1.934E+04 | ||
Rank | 50 | W/T/L | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 7/0/0 |
100 | W/T/L | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 7/0/0 |
1.3 Appendix 3. Comparison results of the QSSALEO on hybrid functions with traditional algorithms during 2500 iterations.
Fun | D | Criteria | CSO | SSA | PSO | WOA | BAT | HHO | SCA | MFO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|---|
F10 | 50 | Avg | 4.977E+04 | 2.524E+03 | 4.505E+03 | 2.783E+03 | 9.222E+04 | 1.637E+04 | 8.829E+03 | 2.228E+04 | 1.374E+03 |
Std | 1.426E+04 | 5.261E+02 | 1.191E+03 | 6.232E+02 | 1.923E+03 | 2.679E+03 | 1.956E+03 | 1.646E+04 | 5.261E+02 | ||
Med | 4.817E+04 | 2.402E+03 | 4.120E+03 | 2.677E+03 | 4.662E+03 | 1.719E+04 | 8.579E+03 | 1.725E+04 | 1.725E+04 | ||
100 | Avg | 7.992E+05 | 6.706E+04 | 1.168E+05 | 1.521E+05 | 2.214E+06 | 2.649E+05 | 1.200E+05 | 1.727E+05 | 3.281E+03 | |
Std | 1.864E+06 | 1.481E+04 | 1.748E+04 | 7.024E+04 | 6.540E+06 | 8.548E+04 | 2.047E+04 | 9.759E+04 | 4.422E+02 | ||
Med | 4.337E+05 | 6.856E+04 | 1.196E+05 | 1.350E+05 | 5.923E+05 | 2.352E+05 | 1.244E+05 | 1.781E+05 | 1.781E+05 | ||
F11 | 50 | Avg | 8.715E+11 | 2.843E+09 | 3.763E+10 | 6.611E+09 | 7.070E+11 | 3.838E+11 | 1.224E+11 | 6.277E+10 | 2.381E+08 |
Std | 2.132E+11 | 2.641E+09 | 1.675E+10 | 3.649E+09 | 1.301E+10 | 1.112E+11 | 2.931E+10 | 4.455E+10 | 2.641E+09 | ||
Med | 8.373E+11 | 1.834E+09 | 3.448E+10 | 5.755E+09 | 5.699E+09 | 3.967E+11 | 1.243E+11 | 4.834E+10 | 4.834E+10 | ||
100 | Avg | 2.331E+12 | 2.004E+10 | 2.434E+11 | 3.298E+10 | 2.046E+12 | 1.161E+12 | 6.433E+11 | 4.275E+11 | 1.163E+09 | |
Std | 3.823E+11 | 1.024E+10 | 6.763E+10 | 1.166E+10 | 3.434E+11 | 1.960E+11 | 1.067E+11 | 2.547E+11 | 4.515E+08 | ||
Med | 2.388E+12 | 1.745E+10 | 2.296E+11 | 3.018E+10 | 2.077E+12 | 1.155E+12 | 6.304E+11 | 4.361E+11 | 4.361E+11 | ||
F12 | 50 | Avg | 5.714E+11 | 1.136E+05 | 5.642E+09 | 1.795E+08 | 4.989E+11 | 1.700E+11 | 4.212E+10 | 2.332E+10 | 1.287E+05 |
Std | 2.047E+11 | 6.688E+04 | 3.459E+09 | 2.499E+08 | 1.131E+09 | 1.173E+11 | 1.563E+10 | 2.875E+10 | 6.688E+04 | ||
Med | 5.895E+11 | 9.423E+04 | 4.518E+09 | 1.125E+08 | 1.139E+09 | 1.409E+11 | 3.750E+10 | 7.490E+09 | 7.490E+09 | ||
100 | Avg | 7.046E+11 | 1.524E+05 | 4.485E+10 | 5.507E+08 | 5.809E+11 | 2.978E+11 | 1.281E+11 | 9.287E+10 | 7.008E+04 | |
Std | 1.292E+11 | 1.410E+05 | 1.536E+10 | 2.991E+08 | 1.360E+11 | 4.924E+10 | 2.388E+10 | 6.045E+10 | 2.202E+04 | ||
Med | 7.308E+11 | 9.138E+04 | 4.148E+10 | 4.556E+08 | 5.975E+11 | 2.820E+11 | 1.311E+11 | 8.116E+10 | 8.116E+10 | ||
F13 | 50 | Avg | 1.342E+08 | 7.774E+05 | 1.179E+06 | 2.292E+06 | 1.390E+08 | 3.041E+07 | 4.860E+06 | 2.360E+06 | 1.231E+05 |
Std | 9.520E+07 | 7.672E+05 | 1.201E+06 | 1.707E+06 | 8.484E+05 | 3.166E+07 | 3.373E+06 | 4.014E+06 | 7.672E+05 | ||
Med | 1.040E+08 | 5.727E+05 | 6.766E+05 | 2.127E+06 | 6.438E+05 | 1.999E+07 | 3.737E+06 | 1.033E+06 | 1.033E+06 | ||
100 | Avg | 2.689E+08 | 1.015E+07 | 1.276E+07 | 1.029E+07 | 2.436E+08 | 3.207E+07 | 3.700E+07 | 2.777E+07 | 5.794E+05 | |
Std | 1.285E+08 | 7.267E+06 | 8.654E+06 | 4.329E+06 | 1.670E+08 | 1.779E+07 | 1.534E+07 | 3.425E+07 | 2.885E+05 | ||
Med | 2.455E+08 | 9.230E+06 | 9.528E+06 | 1.029E+07 | 2.103E+08 | 2.967E+07 | 3.385E+07 | 1.473E+07 | 1.473E+07 | ||
F14 | 50 | Avg | 1.547E+11 | 6.185E+04 | 1.030E+08 | 2.669E+07 | 1.083E+11 | 1.938E+10 | 6.003E+09 | 1.531E+09 | 6.209E+04 |
Std | 6.306E+10 | 3.138E+04 | 9.247E+07 | 4.638E+07 | 1.330E+09 | 1.468E+10 | 2.984E+09 | 2.910E+09 | 3.138E+04 | ||
Med | 1.464E+11 | 5.368E+04 | 6.167E+07 | 6.974E+06 | 5.678E+06 | 1.708E+10 | 5.575E+09 | 3.652E+05 | 3.652E+05 | ||
100 | Avg | 3.141E+11 | 8.790E+04 | 2.040E+09 | 9.488E+07 | 2.981E+11 | 1.247E+11 | 4.045E+10 | 2.984E+10 | 5.427E+04 | |
Std | 7.472E+10 | 5.068E+04 | 1.144E+09 | 1.103E+08 | 7.629E+10 | 3.283E+10 | 1.013E+10 | 2.845E+10 | 1.926E+04 | ||
Med | 3.150E+11 | 7.396E+04 | 1.743E+09 | 5.970E+07 | 2.976E+11 | 1.273E+11 | 4.085E+10 | 2.127E+10 | 2.127E+10 | ||
F15 | 50 | Avg | 1.128E+04 | 4.004E+03 | 4.502E+03 | 5.516E+03 | 1.005E+04 | 7.402E+03 | 5.859E+03 | 4.471E+03 | 3.990E+03 |
Std | 1.748E+03 | 5.624E+02 | 6.527E+02 | 8.221E+02 | 5.171E+02 | 1.753E+03 | 4.389E+02 | 5.127E+02 | 4.389E+02 | ||
Med | 1.087E+04 | 3.842E+03 | 4.574E+03 | 5.421E+03 | 3.145E+03 | 7.033E+03 | 5.916E+03 | 4.468E+03 | 4.468E+03 | ||
100 | Avg | 3.115E+04 | 8.345E+03 | 1.185E+04 | 1.382E+04 | 2.548E+04 | 1.856E+04 | 1.377E+04 | 8.614E+03 | 6.761E+03 | |
Std | 5.042E+03 | 9.769E+02 | 1.048E+03 | 1.868E+03 | 4.655E+03 | 3.387E+03 | 8.264E+02 | 9.457E+02 | 8.469E+02 | ||
Med | 2.938E+04 | 8.336E+03 | 1.164E+04 | 1.338E+04 | 2.582E+04 | 1.778E+04 | 1.365E+04 | 8.634E+03 | 8.634E+03 | ||
F16 | 50 | Avg | 1.184E+05 | 3.658E+03 | 3.427E+03 | 4.193E+03 | 1.482E+05 | 5.216E+03 | 4.710E+03 | 4.535E+03 | 3.402E+03 |
Std | 1.634E+05 | 3.799E+02 | 3.704E+02 | 4.726E+02 | 2.495E+02 | 1.085E+03 | 2.911E+02 | 1.526E+03 | 2.911E+02 | ||
Med | 7.325E+04 | 3.568E+03 | 3.375E+03 | 4.113E+03 | 2.855E+03 | 4.952E+03 | 4.716E+03 | 4.182E+03 | 4.182E+03 | ||
100 | Avg | 3.547E+07 | 6.352E+03 | 7.671E+03 | 9.070E+03 | 2.913E+07 | 1.246E+06 | 3.178E+04 | 1.396E+04 | 5.870E+03 | |
Std | 3.877E+07 | 7.095E+02 | 7.814E+02 | 1.455E+03 | 2.968E+07 | 1.707E+06 | 3.442E+04 | 8.849E+03 | 7.443E+02 | ||
Med | 2.106E+07 | 6.446E+03 | 7.626E+03 | 8.740E+03 | 1.565E+07 | 7.740E+05 | 1.758E+04 | 1.028E+04 | 1.028E+04 | ||
F17 | 50 | Avg | 3.569E+08 | 5.877E+06 | 7.889E+06 | 1.633E+07 | 4.527E+08 | 7.121E+07 | 2.754E+07 | 1.294E+07 | 9.575E+05 |
Std | 2.342E+08 | 4.167E+06 | 5.373E+06 | 1.274E+07 | 1.130E+07 | 4.117E+07 | 1.397E+07 | 1.501E+07 | 4.167E+06 | ||
Med | 3.408E+08 | 4.547E+06 | 6.203E+06 | 1.167E+07 | 3.500E+06 | 5.392E+07 | 2.351E+07 | 9.159E+06 | 9.159E+06 | ||
100 | Avg | 6.341E+08 | 9.402E+06 | 1.277E+07 | 6.782E+06 | 5.800E+08 | 4.460E+07 | 6.887E+07 | 1.558E+07 | 1.043E+06 | |
Std | 2.607E+08 | 6.544E+06 | 5.676E+06 | 3.344E+06 | 3.754E+08 | 2.905E+07 | 2.736E+07 | 2.202E+07 | 4.230E+05 | ||
Med | 5.907E+08 | 6.943E+06 | 1.191E+07 | 5.771E+06 | 4.783E+08 | 3.940E+07 | 6.400E+07 | 8.656E+06 | 8.656E+06 | ||
F18 | 50 | Avg | 7.482E+10 | 1.854E+07 | 1.567E+08 | 2.907E+07 | 1.795E+04 | 7.659E+09 | 3.744E+09 | 8.190E+08 | 4.147E+06 |
Std | 2.695E+10 | 1.984E+07 | 2.194E+08 | 6.049E+07 | 8.186E+07 | 8.203E+09 | 1.666E+09 | 2.304E+09 | 3.705E+03 | ||
Med | 7.234E+10 | 8.922E+06 | 6.868E+07 | 1.058E+07 | 5.009E+06 | 6.083E+09 | 3.407E+09 | 3.988E+07 | 3.988E+07 | ||
100 | Avg | 3.435E+11 | 9.470E+07 | 6.097E+09 | 1.340E+08 | 2.906E+11 | 1.260E+11 | 3.739E+10 | 2.363E+10 | 2.529E+07 | |
Std | 9.166E+10 | 9.252E+07 | 2.139E+09 | 9.164E+07 | 8.846E+10 | 3.809E+10 | 1.217E+10 | 2.550E+10 | 1.619E+07 | ||
Med | 3.490E+11 | 5.832E+07 | 6.007E+09 | 1.107E+08 | 3.066E+11 | 1.233E+11 | 3.662E+10 | 1.716E+10 | 1.716E+10 | ||
F19 | 50 | Avg | 4.480E+03 | 3.212E+03 | 3.812E+03 | 3.765E+03 | 4.237E+03 | 3.522E+03 | 4.007E+03 | 3.843E+03 | 3.036E+03 |
Std | 2.392E+02 | 2.869E+02 | 3.241E+02 | 3.512E+02 | 4.889E+02 | 2.806E+02 | 1.611E+02 | 2.922E+02 | 1.611E+02 | ||
Med | 4.499E+03 | 3.235E+03 | 3.884E+03 | 3.813E+03 | 3.144E+03 | 3.596E+03 | 4.007E+03 | 3.797E+03 | 3.797E+03 | ||
100 | Avg | 8.150E+03 | 5.317E+03 | 7.362E+03 | 6.475E+03 | 6.527E+03 | 6.129E+03 | 7.480E+03 | 5.832E+03 | 5.325E+03 | |
Std | 3.363E+02 | 4.961E+02 | 3.151E+02 | 6.275E+02 | 6.295E+02 | 4.514E+02 | 2.955E+02 | 4.978E+02 | 5.837E+02 | ||
Med | 8.178E+03 | 5.350E+03 | 7.378E+03 | 6.457E+03 | 6.365E+03 | 6.080E+03 | 7.518E+03 | 5.983E+03 | 5.983E+03 | ||
Rank | 50 | W/T/L | 0/0/10 | 2/0/8 | 0/0/9 | 0/0/10 | 1/0/9 | 0/0/10 | 0/0/10 | 0/0/10 | 7/0/3 |
100 | W/T/L | 0/0/10 | 0/0/10 | 0/0/10 | 0/0/10 | 0/0/10 | 0/0/10 | 0/0/10 | 0/0/10 | 10/0/0 |
1.4 Appendix 4. Comparison results of the QSSALEO on composite functions with traditional algorithms during 2500 iterations.
Fun | D | Criteria | CSO | SSA | PSO | WOA | BAT | HHO | SCA | MFO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|---|
F20 | 50 | Avg | 3.427E+03 | 2.634E+03 | 2.813E+03 | 2.959E+03 | 3.151E+03 | 3.035E+03 | 2.908E+03 | 2.788E+03 | 2.655E+03 |
Std | 1.339E+02 | 6.514E+01 | 4.596E+01 | 1.013E+02 | 5.125E+01 | 8.516E+01 | 4.460E+01 | 7.420E+01 | 4.460E+01 | ||
Med | 3.413E+03 | 2.646E+03 | 2.819E+03 | 2.953E+03 | 2.530E+03 | 3.014E+03 | 2.903E+03 | 2.781E+03 | 2.781E+03 | ||
100 | Avg | 5.221E+03 | 3.489E+03 | 3.889E+03 | 4.235E+03 | 4.984E+03 | 4.576E+03 | 4.048E+03 | 3.761E+03 | 3.384E+03 | |
Std | 2.371E+02 | 1.552E+02 | 1.080E+02 | 1.535E+02 | 2.372E+02 | 2.392E+02 | 9.891E+01 | 1.518E+02 | 1.706E+02 | ||
Med | 5.229E+03 | 3.477E+03 | 3.885E+03 | 4.210E+03 | 5.022E+03 | 4.536E+03 | 4.042E+03 | 3.743E+03 | 3.743E+03 | ||
F21 | 50 | Avg | 1.753E+04 | 1.046E+04 | 1.593E+04 | 1.327E+04 | 1.390E+04 | 1.340E+04 | 1.665E+04 | 1.049E+04 | 9.609E+03 |
Std | 6.786E+02 | 1.850E+03 | 1.745E+03 | 1.324E+03 | 2.528E+03 | 1.208E+03 | 4.319E+02 | 1.010E+03 | 4.319E+02 | ||
Med | 1.746E+04 | 1.031E+04 | 1.639E+04 | 1.348E+04 | 8.790E+03 | 1.333E+04 | 1.674E+04 | 1.068E+04 | 1.068E+04 | ||
100 | Avg | 3.570E+04 | 2.277E+04 | 3.444E+04 | 2.934E+04 | 2.901E+04 | 2.881E+04 | 3.462E+04 | 2.074E+04 | 1.959E+04 | |
Std | 5.994E+02 | 3.944E+03 | 9.004E+02 | 1.442E+03 | 2.140E+03 | 1.822E+03 | 4.825E+02 | 1.812E+03 | 1.632E+03 | ||
Med | 3.570E+04 | 2.305E+04 | 3.454E+04 | 2.931E+04 | 2.952E+04 | 2.889E+04 | 3.470E+04 | 2.074E+04 | 2.074E+04 | ||
F22 | 50 | Avg | 4.941E+03 | 3.165E+03 | 3.443E+03 | 3.721E+03 | 4.618E+03 | 4.234E+03 | 3.590E+03 | 3.231E+03 | 3.177E+03 |
Std | 3.582E+02 | 9.977E+01 | 8.097E+01 | 1.883E+02 | 9.548E+01 | 2.132E+02 | 7.492E+01 | 7.564E+01 | 7.492E+01 | ||
Med | 4.972E+03 | 3.147E+03 | 3.451E+03 | 3.751E+03 | 2.989E+03 | 4.207E+03 | 3.578E+03 | 3.219E+03 | 3.219E+03 | ||
100 | Avg | 7.841E+03 | 4.052E+03 | 4.883E+03 | 5.034E+03 | 6.516E+03 | 6.155E+03 | 5.047E+03 | 3.957E+03 | 3.743E+03 | |
Std | 7.697E+02 | 1.924E+02 | 1.603E+02 | 2.216E+02 | 3.222E+02 | 4.134E+02 | 1.198E+02 | 1.533E+02 | 2.105E+02 | ||
Med | 7.832E+03 | 4.022E+03 | 4.898E+03 | 5.037E+03 | 6.491E+03 | 6.006E+03 | 5.038E+03 | 3.954E+03 | 3.954E+03 | ||
F23 | 50 | Avg | 5.453E+03 | 3.294E+03 | 3.664E+03 | 3.776E+03 | 4.864E+03 | 4.496E+03 | 3.775E+03 | 3.246E+03 | 3.239E+03 |
Std | 5.384E+02 | 9.187E+01 | 7.984E+01 | 1.723E+02 | 1.376E+02 | 2.405E+02 | 6.064E+01 | 5.091E+01 | 5.091E+01 | ||
Med | 5.434E+03 | 3.270E+03 | 3.653E+03 | 3.773E+03 | 3.165E+03 | 4.486E+03 | 3.768E+03 | 3.243E+03 | 3.243E+03 | ||
100 | Avg | 1.358E+04 | 4.789E+03 | 6.537E+03 | 6.260E+03 | 1.032E+04 | 9.445E+03 | 6.884E+03 | 4.592E+03 | 4.264E+03 | |
Std | 1.151E+03 | 2.263E+02 | 4.259E+02 | 4.944E+02 | 9.426E+02 | 8.380E+02 | 2.341E+02 | 2.120E+02 | 2.201E+02 | ||
Med | 1.364E+04 | 4.819E+03 | 6.486E+03 | 6.232E+03 | 1.026E+04 | 9.267E+03 | 6.929E+03 | 4.543E+03 | 4.543E+03 | ||
F24 | 50 | Avg | 3.193E+04 | 3.312E+03 | 5.748E+03 | 3.487E+03 | 2.509E+04 | 1.017E+04 | 7.382E+03 | 6.354E+03 | 3.061E+03 |
Std | 6.108E+03 | 8.815E+01 | 6.977E+02 | 1.335E+02 | 4.286E+02 | 9.735E+02 | 7.762E+02 | 3.849E+03 | 8.815E+01 | ||
Med | 3.259E+04 | 3.290E+03 | 5.652E+03 | 3.462E+03 | 3.608E+03 | 1.011E+04 | 7.134E+03 | 4.698E+03 | 4.698E+03 | ||
100 | Avg | 7.226E+04 | 6.001E+03 | 1.180E+04 | 5.585E+03 | 4.748E+04 | 1.972E+04 | 1.795E+04 | 1.252E+04 | 3.382E+03 | |
Std | 1.133E+04 | 6.119E+02 | 1.334E+03 | 4.327E+02 | 9.318E+03 | 1.592E+03 | 2.090E+03 | 4.562E+03 | 5.809E+01 | ||
Med | 7.154E+04 | 6.000E+03 | 1.169E+04 | 5.534E+03 | 4.604E+04 | 1.981E+04 | 1.746E+04 | 1.161E+04 | 1.161E+04 | ||
F25 | 50 | Avg | 2.574E+04 | 8.186E+03 | 1.085E+04 | 1.398E+04 | 2.165E+04 | 1.492E+04 | 1.282E+04 | 9.048E+03 | 6.538E+03 |
Std | 2.820E+03 | 2.675E+03 | 7.221E+02 | 1.215E+03 | 7.765E+02 | 7.011E+02 | 4.847E+02 | 8.458E+02 | 4.847E+02 | ||
Med | 2.562E+04 | 8.475E+03 | 1.081E+04 | 1.417E+04 | 6.629E+03 | 1.479E+04 | 1.277E+04 | 8.941E+03 | 8.941E+03 | ||
100 | Avg | 7.546E+04 | 2.530E+04 | 2.923E+04 | 3.408E+04 | 6.918E+04 | 4.500E+04 | 3.764E+04 | 2.067E+04 | 2.020E+04 | |
Std | 5.348E+03 | 4.351E+03 | 2.092E+03 | 3.802E+03 | 1.012E+04 | 2.540E+03 | 2.281E+03 | 1.936E+03 | 6.508E+03 | ||
Med | 7.575E+04 | 2.565E+04 | 2.881E+04 | 3.385E+04 | 6.804E+04 | 4.505E+04 | 3.723E+04 | 2.098E+04 | 2.098E+04 | ||
F26 | 50 | Avg | 8.007E+03 | 3.878E+03 | 4.606E+03 | 4.286E+03 | 3.200E+03 | 6.351E+03 | 4.579E+03 | 3.646E+03 | 3.778E+03 |
Std | 1.113E+03 | 1.688E+02 | 1.867E+02 | 4.691E+02 | 1.018E+02 | 9.094E+02 | 1.743E+02 | 1.230E+02 | 6.401E−05 | ||
Med | 8.130E+03 | 3.864E+03 | 4.684E+03 | 4.151E+03 | 3.640E+03 | 6.339E+03 | 4.608E+03 | 3.658E+03 | 3.658E+03 | ||
100 | Avg | 1.535E+04 | 4.561E+03 | 6.511E+03 | 5.236E+03 | 3.200E+03 | 1.208E+04 | 7.791E+03 | 4.160E+03 | 3.906E+03 | |
Std | 1.432E+03 | 3.047E+02 | 5.675E+02 | 7.152E+02 | 8.459E−05 | 1.755E+03 | 4.410E+02 | 2.111E+02 | 2.323E+02 | ||
Med | 1.558E+04 | 4.497E+03 | 6.428E+03 | 5.039E+03 | 3.200E+03 | 1.225E+04 | 7.798E+03 | 4.106E+03 | 4.106E+03 | ||
F27 | 50 | Avg | 1.849E+04 | 3.831E+03 | 5.611E+03 | 4.264E+03 | 3.300E+03 | 9.891E+03 | 7.310E+03 | 8.507E+03 | 3.304E+03 |
Std | 2.195E+03 | 2.585E+02 | 5.386E+02 | 2.741E+02 | 5.211E+02 | 8.839E+02 | 6.693E+02 | 1.117E+03 | 3.661E−05 | ||
Med | 1.847E+04 | 3.751E+03 | 5.717E+03 | 4.245E+03 | 4.404E+03 | 9.849E+03 | 7.295E+03 | 8.865E+03 | 8.865E+03 | ||
100 | Avg | 5.591E+04 | 7.751E+03 | 1.334E+04 | 7.187E+03 | 3.300E+03 | 2.330E+04 | 2.254E+04 | 2.047E+04 | 3.465E+03 | |
Std | 5.302E+03 | 1.443E+03 | 1.805E+03 | 6.741E+02 | 7.431E−05 | 1.568E+03 | 1.785E+03 | 3.778E+03 | 4.584E+01 | ||
Med | 5.688E+04 | 7.911E+03 | 1.331E+04 | 7.025E+03 | 3.300E+03 | 2.346E+04 | 2.219E+04 | 2.041E+04 | 2.041E+04 | ||
F28 | 50 | Avg | 7.208E+05 | 6.262E+03 | 7.035E+03 | 8.313E+03 | 4.121E+05 | 2.819E+04 | 8.007E+03 | 5.752E+03 | 6.257E+03 |
Std | 1.062E+06 | 7.372E+02 | 8.103E+02 | 9.872E+02 | 3.547E+02 | 2.448E+04 | 8.454E+02 | 6.151E+02 | 6.151E+02 | ||
Med | 2.641E+05 | 6.215E+03 | 7.157E+03 | 8.264E+03 | 4.812E+03 | 1.969E+04 | 7.943E+03 | 5.622E+03 | 5.622E+03 | ||
100 | Avg | 3.164E+06 | 1.260E+04 | 1.537E+04 | 1.650E+04 | 3.323E+06 | 1.641E+05 | 2.357E+04 | 4.639E+04 | 1.081E+04 | |
Std | 2.341E+06 | 1.667E+03 | 2.083E+03 | 2.669E+03 | 4.187E+06 | 1.030E+05 | 6.140E+03 | 1.041E+05 | 7.850E+02 | ||
Med | 2.692E+06 | 1.269E+04 | 1.523E+04 | 1.597E+04 | 1.585E+06 | 1.320E+05 | 2.191E+04 | 1.253E+04 | 1.253E+04 | ||
F29 | 50 | Avg | 1.044E+11 | 5.302E+08 | 8.971E+08 | 5.825E+08 | 8.860E+10 | 1.247E+10 | 6.105E+09 | 1.866E+09 | 1.799E+08 |
Std | 4.397E+10 | 2.303E+08 | 5.753E+08 | 3.097E+08 | 2.399E+08 | 7.920E+09 | 1.983E+09 | 3.894E+09 | 2.303E+08 | ||
Med | 9.897E+10 | 5.117E+08 | 7.147E+08 | 5.299E+08 | 3.399E+08 | 9.554E+09 | 6.234E+09 | 1.181E+08 | 1.181E+08 | ||
100 | Avg | 5.255E+11 | 1.798E+09 | 2.074E+10 | 2.898E+09 | 4.476E+11 | 2.123E+11 | 7.870E+10 | 3.784E+10 | 4.415E+08 | |
Std | 9.543E+10 | 1.024E+09 | 7.127E+09 | 1.296E+09 | 1.014E+11 | 6.481E+10 | 1.681E+10 | 2.535E+10 | 1.901E+08 | ||
Med | 5.224E+11 | 1.593E+09 | 1.913E+10 | 2.536E+09 | 4.301E+11 | 2.088E+11 | 7.572E+10 | 3.375E+10 | 3.375E+10 | ||
Rank | 50 | W/T/L | 0/0/10 | 2/0/9 | 0/0/10 | 0/0/10 | 2/0/8 | 0/0/10 | 0/0/10 | 1/0/9 | 4/0/6 |
100 | W/T/L | 0/0/10 | 0/0/10 | 0/0/10 | 0/0/10 | 2/0/8 | 0/0/10 | 0/0/10 | 0/0/10 | 8/0/2 |
1.5 Appendix 5. Overall effectiveness OE of the QSSALEO with traditional algorithms.
Dimensions | Criteria | CSO | SSA | PSO | WOA | BAT | HHO | SCA | MFO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|
50 | W/T/L | 0/0/29 | 4/0/25 | 0/0/29 | 0/0/29 | 2/0/27 | 0/0/29 | 0/0/29 | 1/0/28 | 22/0/7 |
OE | 0% | 13.79% | 0% | 0% | 6.89% | 0% | 0% | 3.44% | 75.68% | |
100 | W/T/L | 0/0/29 | 0/0/29 | 0/0/29 | 0/0/29 | 2/0/27 | 0/0/29 | 0/0/29 | 0/0/29 | 27/0/2 |
OE | 0% | 0% | 0% | 0% | 6.89% | 0% | 0% | 0% | 93.10% |
1.6 Appendix 6. Wilcoxon rank-sum (p value) of the QSSALEO versus other traditional algorithms on CEC2017 with 50 and 100 dimensions.
Fun | D | CSO | SSA | PSO | WOA | BAT | HHO | SCA | MFO |
---|---|---|---|---|---|---|---|---|---|
F1 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F2 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F3 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F4 | 50 | < 0.05 | 0.738113285 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F5 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | 0.7616 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.7616 | |
F6 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F7 | 50 | < 0.05 | 0.222170531 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F8 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F9 | 50 | < 0.05 | 0.129455778 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.104139005 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F10 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F11 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F12 | 50 | < 0.05 | 0.591599389 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F13 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F14 | 50 | < 0.05 | 0.591599389 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F15 | 50 | < 0.05 | 0.993795993 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F16 | 50 | < 0.05 | < 0.05 | 0.680259258 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F17 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F18 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F19 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | 0.968987463 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F20 | 50 | < 0.05 | 0.396691029 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F21 | 50 | < 0.05 | 0.205001323 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.065354024 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F22 | 50 | < 0.05 | 0.797490352 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F23 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.423194286 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F24 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F25 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.114460738 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.137504391 | |
F26 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F27 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F28 | < 0.05 | < 0.05 | 0.528807429 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F29 | 50 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.240345789 |
100 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
1.7 Appendix 7. Summary of Freidman test results on CEC2017’s test functions with dimensions 50 and 100
Algorithm | Dimension | Average rank | Overall rank |
---|---|---|---|
CSO | 50 | 8.69 | 9 |
100 | 8.74 | 9 | |
SSA | 50 | 2.43 | 2 |
100 | 2.63 | 2 | |
PSO | 50 | 4.35 | 4 |
100 | 4.71 | 5 | |
WOA | 50 | 4.57 | 5 |
100 | 4.21 | 3 | |
BAT | 50 | 7.04 | 8 |
100 | 7.10 | 8 | |
HHO | 50 | 6.21 | 7 |
100 | 5.89 | 6 | |
SCA | 50 | 5.90 | 6 |
100 | 6.10 | 7 | |
MFO | 50 | 4.13 | 3 |
100 | 4.35 | 4 | |
QSSALEO | 50 | 1.68 | 1 |
100 | 1.27 | 1 |
1.8 Appendix 8. Comparison results of the QSSALEO with some recent algorithms during 2500 iterations.
F | Cr | RW-GWO | HI-WOA | LNIMRA | PPSO-W | PPSO | LJA | CPSO | WFOA | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Avg | 1.283E+10 | 1.639E+12 | 2.382E+12 | 1.236E+09 | 2.568E+09 | 3.316E+12 | 3.974E+12 | 2.408E+12 | 7.085E+03 |
Std | 2.567E+09 | 1.217E+11 | 1.466E+11 | 3.238E+09 | 4.371E+09 | 6.474E+11 | 6.825E+11 | 1.396E+11 | 8.378E+03 | |
Med | 1.297E+10 | 1.647E+12 | 2.413E+12 | 2.363E+08 | 9.568E+08 | 3.319E+12 | 4.158E+12 | 2.387E+12 | 2.387E+12 | |
F2 | Avg | 8.560E+05 | 3.571E+05 | 2.902E+05 | 1.844E+05 | 1.638E+05 | 1.387E+06 | 7.775E+05 | 2.662E+12 | 1.778E+05 |
Std | 3.065E+05 | 5.043E+03 | 2.219E+04 | 9.234E+04 | 2.757E+04 | 4.888E+05 | 1.057E+05 | 9.576E+12 | 1.639E+04 | |
Med | 8.032E+05 | 3.587E+05 | 2.909E+05 | 1.545E+05 | 1.588E+05 | 1.283E+06 | 7.583E+05 | 1.020E+11 | 1.020E+11 | |
F3 | Avg | 1.354E+03 | 4.421E+04 | 6.852E+04 | 9.558E+02 | 9.868E+02 | 1.203E+05 | 1.322E+05 | 9.222E+04 | 6.998E+02 |
Std | 1.436E+02 | 7.350E+03 | 1.232E+04 | 9.083E+01 | 8.877E+01 | 3.887E+04 | 3.573E+04 | 1.338E+04 | 5.576E+01 | |
Med | 1.321E+03 | 4.412E+04 | 7.115E+04 | 9.397E+02 | 9.712E+02 | 1.097E+05 | 1.387E+05 | 8.903E+04 | 8.903E+04 | |
F4 | Avg | 1.522E+03 | 1.890E+03 | 1.902E+03 | 1.411E+03 | 1.393E+03 | 2.291E+03 | 2.390E+03 | 2.142E+03 | 1.357E+03 |
Std | 8.857E+01 | 9.198E+01 | 4.734E+01 | 7.814E+01 | 6.824E+01 | 1.354E+02 | 1.340E+02 | 5.432E+01 | 6.113E+01 | |
Med | 1.523E+03 | 1.859E+03 | 1.917E+03 | 1.398E+03 | 1.393E+03 | 2.264E+03 | 2.393E+03 | 2.146E+03 | 2.146E+03 | |
F5 | Avg | 6.941E+02 | 7.119E+02 | 7.103E+02 | 6.825E+02 | 6.840E+02 | 7.367E+02 | 7.481E+02 | 7.265E+02 | 6.754E+02 |
Std | 5.657E+00 | 6.237E+00 | 3.656E+00 | 4.936E+00 | 5.342E+00 | 7.214E+00 | 1.782E+01 | 4.667E+00 | 4.185E+00 | |
Med | 6.950E+02 | 7.121E+02 | 7.106E+02 | 6.818E+02 | 6.858E+02 | 7.369E+02 | 7.504E+02 | 7.266E+02 | 7.266E+02 | |
F6 | Avg | 3.038E+03 | 3.836E+03 | 3.721E+03 | 3.219E+03 | 3.242E+03 | 5.400E+03 | 8.624E+03 | 4.114E+03 | 2.661E+03 |
Std | 2.029E+02 | 7.444E+01 | 1.022E+02 | 1.687E+02 | 1.469E+02 | 1.192E+03 | 9.155E+02 | 7.442E+01 | 2.677E+02 | |
Med | 3.008E+03 | 3.832E+03 | 3.737E+03 | 3.248E+03 | 3.256E+03 | 5.191E+03 | 8.695E+03 | 4.100E+03 | 4.100E+03 | |
F7 | Avg | 1.903E+03 | 2.222E+03 | 1.993E+03 | 2.104E+03 | 2.436E+03 | 2.643E+03 | 2.822E+03 | 2.695E+03 | 1.770E+03 |
Std | 9.018E+01 | 1.216E+02 | 8.927E+01 | 1.048E+02 | 1.172E+02 | 1.653E+02 | 1.769E+02 | 6.481E+01 | 8.575E+01 | |
Med | 1.901E+03 | 2.177E+03 | 1.967E+03 | 2.093E+03 | 2.422E+03 | 2.645E+03 | 2.796E+03 | 2.684E+03 | 2.684E+03 | |
F8 | Avg | 5.044E+04 | 6.222E+04 | 6.140E+04 | 2.768E+04 | 2.870E+04 | 1.059E+05 | 1.242E+05 | 7.671E+04 | 2.319E+04 |
Std | 5.120E+03 | 5.638E+03 | 2.454E+03 | 3.207E+03 | 3.363E+03 | 1.863E+04 | 2.142E+04 | 3.589E+03 | 1.293E+03 | |
Med | 4.941E+04 | 6.210E+04 | 6.122E+04 | 2.717E+04 | 2.812E+04 | 1.012E+05 | 1.258E+05 | 7.665E+04 | 7.665E+04 | |
F9 | Avg | 2.005E+04 | 2.969E+04 | 2.855E+04 | 1.779E+04 | 1.780E+04 | 3.234E+04 | 3.373E+04 | 3.220E+04 | 1.648E+04 |
Std | 1.505E+03 | 2.138E+03 | 1.025E+03 | 1.947E+03 | 1.594E+03 | 1.126E+03 | 1.384E+03 | 1.126E+03 | 2.099E+03 | |
Med | 2.029E+04 | 3.008E+04 | 2.835E+04 | 1.798E+04 | 1.782E+04 | 3.224E+04 | 3.374E+04 | 3.230E+04 | 3.230E+04 | |
F10 | Avg | 4.820E+04 | 1.864E+05 | 1.136E+05 | 9.601E+03 | 5.673E+03 | 5.257E+05 | 4.565E+05 | 2.820E+05 | 3.281E+03 |
Std | 1.852E+04 | 2.764E+04 | 2.004E+04 | 1.270E+04 | 4.478E+03 | 2.514E+05 | 1.533E+05 | 9.170E+04 | 4.422E+02 | |
Med | 4.330E+04 | 1.875E+05 | 1.155E+05 | 3.971E+03 | 4.538E+03 | 5.017E+05 | 4.482E+05 | 2.680E+05 | 2.680E+05 | |
F11 | Avg | 3.343E+09 | 5.684E+11 | 1.140E+12 | 3.762E+09 | 2.639E+09 | 1.591E+12 | 1.868E+12 | 1.543E+12 | 1.163E+09 |
Std | 1.775E+09 | 1.086E+11 | 2.230E+11 | 5.973E+09 | 8.317E+09 | 3.155E+11 | 4.165E+11 | 1.272E+11 | 4.515E+08 | |
Med | 2.939E+09 | 5.577E+11 | 1.199E+12 | 1.423E+09 | 1.034E+09 | 1.596E+12 | 1.760E+12 | 1.545E+12 | 1.545E+12 | |
F12 | Avg | 8.381E+07 | 1.272E+11 | 2.903E+11 | 5.017E+08 | 2.944E+07 | 4.449E+11 | 4.576E+11 | 3.755E+11 | 7.008E+04 |
Std | 1.357E+08 | 2.707E+10 | 7.765E+10 | 1.497E+09 | 1.610E+08 | 1.185E+11 | 1.512E+11 | 5.350E+10 | 2.202E+04 | |
Med | 2.125E+07 | 1.278E+11 | 2.891E+11 | 6.610E+04 | 5.066E+04 | 4.502E+11 | 4.610E+11 | 3.790E+11 | 3.790E+11 | |
F13 | Avg | 6.062E+06 | 8.733E+06 | 3.207E+06 | 4.401E+05 | 5.473E+05 | 2.060E+08 | 2.364E+08 | 6.334E+08 | 5.794E+05 |
Std | 2.507E+06 | 2.985E+06 | 2.467E+06 | 3.231E+05 | 2.890E+05 | 1.672E+08 | 2.002E+08 | 4.781E+08 | 2.885E+05 | |
Med | 5.172E+06 | 8.186E+06 | 2.193E+06 | 3.451E+05 | 5.048E+05 | 1.667E+08 | 1.699E+08 | 5.706E+08 | 5.706E+08 | |
F14 | Avg | 8.554E+07 | 5.048E+10 | 9.808E+10 | 3.906E+04 | 2.934E+04 | 2.055E+11 | 2.372E+11 | 3.011E+11 | 5.427E+04 |
Std | 2.975E+08 | 1.294E+10 | 4.058E+10 | 1.568E+04 | 1.323E+04 | 7.409E+10 | 1.095E+11 | 3.875E+10 | 1.926E+04 | |
Med | 6.004E+06 | 5.081E+10 | 9.008E+10 | 3.610E+04 | 2.859E+04 | 1.953E+11 | 2.149E+11 | 2.916E+11 | 2.916E+11 | |
F15 | Avg | 7.203E+03 | 1.711E+04 | 1.459E+04 | 6.889E+03 | 6.924E+03 | 2.066E+04 | 5.598E+03 | 2.851E+04 | 6.761E+03 |
Std | 7.317E+02 | 1.579E+03 | 2.421E+03 | 8.083E+02 | 8.771E+02 | 3.459E+03 | 7.717E+02 | 2.822E+03 | 8.469E+02 | |
Med | 7.198E+03 | 1.677E+04 | 1.393E+04 | 6.829E+03 | 7.097E+03 | 2.014E+04 | 5.638E+03 | 2.858E+04 | 2.858E+04 | |
F16 | Avg | 7.852E+03 | 3.433E+04 | 2.651E+05 | 6.391E+03 | 6.316E+03 | 9.392E+06 | 5.020E+03 | 4.567E+07 | 5.870E+03 |
Std | 1.869E+03 | 3.763E+04 | 4.935E+05 | 7.105E+02 | 7.677E+02 | 2.165E+07 | 6.005E+02 | 4.060E+07 | 7.443E+02 | |
Med | 7.110E+03 | 2.093E+04 | 6.223E+04 | 6.289E+03 | 6.370E+03 | 2.214E+06 | 4.911E+03 | 2.441E+07 | 2.441E+07 | |
F17 | Avg | 7.616E+06 | 1.365E+07 | 4.071E+06 | 7.758E+05 | 8.007E+05 | 3.662E+08 | 3.915E+08 | 2.829E+08 | 1.043E+06 |
Std | 3.285E+06 | 4.283E+06 | 4.848E+06 | 1.124E+06 | 3.557E+05 | 2.281E+08 | 2.456E+08 | 2.489E+08 | 4.230E+05 | |
Med | 6.903E+06 | 1.312E+07 | 2.351E+06 | 4.301E+05 | 7.988E+05 | 3.167E+08 | 2.872E+08 | 2.039E+08 | 2.039E+08 | |
F18 | Avg | 4.021E+07 | 4.837E+10 | 8.973E+10 | 1.315E+06 | 8.850E+05 | 1.819E+11 | 2.377E+11 | 2.910E+11 | 2.529E+07 |
Std | 2.936E+07 | 1.427E+10 | 4.176E+10 | 1.786E+06 | 1.366E+06 | 8.458E+10 | 7.455E+10 | 5.335E+10 | 1.619E+07 | |
Med | 3.400E+07 | 4.548E+10 | 9.880E+10 | 5.597E+05 | 3.519E+05 | 1.716E+11 | 2.271E+11 | 2.765E+11 | 2.765E+11 | |
F19 | Avg | 5.483E+03 | 6.429E+03 | 6.190E+03 | 5.702E+03 | 5.566E+03 | 8.098E+03 | 6.329E+03 | 7.569E+03 | 5.325E+03 |
Std | 4.786E+02 | 6.004E+02 | 3.441E+02 | 6.004E+02 | 6.466E+02 | 7.048E+02 | 1.097E+03 | 5.511E+02 | 5.837E+02 | |
Med | 5.354E+03 | 6.308E+03 | 6.271E+03 | 5.649E+03 | 5.501E+03 | 7.957E+03 | 6.862E+03 | 7.536E+03 | 7.536E+03 | |
F20 | Avg | 3.554E+03 | 4.236E+03 | 4.285E+03 | 3.847E+03 | 3.812E+03 | 4.602E+03 | 4.566E+03 | 5.040E+03 | 3.384E+03 |
Std | 1.614E+02 | 1.385E+02 | 1.973E+02 | 1.663E+02 | 2.221E+02 | 2.155E+02 | 2.077E+02 | 1.822E+02 | 1.706E+02 | |
Med | 3.503E+03 | 4.254E+03 | 4.291E+03 | 3.780E+03 | 3.799E+03 | 4.616E+03 | 4.526E+03 | 5.015E+03 | 5.015E+03 | |
F21 | Avg | 2.255E+04 | 3.142E+04 | 3.098E+04 | 2.063E+04 | 2.209E+04 | 3.426E+04 | 3.562E+04 | 3.433E+04 | 1.959E+04 |
Std | 1.358E+03 | 2.372E+03 | 7.127E+02 | 1.764E+03 | 2.274E+03 | 1.347E+03 | 1.392E+03 | 1.105E+03 | 1.632E+03 | |
Med | 2.254E+04 | 3.085E+04 | 3.089E+04 | 2.021E+04 | 2.182E+04 | 3.408E+04 | 3.583E+04 | 3.462E+04 | 3.462E+04 | |
F22 | Avg | 4.301E+03 | 5.082E+03 | 5.434E+03 | 5.213E+03 | 5.149E+03 | 5.456E+03 | 7.267E+03 | 7.447E+03 | 3.743E+03 |
Std | 1.539E+02 | 3.135E+02 | 2.832E+02 | 4.471E+02 | 5.131E+02 | 2.914E+02 | 6.630E+02 | 2.726E+02 | 2.105E+02 | |
Med | 4.277E+03 | 5.018E+03 | 5.430E+03 | 5.204E+03 | 5.065E+03 | 5.405E+03 | 7.331E+03 | 7.430E+03 | 7.430E+03 | |
F23 | Avg | 5.079E+03 | 6.639E+03 | 7.237E+03 | 8.407E+03 | 8.211E+03 | 7.857E+03 | 1.265E+04 | 1.422E+04 | 4.264E+03 |
Std | 2.737E+02 | 5.539E+02 | 4.792E+02 | 1.462E+03 | 1.423E+03 | 7.851E+02 | 1.404E+03 | 1.273E+03 | 2.201E+02 | |
Med | 5.062E+03 | 6.609E+03 | 7.059E+03 | 8.624E+03 | 8.200E+03 | 7.861E+03 | 1.259E+04 | 1.385E+04 | 1.385E+04 | |
F24 | Avg | 3.927E+03 | 1.550E+04 | 2.463E+04 | 3.544E+03 | 3.641E+03 | 4.387E+04 | 6.311E+04 | 2.752E+04 | 3.382E+03 |
Std | 1.307E+02 | 1.354E+03 | 2.346E+03 | 9.074E+01 | 7.417E+01 | 1.419E+04 | 1.609E+04 | 3.029E+03 | 5.809E+01 | |
Med | 3.920E+03 | 1.548E+04 | 2.473E+04 | 3.536E+03 | 3.651E+03 | 3.709E+04 | 6.004E+04 | 2.701E+04 | 2.701E+04 | |
F25 | Avg | 2.194E+04 | 3.931E+04 | 4.799E+04 | 2.674E+04 | 2.865E+04 | 5.010E+04 | 7.247E+04 | 6.360E+04 | 2.020E+04 |
Std | 2.951E+03 | 2.136E+03 | 3.497E+03 | 7.179E+03 | 5.077E+03 | 6.769E+03 | 1.132E+04 | 2.987E+03 | 6.508E+03 | |
Med | 2.242E+04 | 3.892E+04 | 4.877E+04 | 2.751E+04 | 2.888E+04 | 5.076E+04 | 7.219E+04 | 6.425E+04 | 6.425E+04 | |
F26 | Avg | 3.200E+03 | 7.644E+03 | 6.086E+03 | 4.683E+03 | 4.499E+03 | 1.004E+04 | 1.338E+04 | 1.824E+04 | 3.906E+03 |
Std | 4.356E−04 | 7.748E+02 | 7.188E+02 | 6.605E+02 | 5.638E+02 | 1.782E+03 | 1.748E+03 | 1.885E+03 | 2.323E+02 | |
Med | 3.200E+03 | 7.804E+03 | 6.040E+03 | 4.544E+03 | 4.372E+03 | 9.783E+03 | 1.311E+04 | 1.819E+04 | 1.819E+04 | |
F27 | Avg | 3.300E+03 | 1.610E+04 | 3.076E+04 | 3.679E+03 | 3.710E+03 | 4.096E+04 | 5.288E+04 | 1.610E+04 | 3.465E+03 |
Std | 4.884E−04 | 1.157E+03 | 2.365E+03 | 2.510E+02 | 7.173E+01 | 9.127E+03 | 8.733E+03 | 1.157E+03 | 4.584E+01 | |
Med | 3.300E+03 | 1.615E+04 | 3.069E+04 | 3.612E+03 | 3.699E+03 | 3.956E+04 | 5.061E+04 | 1.615E+04 | 1.615E+04 | |
F28 | Avg | 8.085E+03 | 3.380E+04 | 3.973E+04 | 1.065E+04 | 1.010E+04 | 9.277E+05 | 1.065E+04 | 3.380E+04 | 1.081E+04 |
Std | 1.143E+03 | 1.639E+04 | 2.742E+04 | 1.343E+03 | 9.387E+02 | 1.546E+06 | 1.343E+03 | 1.639E+04 | 7.850E+02 | |
Med | 7.847E+03 | 3.000E+04 | 2.843E+04 | 1.055E+04 | 1.004E+04 | 3.787E+05 | 1.055E+04 | 3.000E+04 | 3.000E+04 | |
F29 | Avg | 8.839E+07 | 9.920E+10 | 1.752E+11 | 7.590E+07 | 2.406E+07 | 2.806E+11 | 3.113E+11 | 1.752E+11 | 4.415E+08 |
Std | 3.467E+07 | 2.465E+10 | 7.835E+10 | 2.758E+08 | 1.755E+07 | 1.041E+11 | 1.184E+11 | 7.835E+10 | 1.901E+08 | |
Med | 8.247E+07 | 1.019E+11 | 1.675E+11 | 1.748E+07 | 1.797E+07 | 2.512E+11 | 2.854E+11 | 1.675E+11 | 1.675E+11 | |
Rank W/T/L | 3/0/25 | 0/0/29 | 0/0/29 | 2/0/27 | 3/0/26 | 0/0/29 | 1/0/28 | 0/0/29 | 20/0/9 | |
OE | 13.79% | 0% | 0% | 6.89% | 13.79% | 0% | 3.44% | 0% | 68.96% |
1.9 Appendix 9. Wilcoxon rank-sum of the QSSALEO versus other advanced algorithms on CEC2017.
Fun | RW-GWO | HI-WOA | LNIMRA | PPSO-W | PPSO | LJA | CPSO | WFOA |
---|---|---|---|---|---|---|---|---|
1 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
2 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
3 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
4 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.07246672 | < 0.05 | < 0.05 | < 0.05 |
5 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
6 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
7 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
8 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
9 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
10 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
11 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.55977641 | < 0.05 | < 0.05 | < 0.05 |
12 | < 0.05 | < 0.05 | < 0.05 | 0.55977641 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
13 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.57029143 | < 0.05 | < 0.05 | < 0.05 |
14 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
15 | < 0.05 | < 0.05 | < 0.05 | 0.69169337 | 0.65761242 | < 0.05 | < 0.05 | < 0.05 |
16 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.12945578 | < 0.05 | < 0.05 | < 0.05 |
17 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
18 | 0.05882719 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
19 | 0.25303015 | < 0.05 | < 0.05 | < 0.05 | 0.16873193 | < 0.05 | < 0.05 | < 0.05 |
20 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
21 | < 0.05 | < 0.05 | < 0.05 | 0.12945578 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
22 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
23 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
24 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
25 | 0.57029143 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
26 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
27 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
28 | < 0.05 | < 0.05 | < 0.05 | 0.3629539 | < 0.05 | < 0.05 | 0.3629539 | < 0.05 |
29 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
1.10 Appendix 10. Friedman test result of the QSSALEO versus other advanced algorithms on CEC2017.
Fun | RW-GWO | HI-WOA | LNIMRA | PPSO-W | PPSO | LJA | CPSO | WFOA | QSSALEO |
---|---|---|---|---|---|---|---|---|---|
1 | 3.931 | 5.000 | 6.586 | 2.138 | 2.931 | 8.207 | 6.552 | 8.655 | 1.000 |
2 | 6.759 | 4.931 | 3.897 | 1.897 | 1.828 | 7.793 | 8.828 | 6.621 | 2.448 |
3 | 3.966 | 5.069 | 6.069 | 2.414 | 2.621 | 8.172 | 7.241 | 8.448 | 1.000 |
4 | 3.724 | 5.345 | 5.655 | 2.310 | 2.345 | 8.138 | 7.103 | 8.724 | 1.655 |
5 | 3.897 | 5.724 | 5.345 | 2.379 | 2.517 | 8.172 | 7.138 | 8.621 | 1.207 |
6 | 2.310 | 5.862 | 5.172 | 3.172 | 3.345 | 7.897 | 7.138 | 8.931 | 1.172 |
7 | 2.207 | 4.828 | 3.034 | 4.034 | 6.034 | 7.448 | 7.862 | 8.517 | 1.034 |
8 | 4.103 | 5.414 | 5.483 | 2.310 | 2.552 | 8.207 | 7.000 | 8.793 | 1.138 |
9 | 3.517 | 6.034 | 5.276 | 2.414 | 2.517 | 7.621 | 7.517 | 8.552 | 1.552 |
10 | 4.000 | 6.069 | 4.966 | 2.310 | 2.552 | 8.345 | 7.172 | 8.414 | 1.172 |
11 | 3.586 | 5.034 | 6.069 | 2.621 | 1.931 | 7.897 | 7.655 | 8.345 | 1.862 |
12 | 3.828 | 5.034 | 6.310 | 2.310 | 1.690 | 8.069 | 7.586 | 8.000 | 2.172 |
13 | 5.034 | 5.690 | 4.138 | 1.724 | 2.138 | 7.759 | 8.379 | 7.862 | 2.276 |
14 | 4.000 | 5.138 | 5.966 | 2.000 | 1.552 | 7.448 | 8.690 | 7.759 | 2.448 |
15 | 3.793 | 7.069 | 6.172 | 3.310 | 3.310 | 7.793 | 8.966 | 1.483 | 3.103 |
16 | 4.414 | 6.207 | 6.759 | 3.379 | 3.310 | 8.069 | 8.897 | 1.414 | 2.552 |
17 | 4.897 | 5.828 | 3.966 | 1.586 | 2.103 | 8.172 | 7.621 | 8.207 | 2.621 |
18 | 3.621 | 5.207 | 6.000 | 1.621 | 1.448 | 7.207 | 8.552 | 8.034 | 3.310 |
19 | 2.931 | 5.621 | 4.897 | 3.759 | 2.966 | 8.655 | 8.069 | 5.552 | 2.552 |
20 | 2.103 | 5.310 | 5.793 | 3.517 | 3.345 | 7.241 | 8.931 | 7.414 | 1.345 |
21 | 3.379 | 5.862 | 5.552 | 2.103 | 2.897 | 7.345 | 7.655 | 8.586 | 1.621 |
22 | 2.034 | 4.207 | 5.828 | 4.724 | 4.414 | 5.793 | 8.586 | 8.414 | 1.000 |
23 | 2.000 | 3.586 | 4.448 | 5.897 | 5.724 | 5.379 | 8.724 | 8.241 | 1.000 |
24 | 3.966 | 5.000 | 6.241 | 2.172 | 2.793 | 8.207 | 6.793 | 8.759 | 1.069 |
25 | 1.759 | 4.966 | 6.276 | 3.172 | 3.483 | 6.724 | 8.241 | 8.690 | 1.690 |
26 | 1.000 | 6.069 | 4.966 | 3.552 | 3.414 | 6.966 | 8.897 | 8.000 | 2.138 |
27 | 1.000 | 5.500 | 7.172 | 3.207 | 3.793 | 7.966 | 5.500 | 8.862 | 2.000 |
28 | 1.138 | 6.948 | 7.103 | 3.534 | 3.103 | 9.000 | 6.948 | 3.534 | 3.690 |
29 | 2.828 | 5.310 | 6.672 | 1.690 | 1.552 | 8.103 | 6.672 | 8.241 | 3.931 |
Avg | 3.301 | 5.444 | 5.580 | 2.802 | 2.904 | 7.717 | 7.756 | 7.575 | 1.923 |
Rank | 4.00 | 5.00 | 6.00 | 2.00 | 3.00 | 8.00 | 9.00 | 7.00 | 1.00 |
1.11 Appendix 11. Wilcoxon rank-sum test result of the QSSALEO versus other traditional algorithms on CEC2008lsgo.
Fun | D | CSO | SSA | PSO | WOA | GWO |
---|---|---|---|---|---|---|
F1 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F2 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F3 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F4 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F5 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F6 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.056776 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F7 | 200 | < 0.05 | < 0.05 | < 0.05 | 0.7498769 | < 0.05 |
500 | 0.141670 | < 0.05 | < 0.05 | 0.3880841 | 0.228116250 | |
1000 | < 0.05 | < 0.05 | < 0.05 | 0.8702912 | < 0.05 |
1.12 Appendix 12. Comparison results of the QSSALEO with some improved SSA’s algorithms during 2500 iterations.
F | Criteria | ESSA | HSSASCA | ISSA | ISSA_OBL | IWSSA | STS-SSA | TVSSA | SSA-FGWO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Avg | 8.827E+10 | 2.361E+12 | 1.284E+04 | 1.569E+11 | 2.240E+12 | 2.667E+12 | 3.761E+05 | 2.098E+04 | 7.085E+03 |
Std | 1.928E+10 | 1.549E+11 | 1.693E+04 | 3.985E+10 | 1.038E+11 | 9.447E+10 | 1.996E+06 | 2.227E+04 | 8.378E+03 | |
Med | 8.571E+10 | 2.358E+12 | 6.436E+03 | 1.510E+11 | 2.221E+12 | 2.688E+12 | 6.629E+03 | 1.470E+04 | 2.853E+03 | |
F2 | Avg | 3.006E+05 | 1.038E+06 | 2.797E+05 | 2.543E+05 | 3.449E+05 | 3.511E+05 | 3.111E+05 | 2.941E+05 | 1.778E+05 |
Std | 1.521E+04 | 3.015E+05 | 1.443E+04 | 2.031E+04 | 1.299E+04 | 1.212E+04 | 5.292E+04 | 7.616E+04 | 1.639E+04 | |
Med | 3.013E+05 | 9.958E+05 | 2.807E+05 | 2.530E+05 | 3.466E+05 | 3.509E+05 | 3.113E+05 | 2.841E+05 | 1.801E+05 | |
F3 | Avg | 1.931E+03 | 5.647E+04 | 7.467E+02 | 2.365E+03 | 6.599E+04 | 1.030E+05 | 7.668E+02 | 7.250E+02 | 6.998E+02 |
Std | 2.859E+02 | 1.236E+04 | 4.313E+01 | 5.839E+02 | 5.487E+03 | 1.078E+04 | 5.436E+01 | 5.165E+01 | 5.576E+01 | |
Med | 1.909E+03 | 5.392E+04 | 7.520E+02 | 2.198E+03 | 6.721E+04 | 1.010E+05 | 7.629E+02 | 7.237E+02 | 7.031E+02 | |
F4 | Avg | 1.470E+03 | 1.989E+03 | 1.257E+03 | 1.416E+03 | 2.097E+03 | 2.134E+03 | 1.333E+03 | 1.257E+03 | 1.357E+03 |
Std | 7.087E+01 | 6.050E+01 | 6.995E+01 | 7.334E+01 | 3.611E+01 | 2.856E+01 | 1.044E+02 | 9.174E+01 | 6.113E+01 | |
Med | 1.459E+03 | 1.989E+03 | 1.249E+03 | 1.404E+03 | 2.098E+03 | 2.138E+03 | 1.335E+03 | 1.252E+03 | 1.359E+03 | |
F5 | Avg | 6.888E+02 | 7.213E+02 | 6.925E+02 | 6.865E+02 | 7.267E+02 | 7.286E+02 | 6.768E+02 | 6.766E+02 | 6.754E+02 |
Std | 6.711E+00 | 7.390E+00 | 7.820E+00 | 5.085E+00 | 2.327E+00 | 2.471E+00 | 5.606E+00 | 4.649E+00 | 4.185E+00 | |
Med | 6.885E+02 | 7.206E+02 | 6.721E+02 | 6.872E+02 | 7.270E+02 | 7.285E+02 | 6.764E+02 | 6.755E+02 | 6.761E+02 | |
F6 | Avg | 2.385E+03 | 3.915E+03 | 2.489E+03 | 3.464E+03 | 3.834E+03 | 4.026E+03 | 2.127E+03 | 1.970E+03 | 2.661E+03 |
Std | 1.343E+02 | 1.008E+02 | 8.945E+02 | 2.202E+02 | 8.159E+01 | 4.667E+01 | 1.902E+02 | 2.335E+02 | 2.677E+02 | |
Med | 2.396E+03 | 3.924E+03 | 2.070E+03 | 3.489E+03 | 3.838E+03 | 4.040E+03 | 2.095E+03 | 1.961E+03 | 2.654E+03 | |
F7 | Avg | 1.855E+03 | 2.434E+03 | 1.868E+03 | 1.902E+03 | 2.539E+03 | 2.616E+03 | 1.895E+03 | 1.867E+03 | 1.770E+03 |
Std | 6.579E+01 | 8.771E+01 | 3.664E+02 | 8.392E+01 | 4.861E+01 | 3.571E+01 | 3.833E+02 | 1.436E+02 | 8.575E+01 | |
Med | 1.748E+03 | 2.438E+03 | 1.759E+03 | 1.888E+03 | 2.537E+03 | 2.620E+03 | 1.730E+03 | 1.970E+03 | 1.790E+03 | |
F8 | Avg | 3.912E+04 | 8.851E+04 | 2.351E+04 | 3.211E+04 | 8.260E+04 | 8.299E+04 | 2.601E+04 | 2.554E+04 | 2.319E+04 |
Std | 4.089E+03 | 1.730E+04 | 2.539E+03 | 3.799E+03 | 3.463E+03 | 3.647E+03 | 3.284E+03 | 2.686E+03 | 1.293E+03 | |
Med | 3.892E+04 | 8.634E+04 | 2.437E+04 | 3.228E+04 | 8.368E+04 | 8.315E+04 | 2.694E+04 | 2.516E+04 | 2.323E+04 | |
F9 | Avg | 1.940E+04 | 3.266E+04 | 1.563E+04 | 1.874E+04 | 3.235E+04 | 3.242E+04 | 1.557E+04 | 1.616E+04 | 1.648E+04 |
Std | 1.008E+03 | 1.401E+03 | 1.493E+03 | 1.431E+03 | 6.314E+02 | 5.480E+02 | 1.380E+03 | 1.552E+03 | 2.099E+03 | |
Med | 1.918E+04 | 3.256E+04 | 1.521E+04 | 1.913E+04 | 3.251E+04 | 3.241E+04 | 1.562E+04 | 1.589E+04 | 1.607E+04 | |
F10 | Avg | 7.488E+04 | 2.044E+05 | 1.002E+04 | 3.585E+04 | 1.850E+05 | 2.504E+05 | 5.350E+03 | 8.209E+03 | 3.281E+03 |
Std | 2.707E+04 | 6.640E+04 | 4.192E+03 | 8.530E+03 | 3.161E+04 | 6.234E+04 | 1.122E+03 | 2.351E+03 | 4.422E+02 | |
Med | 6.867E+04 | 1.825E+05 | 8.850E+03 | 3.680E+04 | 1.823E+05 | 2.411E+05 | 5.401E+03 | 7.583E+03 | 3.195E+03 | |
F11 | Avg | 8.628E+09 | 1.199E+12 | 2.872E+09 | 9.239E+09 | 1.059E+12 | 1.765E+12 | 2.436E+09 | 2.860E+09 | 1.163E+09 |
Std | 3.763E+09 | 2.191E+11 | 1.098E+09 | 3.024E+09 | 1.188E+11 | 1.167E+11 | 1.195E+09 | 1.430E+09 | 4.515E+08 | |
Med | 7.629E+09 | 1.189E+12 | 2.690E+09 | 9.394E+09 | 1.082E+12 | 1.781E+12 | 2.282E+09 | 2.585E+09 | 1.081E+09 | |
F12 | Avg | 5.127E+08 | 3.417E+11 | 9.544E+04 | 3.850E+10 | 2.623E+11 | 4.558E+11 | 7.639E+04 | 1.097E+05 | 7.008E+04 |
Std | 2.717E+08 | 8.214E+10 | 3.190E+04 | 1.175E+11 | 3.301E+10 | 5.437E+10 | 2.333E+04 | 4.930E+04 | 2.202E+04 | |
Med | 4.999E+08 | 3.285E+11 | 9.235E+04 | 4.304E+04 | 2.621E+11 | 4.725E+11 | 7.550E+04 | 1.047E+05 | 6.482E+04 | |
F13 | Avg | 1.299E+07 | 5.252E+07 | 2.267E+06 | 5.671E+06 | 5.765E+07 | 1.054E+08 | 1.562E+06 | 1.685E+06 | 5.794E+05 |
Std | 4.386E+06 | 3.417E+07 | 1.249E+06 | 1.483E+06 | 1.446E+07 | 3.844E+07 | 6.772E+05 | 9.122E+05 | 2.885E+05 | |
Med | 1.244E+07 | 3.866E+07 | 2.042E+06 | 5.326E+06 | 5.692E+07 | 9.779E+07 | 1.449E+06 | 1.560E+06 | 4.948E+05 | |
F14 | Avg | 1.044E+08 | 1.601E+11 | 1.028E+05 | 2.006E+05 | 1.114E+11 | 2.451E+11 | 6.783E+04 | 1.013E+05 | 5.427E+04 |
Std | 7.338E+07 | 6.096E+10 | 4.868E+04 | 7.184E+03 | 2.196E+10 | 2.861E+10 | 2.217E+04 | 3.125E+04 | 1.926E+04 | |
Med | 7.972E+07 | 1.471E+11 | 9.821E+04 | 1.845E+04 | 1.123E+11 | 2.436E+11 | 6.826E+04 | 1.035E+05 | 5.752E+04 | |
F15 | Avg | 6.989E+03 | 1.624E+04 | 6.246E+03 | 9.486E+03 | 1.798E+04 | 2.471E+04 | 6.527E+03 | 6.310E+03 | 6.761E+03 |
Std | 8.326E+02 | 2.083E+03 | 8.271E+02 | 1.054E+03 | 1.330E+03 | 1.981E+03 | 8.193E+02 | 9.522E+02 | 8.469E+02 | |
Med | 7.184E+03 | 1.628E+04 | 6.270E+03 | 9.482E+03 | 1.807E+04 | 2.501E+04 | 6.567E+03 | 6.074E+03 | 6.486E+03 | |
F16 | Avg | 6.087E+03 | 1.734E+06 | 5.443E+03 | 6.124E+03 | 3.968E+05 | 9.088E+06 | 5.775E+03 | 5.388E+03 | 5.870E+03 |
Std | 5.924E+02 | 2.399E+06 | 5.564E+02 | 6.603E+02 | 2.406E+05 | 4.607E+06 | 7.074E+02 | 5.274E+02 | 7.443E+02 | |
Med | 6.093E+03 | 7.681E+05 | 5.419E+03 | 6.166E+03 | 3.014E+05 | 9.545E+06 | 5.691E+03 | 5.448E+03 | 6.009E+03 | |
F17 | Avg | 1.018E+07 | 5.592E+07 | 2.972E+06 | 3.501E+06 | 1.038E+08 | 2.143E+08 | 2.571E+06 | 3.876E+06 | 1.043E+06 |
Std | 4.361E+06 | 3.486E+07 | 2.045E+06 | 9.376E+05 | 2.544E+07 | 7.324E+07 | 1.272E+06 | 1.806E+06 | 4.230E+05 | |
Med | 9.139E+06 | 4.680E+07 | 2.578E+06 | 3.291E+06 | 1.020E+08 | 2.069E+08 | 2.543E+06 | 3.831E+06 | 1.037E+06 | |
F18 | Avg | 9.677E+07 | 1.573E+11 | 5.613E+07 | 2.236E+06 | 1.055E+11 | 2.451E+11 | 4.125E+07 | 6.703E+07 | 2.529E+07 |
Std | 1.301E+08 | 4.598E+10 | 3.655E+07 | 1.968E+06 | 2.091E+10 | 2.280E+10 | 3.175E+07 | 4.418E+07 | 1.619E+07 | |
Med | 6.192E+07 | 1.585E+11 | 6.106E+07 | 1.818E+06 | 1.088E+11 | 2.441E+11 | 3.872E+07 | 6.114E+07 | 2.253E+07 | |
F19 | Avg | 5.500E+03 | 7.713E+03 | 5.055E+03 | 5.206E+03 | 7.574E+03 | 7.484E+03 | 5.042E+03 | 5.434E+03 | 5.325E+03 |
Std | 5.766E+02 | 6.073E+02 | 5.568E+02 | 5.069E+02 | 2.204E+02 | 2.689E+02 | 5.060E+02 | 4.888E+02 | 5.837E+02 | |
Med | 5.441E+03 | 7.705E+03 | 4.968E+03 | 5.197E+03 | 7.624E+03 | 7.550E+03 | 4.960E+03 | 5.460E+03 | 5.310E+03 | |
F20 | Avg | 3.263E+03 | 4.325E+03 | 3.037E+03 | 3.663E+03 | 4.334E+03 | 5.370E+03 | 3.229E+03 | 2.995E+03 | 3.384E+03 |
Std | 1.092E+02 | 1.732E+02 | 1.163E+02 | 1.688E+02 | 1.219E+02 | 1.684E+02 | 1.512E+02 | 1.058E+02 | 1.706E+02 | |
Med | 3.266E+03 | 4.323E+03 | 3.023E+03 | 3.682E+03 | 4.353E+03 | 5.390E+03 | 3.184E+03 | 3.003E+03 | 3.428E+03 | |
F21 | Avg | 2.305E+04 | 3.464E+04 | 2.580E+04 | 2.337E+04 | 3.475E+04 | 3.490E+04 | 2.617E+04 | 2.065E+04 | 1.959E+04 |
Std | 1.600E+03 | 1.075E+03 | 8.138E+03 | 1.696E+03 | 4.958E+02 | 5.301E+02 | 7.886E+03 | 3.732E+02 | 1.632E+03 | |
Med | 2.337E+04 | 3.452E+04 | 2.019E+04 | 2.325E+04 | 3.473E+04 | 3.503E+04 | 2.178E+04 | 2.061E+04 | 1.979E+04 | |
F22 | Avg | 3.543E+03 | 5.479E+03 | 3.519E+03 | 4.675E+03 | 5.270E+03 | 6.831E+03 | 3.674E+03 | 3.521E+03 | 3.743E+03 |
Std | 5.769E+01 | 2.779E+02 | 1.613E+02 | 2.828E+02 | 1.105E+02 | 2.694E+02 | 1.384E+02 | 1.225E+02 | 2.105E+02 | |
Med | 3.537E+03 | 5.476E+03 | 3.502E+03 | 4.715E+03 | 5.265E+03 | 6.800E+03 | 3.669E+03 | 3.500E+03 | 3.750E+03 | |
F23 | Avg | 4.320E+03 | 7.673E+03 | 4.077E+03 | 5.637E+03 | 7.500E+03 | 1.173E+04 | 4.181E+03 | 4.048E+03 | 4.264E+03 |
Std | 1.265E+02 | 6.571E+02 | 1.401E+02 | 4.850E+02 | 3.237E+02 | 6.061E+02 | 1.671E+02 | 1.718E+02 | 2.201E+02 | |
Med | 4.314E+03 | 7.568E+03 | 4.043E+03 | 5.546E+03 | 7.543E+03 | 1.171E+04 | 4.139E+03 | 4.019E+03 | 4.219E+03 | |
F24 | Avg | 4.823E+03 | 2.431E+04 | 3.423E+03 | 4.879E+03 | 2.294E+04 | 2.929E+04 | 3.461E+03 | 3.529E+03 | 3.382E+03 |
Std | 2.937E+02 | 3.381E+03 | 7.816E+01 | 2.865E+02 | 1.347E+03 | 1.416E+03 | 6.456E+01 | 9.853E+01 | 5.809E+01 | |
Med | 4.796E+03 | 2.383E+04 | 3.413E+03 | 4.878E+03 | 2.287E+04 | 2.937E+04 | 3.470E+03 | 3.587E+03 | 3.387E+03 | |
F25 | Avg | 1.333E+04 | 4.238E+04 | 1.358E+04 | 2.462E+04 | 4.741E+04 | 5.693E+04 | 1.416E+04 | 1.312E+04 | 2.020E+04 |
Std | 5.431E+03 | 3.190E+03 | 1.356E+03 | 4.702E+03 | 1.781E+03 | 1.753E+03 | 5.007E+03 | 1.391E+03 | 6.508E+03 | |
Med | 1.101E+04 | 4.210E+04 | 1.352E+04 | 2.571E+04 | 4.735E+04 | 5.708E+04 | 1.531E+04 | 1.303E+04 | 2.249E+04 | |
F26 | Avg | 3.737E+03 | 8.623E+03 | 3.642E+03 | 4.967E+03 | 9.318E+03 | 1.435E+04 | 3.845E+03 | 3.719E+03 | 3.906E+03 |
Std | 1.709E+02 | 1.212E+03 | 8.559E+01 | 4.812E+02 | 8.162E+02 | 9.449E+02 | 1.409E+02 | 1.263E+02 | 2.323E+02 | |
Med | 3.709E+03 | 8.248E+03 | 3.633E+03 | 4.873E+03 | 9.440E+03 | 1.428E+04 | 3.838E+03 | 3.691E+03 | 3.894E+03 | |
F27 | Avg | 5.579E+03 | 2.747E+04 | 3.484E+03 | 6.000E+03 | 2.862E+04 | 3.662E+04 | 3.524E+03 | 3.491E+03 | 3.465E+03 |
Std | 6.237E+02 | 3.858E+03 | 4.124E+01 | 5.755E+02 | 1.617E+03 | 1.259E+03 | 4.471E+01 | 3.640E+01 | 4.584E+01 | |
Med | 5.550E+03 | 2.883E+04 | 3.499E+03 | 5.979E+03 | 2.881E+04 | 3.666E+04 | 3.524E+03 | 3.488E+03 | 3.455E+03 | |
F28 | Avg | 7.541E+03 | 2.294E+05 | 8.711E+03 | 1.186E+04 | 9.514E+04 | 8.299E+05 | 9.918E+03 | 8.898E+03 | 1.081E+04 |
Std | 7.472E+02 | 2.451E+05 | 8.153E+02 | 1.422E+03 | 3.896E+04 | 3.386E+05 | 1.114E+03 | 6.358E+02 | 7.850E+02 | |
Med | 7.555E+03 | 1.436E+05 | 8.720E+03 | 1.160E+04 | 9.301E+04 | 7.748E+05 | 9.688E+03 | 8.795E+03 | 1.093E+04 | |
F29 | Avg | 7.237E+08 | 2.808E+11 | 7.536E+08 | 1.268E+09 | 1.938E+11 | 3.954E+11 | 8.287E+08 | 7.890E+08 | 4.415E+08 |
Std | 2.831E+08 | 7.012E+10 | 2.985E+08 | 5.204E+08 | 4.062E+10 | 3.636E+10 | 4.456E+08 | 3.957E+08 | 1.901E+08 | |
Med | 8.532E+08 | 2.851E+11 | 8.011E+08 | 1.200E+09 | 1.922E+11 | 4.024E+11 | 6.697E+08 | 7.474E+08 | 3.888E+08 | |
Rank W/T/L | 1/0/28 | 0/0/29 | 3/0/21 | 1/0/28 | 0/0/29 | 0/0/29 | 2/0/27 | 6/0/23 | 16/0/13 | |
OE | 3.44% | 0.00% | 10.34% | 3.44% | 0.00% | 0.00% | 6.89% | 20.68% | 55.17% |
1.13 Appendix 13. Wilcoxon rank-sum of the QSSALEO vs. some improved SSA’s algorithms on CEC2017.
Fun | ESSA | HSSASCA | ISSA | ISSA_OBL | IWSSA | STS-SSA | TVSSA | SSA-FGWO |
---|---|---|---|---|---|---|---|---|
1 | < 0.05 | < 0.05 | 0.199498378 | < 0.05 | < 0.05 | < 0.05 | 0.234174458 | < 0.05 |
2 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
3 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.163970523 |
4 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.396691029 | < 0.05 |
5 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.646404177 | 0.405412107 |
6 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
7 | 0.104139005 | < 0.05 | 0.821595142 | < 0.05 | < 0.05 | < 0.05 | 0.646404177 | < 0.05 |
8 | < 0.05 | < 0.05 | 0.259544222 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
9 | < 0.05 | < 0.05 | 0.188817733 | < 0.05 | < 0.05 | < 0.05 | 0.234174458 | 0.882550076 |
10 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
11 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
12 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.10749411 | < 0.05 |
13 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
14 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
15 | 0.129455778 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.498735035 | 0.070028526 |
16 | 0.518681718 | < 0.05 | < 0.05 | 0.286756545 | < 0.05 | < 0.05 | 0.199498378 | < 0.05 |
17 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
18 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.159311066 | < 0.05 |
19 | 0.234174458 | < 0.05 | 0.110934253 | 0.47920362 | < 0.05 | < 0.05 | 0.088592954 | 0.570291431 |
20 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
21 | < 0.05 | < 0.05 | 0.074973975 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
22 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.301060782 | < 0.05 |
23 | 0.104139005 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.118074856 | < 0.05 |
24 | < 0.05 | < 0.05 | 0.065354024 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
25 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
26 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.396691029 | < 0.05 |
27 | < 0.05 | < 0.05 | 0.114460738 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
28 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
29 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
1.14 Appendix 14. Wilcoxon rank-sum test result of the QSSALEO versus other advanced algorithms on CEC2008lsgo.
Fun | D | PPSO | PPSO_W | DESAP-abs | SHADE | CMA-ES | Large-scale LM-CMA | Large-scale QIWOA | Large-scale DSCA | Large-scale SSA-FGWO |
---|---|---|---|---|---|---|---|---|---|---|
F1 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F2 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.25303 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F3 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F4 | 200 | < 0.05 | < 0.05 | 0.993796 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.396691 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F5 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F6 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
F7 | 200 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
500 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | |
1000 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
1.15 Appendix 15. Friedman test result of the QSSALEO versus some improved SSA’s algorithms on CEC2017.
Fun | ESSA | HSSASCA | ISSA | ISSA_OBL | IWSSA | STS-SSA | TVSSA | SSA-FGWO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|
1 | 5.03 | 7.76 | 2.38 | 5.97 | 7.24 | 9.00 | 2.48 | 2.93 | 2.21 |
2 | 5.00 | 9.00 | 3.79 | 2.52 | 7.03 | 7.45 | 5.45 | 3.76 | 1.00 |
3 | 5.14 | 7.14 | 2.83 | 5.86 | 7.86 | 9.00 | 3.21 | 2.07 | 1.90 |
4 | 5.38 | 7.03 | 2.03 | 4.59 | 8.21 | 8.76 | 3.24 | 2.03 | 3.72 |
5 | 5.31 | 7.34 | 2.17 | 5.10 | 8.10 | 8.55 | 2.83 | 3.00 | 2.59 |
6 | 3.62 | 7.62 | 3.67 | 5.86 | 6.97 | 8.74 | 2.41 | 1.69 | 4.41 |
7 | 2.69 | 6.72 | 4.17 | 4.90 | 7.59 | 8.86 | 3.52 | 3.48 | 3.07 |
8 | 6.00 | 8.21 | 2.14 | 4.69 | 7.83 | 7.97 | 3.28 | 3.00 | 1.90 |
9 | 5.41 | 8.07 | 2.52 | 4.86 | 7.86 | 8.07 | 2.28 | 2.97 | 2.97 |
10 | 5.93 | 7.72 | 3.48 | 5.07 | 7.66 | 8.62 | 2.17 | 3.34 | 1.00 |
11 | 5.34 | 7.79 | 3.07 | 5.62 | 7.21 | 9.00 | 2.52 | 3.17 | 1.28 |
12 | 5.90 | 7.86 | 3.52 | 2.24 | 7.00 | 8.97 | 2.97 | 4.00 | 2.55 |
13 | 5.97 | 7.55 | 4.10 | 5.03 | 7.72 | 8.69 | 2.83 | 2.76 | 1.28 |
14 | 6.00 | 7.90 | 3.93 | 1.07 | 7.24 | 8.86 | 3.21 | 3.93 | 2.69 |
15 | 3.76 | 7.17 | 2.48 | 5.97 | 7.83 | 9.00 | 2.93 | 2.66 | 3.21 |
16 | 4.31 | 7.83 | 2.45 | 4.38 | 7.24 | 8.93 | 3.28 | 2.52 | 4.07 |
17 | 5.90 | 7.14 | 3.17 | 3.66 | 7.97 | 8.90 | 2.93 | 3.86 | 1.48 |
18 | 4.69 | 7.93 | 4.17 | 1.14 | 7.14 | 8.93 | 3.48 | 4.69 | 2.83 |
19 | 4.10 | 8.28 | 3.00 | 3.24 | 7.93 | 7.79 | 3.14 | 4.07 | 3.45 |
20 | 3.72 | 7.59 | 1.97 | 5.69 | 7.41 | 9.00 | 3.41 | 1.59 | 4.62 |
21 | 4.31 | 7.28 | 4.17 | 4.59 | 7.38 | 7.97 | 4.52 | 2.69 | 2.10 |
22 | 2.59 | 7.76 | 4.00 | 6.00 | 7.21 | 9.00 | 3.90 | 2.21 | 2.34 |
23 | 4.28 | 7.59 | 2.21 | 6.00 | 7.41 | 9.00 | 2.93 | 1.93 | 3.66 |
24 | 5.45 | 7.69 | 2.14 | 5.55 | 7.41 | 8.90 | 2.66 | 3.41 | 1.79 |
25 | 2.55 | 7.10 | 2.62 | 5.45 | 7.90 | 9.00 | 3.14 | 2.45 | 4.79 |
26 | 2.69 | 7.41 | 2.03 | 5.97 | 7.59 | 9.00 | 3.83 | 2.52 | 3.97 |
27 | 5.28 | 7.55 | 2.38 | 5.72 | 7.45 | 9.00 | 3.28 | 2.66 | 1.69 |
28 | 1.34 | 7.69 | 2.52 | 5.62 | 7.38 | 8.93 | 3.93 | 2.69 | 4.90 |
29 | 3.50 | 7.97 | 3.57 | 5.17 | 7.10 | 8.93 | 3.45 | 3.38 | 1.93 |
Avg | 4.52 | 7.64 | 2.99 | 4.74 | 7.51 | 8.72 | 3.21 | 2.95 | 2.74 |
Rank | 5.000 | 8.000 | 3.000 | 6.000 | 7.000 | 9.000 | 4.000 | 2.000 | 1.000 |
1.16 Appendix 16. Comparison results of the QSSALEO on CEC2008lsgo with traditional algorithms during 2500 iterations.
Fun | D | Criteria | CSO | SSA | PSO | WOA | GWO | QSSALEO |
---|---|---|---|---|---|---|---|---|
F1 | 200 | Avg | 9.414E+05 | 1.865E+05 | 4.844E+05 | 1.207E+05 | 1.885E+05 | -4.500E+02 |
Std | 4.476E+04 | 2.474E+04 | 3.117E+04 | 1.536E+04 | 2.114E+04 | 2.016E−07 | ||
Med | 9.436E+05 | 1.840E+05 | 4.797E+05 | 1.218E+05 | 1.836E+05 | − 4.500E+02 | ||
500 | Avg | 6.635E+05 | 1.197E+06 | 1.498E+06 | 8.075E+05 | 8.264E+05 | − 4.361E+02 | |
Std | 4.865E+04 | 5.376E+04 | 5.437E+04 | 3.411E+04 | 4.870E+04 | 5.266E+00 | ||
Med | 6.587E+05 | 1.198E+06 | 1.492E+06 | 8.076E+05 | 8.235E+05 | − 4.356E+02 | ||
1000 | Avg | 2.415E+06 | 2.932E+06 | 3.155E+06 | 2.251E+06 | 2.183E+06 | 3.906E+04 | |
Std | 1.112E+05 | 6.835E+04 | 4.440E+04 | 4.829E+04 | 5.550E+04 | 3.675E+03 | ||
Med | 2.397E+06 | 2.925E+06 | 3.161E+06 | 2.257E+06 | 2.180E+06 | 3.953E+04 | ||
F2 | 200 | Avg | − 2.952E+02 | − 3.493E+02 | − 3.962E+02 | − 3.756E+02 | − 3.683E+02 | − 4.064E+02 |
Std | 4.684E+00 | 3.595E+00 | 1.951E+00 | 8.571E+00 | 1.508E+00 | 1.436E+00 | ||
Med | − 2.950E+02 | − 3.495E+02 | − 3.964E+02 | − 3.743E+02 | − 3.678E+02 | − 4.065E+02 | ||
500 | Avg | − 3.152E+02 | − 3.381E+02 | − 3.904E+02 | − 3.204E+02 | − 3.556E+02 | − 4.023E+02 | |
Std | 4.750E+00 | 2.713E+00 | 2.131E+00 | 5.832E+00 | 5.713E−01 | 5.857E−01 | ||
Med | − 3.154E+02 | − 3.386E+02 | − 3.905E+02 | − 3.201E+02 | − 3.558E+02 | − 4.024E+02 | ||
1000 | Avg | − 3.059E+02 | − 3.339E+02 | − 3.872E+02 | − 3.698E+02 | − 3.524E+02 | − 4.007E+02 | |
Std | 3.235E+00 | 2.615E+00 | 1.284E+00 | 9.165E+00 | 8.673E−01 | 9.060E−01 | ||
Med | − 3.060E+02 | − 3.342E+02 | − 3.872E+02 | − 3.680E+02 | − 3.527E+02 | − 4.009E+02 | ||
F3 | 200 | Avg | 7.157E+11 | 4.582E+10 | 1.180E+11 | 1.596E+10 | 3.902E+10 | 2.423E+03 |
Std | 6.829E+10 | 8.966E+09 | 1.843E+10 | 3.022E+09 | 8.717E+09 | 3.579E+03 | ||
Med | 7.260E+11 | 4.725E+10 | 1.209E+11 | 1.606E+10 | 3.801E+10 | 1.071E+03 | ||
500 | Avg | 2.748E+11 | 3.881E+11 | 5.042E+11 | 1.856E+11 | 2.677E+11 | 2.544E+05 | |
Std | 4.380E+10 | 2.918E+10 | 2.555E+10 | 1.468E+10 | 1.539E+10 | 2.130E+05 | ||
Med | 2.751E+11 | 3.894E+11 | 5.037E+11 | 1.857E+11 | 2.645E+11 | 1.868E+05 | ||
1000 | Avg | 1.243E+12 | 1.152E+12 | 1.185E+12 | 6.799E+11 | 7.717E+11 | 1.693E+09 | |
Std | 9.166E+10 | 3.963E+10 | 3.062E+10 | 2.158E+10 | 2.659E+10 | 3.882E+08 | ||
Med | 1.235E+12 | 1.151E+12 | 1.185E+12 | 6.759E+11 | 7.711E+11 | 1.667E+09 | ||
F4 | 200 | Avg | 3.917E+03 | 2.192E+03 | 2.720E+03 | 2.196E+03 | 1.532E+03 | 1.453E+03 |
Std | 1.394E+02 | 1.041E+02 | 1.291E+02 | 1.483E+02 | 1.249E+02 | 4.870E+01 | ||
Med | 3.930E+03 | 2.178E+03 | 2.709E+03 | 2.199E+03 | 1.539E+03 | 1.459E+03 | ||
500 | Avg | 4.894E+03 | 7.025E+03 | 7.945E+03 | 6.867E+03 | 5.705E+03 | 3.882E+03 | |
Std | 2.470E+02 | 1.739E+02 | 1.722E+02 | 3.169E+02 | 1.513E+02 | 9.036E+01 | ||
Med | 4.856E+03 | 7.016E+03 | 7.944E+03 | 6.882E+03 | 5.708E+03 | 3.864E+03 | ||
1000 | Avg | 1.349E+04 | 1.551E+04 | 1.691E+04 | 1.476E+04 | 1.342E+04 | 8.669E+03 | |
Std | 3.167E+02 | 2.567E+02 | 2.096E+02 | 3.311E+02 | 2.296E+02 | 1.593E+02 | ||
Med | 1.350E+04 | 1.541E+04 | 1.691E+04 | 1.475E+04 | 1.341E+04 | 8.668E+03 | ||
F5 | 200 | Avg | 7.577E+03 | 1.387E+03 | 3.431E+03 | 8.054E+02 | 1.241E+03 | − 1.800E+02 |
Std | 4.056E+02 | 2.208E+02 | 1.921E+02 | 1.026E+02 | 1.670E+02 | 4.542E−03 | ||
Med | 7.538E+03 | 1.403E+03 | 3.394E+03 | 7.957E+02 | 1.227E+03 | − 1.800E+02 | ||
500 | Avg | 5.310E+03 | 9.373E+03 | 1.165E+04 | 6.303E+03 | 6.456E+03 | − 1.790E+02 | |
Std | 4.377E+02 | 4.877E+02 | 3.203E+02 | 2.709E+02 | 3.699E+02 | 1.958E−01 | ||
Med | 5.311E+03 | 9.391E+03 | 1.166E+04 | 6.274E+03 | 6.393E+03 | − 1.790E+02 | ||
1000 | Avg | 2.130E+04 | 2.549E+04 | 2.759E+04 | 1.978E+04 | 1.906E+04 | 1.717E+02 | |
Std | 7.809E+02 | 8.309E+02 | 4.443E+02 | 5.076E+02 | 4.410E+02 | 4.258E+01 | ||
Med | 2.130E+04 | 2.552E+04 | 2.760E+04 | 1.993E+04 | 1.912E+04 | 1.729E+02 | ||
F6 | 200 | Avg | − 1.187E+02 | − 1.195E+02 | − 1.193E+02 | − 1.207E+02 | − 1.210E+02 | − 1.213E+02 |
Std | 2.695E−02 | 4.275E−02 | 9.039E−02 | 1.486E−02 | 3.999E−01 | 7.468E−01 | ||
Med | − 1.187E+02 | − 1.195E+02 | − 1.193E+02 | − 1.207E+02 | − 1.210E+02 | − 1.211E+02 | ||
500 | Avg | − 1.201E+02 | − 1.192E+02 | − 1.191E+02 | − 1.198E+02 | − 1.204E+02 | − 1.213E+02 | |
Std | 1.429E−01 | 2.770E−02 | 5.016E−02 | 2.308E−02 | 1.746E−01 | 4.594E−01 | ||
Med | − 1.201E+02 | − 1.192E+02 | − 1.191E+02 | − 1.198E+02 | − 1.205E+02 | − 1.212E+02 | ||
1000 | Avg | − 1.194E+02 | − 1.191E+02 | − 1.189E+02 | − 1.195E+02 | − 1.204E+02 | − 1.209E+02 | |
Std | 4.118E−02 | 1.408E−02 | 2.362E−02 | 1.541E−02 | 3.326E−01 | 2.755E−01 | ||
Med | − 1.194E+02 | − 1.191E+02 | − 1.189E+02 | − 1.195E+02 | − 1.205E+02 | − 1.208E+02 | ||
F7 | 200 | Avg | − 2.311E+05 | − 3.628E+05 | − 1.644E+05 | − 4.169E+05 | − 5.394E+05 | − 4.280E+05 |
Std | 1.330E+04 | 3.966E+04 | 2.087E+02 | 5.313E+04 | 4.466E+04 | 6.214E+04 | ||
Med | − 2.278E+05 | − 3.628E+05 | − 1.644E+05 | − 4.133E+05 | − 5.424E+05 | − 4.261E+05 | ||
500 | Avg | − 7.841E+05 | − 6.430E+05 | − 4.309E+05 | − 9.152E+05 | − 9.259E+05 | − 8.895E+05 | |
Std | 7.940E+04 | 4.889E+04 | 1.682E+04 | 9.648E+04 | 5.440E+04 | 1.880E+05 | ||
Med | − 7.902E+05 | − 6.420E+05 | − 4.340E+05 | − 9.207E+05 | − 9.192E+05 | − 8.831E+05 | ||
1000 | Avg | − 1.248E+06 | − 1.066E+06 | − 7.257E+05 | − 1.961E+06 | − 1.454E+06 | − 1.957E+06 | |
Std | 8.321E+04 | 5.821E+04 | 6.946E+03 | 2.470E+05 | 7.890E+04 | 2.752E+05 | ||
Med | − 1.250E+06 | − 1.058E+06 | − 7.269E+05 | − 1.967E+06 | − 1.446E+06 | − 2.027E+06 | ||
Rank | 200 | W/T/L | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 1/0/6 | 6/0/1 |
500 | W/T/L | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 1/0/6 | 6/0/1 | |
1000 | W/T/L | 0/0/7 | 0/0/7 | 0/0/7 | 1/0/6 | 0/0/7 | 6/0/1 | |
Overall OE | 0.00% | 0.00% | 0.00% | 4.76% | 9.52% | 85.71% |
1.17 Appendix 17. Friedman test result of the QSSALEO versus other traditional algorithms on CEC2008lsgo.
Algorithm | Dimension | Average rank | Overall rank |
---|---|---|---|
CSO | 200 | 5.857 | 6 |
500 | 3.113 | 3 | |
1000 | 4.261 | 4 | |
SSA | 200 | 3.901 | 4 |
500 | 4.773 | 5 | |
1000 | 4.916 | 5 | |
PSO | 200 | 4.700 | 5 |
500 | 5.424 | 6 | |
1000 | 5.296 | 6 | |
WOA | 200 | 2.591 | 2 |
500 | 3.527 | 4 | |
1000 | 2.754 | 3 | |
GWO | 200 | 2.650 | 3 |
500 | 2.936 | 2 | |
1000 | 2.685 | 2 | |
QSSALEO | 200 | 1.300 | 1 |
500 | 1.227 | 1 | |
1000 | 1.089 | 1 |
1.18 Appendix 18. Friedman test result of the QSSALEO versus other advanced algorithms on CEC2008lsgo.
Algorithm | Dimension | Average rank | Overall rank |
---|---|---|---|
PPSO | 200 | 5.901 | 6 |
500 | 5.603 | 6 | |
1000 | 5.333 | 5 | |
PPSO_W | 200 | 5.842 | 5 |
500 | 4.352 | 4 | |
1000 | 3.756 | 3 | |
DESAP-abs | 200 | 4.005 | 4 |
500 | 4.414 | 5 | |
1000 | 4.744 | 4 | |
SHADE | 200 | 3.862 | 3 |
500 | 4.118 | 3 | |
1000 | 5.406 | 6 | |
CMA-ES | 200 | 6.241 | 7 |
500 | 9.842 | 10 | |
1000 | 9.643 | 10 | |
Large-scale LM-CMA | 200 | 8.714 | 9 |
500 | 7.823 | 8 | |
1000 | 7.961 | 8 | |
Large-scale QIWOA | 200 | 8.768 | 10 |
500 | 8.300 | 9 | |
1000 | 7.961 | 8 | |
Large-scale DSCA | 200 | 6.759 | 8 |
500 | 6.113 | 7 | |
1000 | 5.833 | 7 | |
Large-scale SSA-FGWO | 200 | 3.000 | 2 |
500 | 2.704 | 2 | |
1000 | 3.192 | 2 | |
QSSALEO | 200 | 1.906 | 1 |
500 | 1.729 | 1 | |
1000 | 1.049 | 1 |
1.19 Appendix 19. Comparison results of the QSSALEO on CEC2008lsgos with advanced algorithms during 2500 iterations.
F | D | Cri | PPSO | PPSO_W | DESAP-abs | SHADE | CMA-ES | Large-scale LM-CMA | Large-scale QIWOA | Large-scale DSCA | Large-scale SSA-FGWO | QSSALEO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 200 | Avg | 2.677E+03 | 5.401E+03 | − 2.751E+02 | 2.271E+02 | − 4.397E+02 | 7.096E+05 | 1.164E+06 | 6.503E+05 | − 4.499E+02 | − 4.500E+02 |
Std | 8.561E+02 | 3.450E+03 | 2.694E+02 | 1.130E+03 | 1.222E+01 | 3.316E+03 | 5.888E+04 | 1.142E+04 | 4.290E−02 | 2.016E−07 | ||
Med | 2.452E+03 | 4.783E+03 | − 3.694E+02 | − 3.229E+02 | − 4.445E+02 | 7.098E+05 | 1.175E+06 | 6.501E+05 | − 4.499E+02 | − 4.500E+02 | ||
500 | Avg | 1.331E+05 | 7.549E+04 | 1.211E+05 | 1.337E+05 | 3.929E+06 | 1.750E+06 | 3.031E+06 | 1.686E+06 | 4.626E+04 | − 4.361E+02 | |
Std | 1.262E+04 | 7.553E+03 | 2.336E+04 | 2.072E+04 | 1.563E+06 | 1.183E+03 | 9.584E+04 | 1.106E+04 | 7.730E+03 | 5.266E+00 | ||
Med | 1.310E+05 | 7.352E+04 | 1.185E+05 | 1.332E+05 | 3.713E+06 | 1.750E+06 | 3.041E+06 | 1.689E+06 | 4.461E+04 | − 4.356E+02 | ||
1000 | Avg | 1.001E+06 | 7.601E+05 | 9.248E+05 | 9.088E+05 | 4.233E+07 | 3.389E+06 | 6.182E+06 | 3.334E+06 | 9.381E+05 | 3.906E+04 | |
Std | 3.644E+04 | 5.236E+04 | 6.476E+04 | 6.204E+04 | 8.435E+05 | 1.385E+03 | 1.754E+05 | 1.230E+04 | 5.635E+04 | 3.675E+03 | ||
Med | 9.982E+05 | 7.559E+05 | 9.225E+05 | 9.047E+05 | 4.227E+07 | 3.389E+06 | 6.206E+06 | 3.335E+06 | 9.379E+05 | 3.953E+04 | ||
F2 | 200 | Avg | − 3.605E+02 | − 3.625E+02 | − 3.571E+02 | − 3.578E+02 | − 3.323E+02 | − 3.527E+02 | − 3.200E+02 | − 3.537E+02 | − 3.827E+02 | − 4.064E+02 |
Std | 2.134E+00 | 2.307E+00 | 3.866E+00 | 2.912E+00 | 4.900E+01 | 3.176E−01 | 2.650E+01 | 2.343E−01 | 3.316E+01 | 1.436E+00 | ||
Med | − 3.604E+02 | − 3.622E+02 | − 3.571E+02 | − 3.581E+02 | − 3.383E+02 | − 3.526E+02 | − 3.117E+02 | − 3.536E+02 | − 4.058E+02 | − 4.065E+02 | ||
500 | Avg | − 3.538E+02 | − 3.543E+02 | − 3.432E+02 | − 3.428E+02 | 1.205E+02 | − 3.508E+02 | − 3.043E+02 | − 3.514E+02 | − 4.031E+02 | − 4.023E+02 | |
Std | 8.059E−01 | 6.353E−01 | 2.503E+00 | 2.689E+00 | 2.074E+01 | 1.233E−01 | 2.455E+01 | 2.822E−01 | 3.841E−01 | 5.857E−01 | ||
Med | − 3.535E+02 | − 3.542E+02 | − 3.431E+02 | − 3.434E+02 | 1.206E+02 | − 3.508E+02 | − 3.027E+02 | − 3.512E+02 | − 4.031E+02 | − 4.024E+02 | ||
1000 | Avg | − 3.518E+02 | − 3.521E+02 | − 3.359E+02 | − 3.346E+02 | 1.695E+02 | − 3.502E+02 | − 2.879E+02 | − 3.504E+02 | − 4.016E+02 | − 4.007E+02 | |
Std | 3.892E−01 | 4.110E−01 | 2.265E+00 | 2.456E+00 | 1.895E+01 | 1.041E−01 | 2.645E+01 | 5.451E−02 | 2.468E−01 | 9.060E−01 | ||
Med | − 3.518E+02 | − 3.521E+02 | − 3.359E+02 | − 3.343E+02 | 1.692E+02 | − 3.502E+02 | − 2.789E+02 | − 3.505E+02 | − 4.017E+02 | − 4.009E+02 | ||
F3 | 200 | Avg | 9.383E+07 | 1.774E+08 | 4.157E+06 | 5.379E+06 | 1.270E+06 | 2.287E+11 | 1.150E+12 | 2.039E+11 | 1.607E+04 | 2.423E+03 |
Std | 1.413E+08 | 3.310E+08 | 5.773E+06 | 1.004E+07 | 2.825E+06 | 2.702E+09 | 1.031E+11 | 7.805E+09 | 2.114E+04 | 3.579E+03 | ||
Med | 5.975E+07 | 5.399E+07 | 2.384E+06 | 1.895E+06 | 2.840E+05 | 2.290E+11 | 1.163E+12 | 2.032E+11 | 6.429E+03 | 1.071E+03 | ||
500 | Avg | 1.850E+10 | 7.007E+09 | 2.204E+10 | 2.361E+10 | 7.826E+13 | 6.299E+11 | 3.424E+12 | 5.985E+11 | 7.537E+09 | 2.544E+05 | |
Std | 2.928E+09 | 1.271E+09 | 5.939E+09 | 9.831E+09 | 6.881E+13 | 9.202E+08 | 2.523E+11 | 5.807E+09 | 1.176E+09 | 2.130E+05 | ||
Med | 1.784E+10 | 6.702E+09 | 2.250E+10 | 2.173E+10 | 4.647E+13 | 6.300E+11 | 3.441E+12 | 5.995E+11 | 7.569E+09 | 1.868E+05 | ||
1000 | Avg | 2.357E+11 | 1.449E+11 | 2.660E+11 | 2.730E+11 | 5.031E+14 | 1.280E+12 | 7.355E+12 | 1.250E+12 | 2.130E+11 | 1.693E+09 | |
Std | 2.179E+10 | 1.362E+10 | 2.858E+10 | 2.376E+10 | 2.720E+13 | 1.047E+09 | 4.765E+11 | 6.934E+09 | 1.541E+10 | 3.882E+08 | ||
Med | 2.370E+11 | 1.464E+11 | 2.615E+11 | 2.713E+11 | 5.076E+14 | 1.280E+12 | 7.522E+12 | 1.251E+12 | 2.113E+11 | 1.667E+09 | ||
F4 | 200 | Avg | 1.494E+03 | 1.454E+03 | 9.432E+01 | 9.113E+01 | 1.768E+03 | 2.846E+03 | 4.407E+03 | 3.204E+03 | 1.439E+03 | 1.453E+03 |
Std | 6.821E+01 | 6.121E+01 | 2.927E+01 | 3.461E+01 | 4.774E+01 | 6.961E+01 | 1.390E+02 | 3.904E+01 | 6.600E+01 | 4.870E+01 | ||
Med | 1.492E+03 | 1.445E+03 | 9.212E+01 | 8.918E+01 | 1.783E+03 | 2.847E+03 | 4.400E+03 | 3.198E+03 | 1.426E+03 | 1.459E+03 | ||
500 | Avg | 5.170E+03 | 4.872E+03 | 3.383E+03 | 3.449E+03 | 1.464E+04 | 7.934E+03 | 1.203E+04 | 8.503E+03 | 4.785E+03 | 3.882E+03 | |
Std | 1.107E+02 | 1.126E+02 | 1.322E+02 | 1.236E+02 | 3.601E+03 | 9.052E+01 | 3.604E+02 | 6.773E+01 | 1.883E+02 | 9.036E+01 | ||
Med | 5.168E+03 | 4.847E+03 | 3.391E+03 | 3.482E+03 | 1.526E+04 | 7.943E+03 | 1.205E+04 | 8.520E+03 | 4.833E+03 | 3.864E+03 | ||
1000 | Avg | 1.244E+04 | 1.186E+04 | 9.615E+03 | 9.685E+03 | 1.157E+05 | 1.678E+04 | 2.467E+04 | 1.751E+04 | 1.148E+04 | 8.669E+03 | |
Std | 2.044E+02 | 1.935E+02 | 8.596E+02 | 8.878E+02 | 2.275E+03 | 1.101E+02 | 5.767E+02 | 7.364E+01 | 1.574E+02 | 1.593E+02 | ||
Med | 1.247E+04 | 1.187E+04 | 9.477E+03 | 9.646E+03 | 1.161E+05 | 1.678E+04 | 2.475E+04 | 1.751E+04 | 1.147E+04 | 8.668E+03 | ||
F5 | 200 | Avg | − 1.517E+02 | − 1.417E+02 | − 1.776E+02 | − 1.768E+02 | − 1.789E+02 | 5.474E+03 | 9.412E+03 | 4.906E+03 | − 1.799E+02 | − 1.800E+02 |
Std | 7.751E+00 | 2.500E+01 | 2.116E+00 | 4.187E+00 | 3.266E−01 | 4.896E+00 | 6.238E+02 | 9.111E+01 | 2.603E−02 | 4.542E−03 | ||
Med | − 1.526E+02 | − 1.514E+02 | − 1.784E+02 | − 1.781E+02 | − 1.790E+02 | 5.475E+03 | 9.402E+03 | 4.924E+03 | − 1.799E+02 | − 1.800E+02 | ||
500 | Avg | 1.022E+03 | 4.837E+02 | 8.512E+02 | 8.499E+02 | 3.207E+04 | 1.381E+04 | 2.539E+04 | 1.324E+04 | 2.338E+02 | − 1.790E+02 | |
Std | 1.233E+02 | 8.017E+01 | 2.065E+02 | 2.002E+02 | 1.482E+04 | 1.696E+00 | 8.693E+02 | 1.139E+02 | 5.132E+01 | 1.958E−01 | ||
Med | 1.026E+03 | 4.450E+02 | 8.324E+02 | 8.096E+02 | 3.015E+04 | 1.380E+04 | 2.566E+04 | 1.325E+04 | 2.216E+02 | − 1.790E+02 | ||
1000 | Avg | 8.603E+03 | 5.863E+03 | 7.974E+03 | 7.737E+03 | 3.806E+05 | 2.991E+04 | 5.469E+04 | 2.934E+04 | 8.082E+03 | 1.717E+02 | |
Std | 4.987E+02 | 3.026E+02 | 5.839E+02 | 4.839E+02 | 9.471E+03 | 1.770E+00 | 1.518E+03 | 9.773E+01 | 3.466E+02 | 4.258E+01 | ||
Med | 8.539E+03 | 5.878E+03 | 7.907E+03 | 7.914E+03 | 3.803E+05 | 2.991E+04 | 5.494E+04 | 2.934E+04 | 8.149E+03 | 1.729E+02 | ||
F6 | 200 | Avg | − 1.202E+02 | − 1.202E+02 | − 1.295E+02 | − 1.291E+02 | − 1.185E+02 | − 1.193E+02 | − 1.197E+02 | − 1.207E+02 | − 1.207E+02 | − 1.213E+02 |
Std | 3.049E−01 | 2.917E−01 | 1.508E+00 | 1.606E+00 | 1.893E−02 | 4.372E−02 | 4.887E−01 | 1.521E−02 | 2.633E−07 | 7.468E−01 | ||
Med | − 1.200E+02 | − 1.200E+02 | − 1.293E+02 | − 1.292E+02 | − 1.185E+02 | − 1.193E+02 | − 1.200E+02 | − 1.207E+02 | − 1.207E+02 | − 1.211E+02 | ||
500 | Avg | − 1.201E+02 | − 1.201E+02 | − 1.258E+02 | − 1.257E+02 | − 1.184E+02 | − 1.192E+02 | − 1.197E+02 | − 1.206E+02 | − 1.207E+02 | − 1.213E+02 | |
Std | 2.511E−01 | 2.502E−01 | 5.597E−01 | 7.006E−01 | 8.270E−03 | 1.815E−02 | 4.719E−E−01 | 4.290E−01 | 1.027E−04 | 4.594E−01 | ||
Med | − 1.200E+02 | − 1.200E+02 | − 1.259E+02 | − 1.257E+02 | − 1.184E+02 | − 1.192E+02 | − 1.200E+02 | − 1.207E+02 | − 1.207E+02 | − 1.212E+02 | ||
1000 | Avg | − 1.201E+02 | − 1.202E+02 | − 1.198E+02 | − 1.198E+02 | − 1.184E+02 | − 1.191E+02 | − 1.196E+02 | − 1.205E+02 | − 1.206E+02 | − 1.209E+02 | |
Std | 2.141E−01 | 2.605E−01 | 7.681E−02 | 7.358E−02 | 6.083E−03 | 1.939E−02 | 5.538E−01 | 4.273E−01 | 1.407E−06 | 2.755E−01 | ||
Med | − 1.200E+02 | − 1.200E+02 | − 1.198E+02 | − 1.198E+02 | − 1.184E+02 | − 1.191E+02 | − 1.200E+02 | − 1.206E+02 | − 1.206E+02 | − 1.208E+02 | ||
F7 | 200 | Avg | − 1.620E+05 | − 1.640E+05 | − 1.500E+05 | − 1.508E+05 | − 7.386E+04 | − 1.133E+05 | − 1.938E+05 | − 2.130E+05 | − 3.782E+05 | − 4.280E+05 |
Std | 8.341E+04 | 9.396E+04 | 1.767E+04 | 1.184E−10 | 3.874E+03 | 2.779E+02 | 1.726E+04 | 2.078E+04 | 7.402E+04 | 6.214E+04 | ||
Med | − 1.468E+05 | − 1.468E+05 | − 1.468E+05 | − 1.508E+05 | − 7.315E+04 | − 1.133E+05 | − 1.907E+05 | − 2.073E+05 | − 3.933E+05 | − 4.261E+05 | ||
500 | Avg | − 2.476E+05 | − 2.792E+05 | − 2.569E+05 | − 4.443E+05 | − 1.241E+05 | − 2.279E+05 | − 4.176E+05 | − 4.178E+05 | − 6.908E+05 | − 8.895E+05 | |
Std | 8.880E−11 | 1.730E+05 | 6.342E+03 | 1.561E+03 | 1.264E+03 | 3.004E+01 | 5.868E+04 | 1.734E+04 | 9.964E+04 | 1.880E+05 | ||
Med | − 2.476E+05 | − 2.476E+05 | − 2.558E+05 | − 4.440E+05 | − 1.244E+05 | − 2.279E+05 | − 4.121E+05 | − 4.190E+05 | − 7.232E+05 | − 8.831E+05 | ||
1000 | Avg | − 4.567E+05 | − 4.349E+05 | − 9.331E+05 | − 3.893E+05 | − 3.893E+05 | − 3.751E+05 | − 7.322E+05 | − 6.978E+05 | − 1.099E+06 | − 1.957E+06 | |
Std | 3.918E+05 | 2.729E+05 | 7.571E+04 | 2.284E+04 | 2.284E+04 | 3.681E+03 | 8.449E+04 | 3.852E+04 | 7.964E+04 | 2.752E+05 | ||
Med | − 3.851E+05 | − 3.851E+05 | − 9.579E+05 | − 3.851E+05 | − 3.851E+05 | − 3.744E+05 | − 7.135E+05 | − 6.894E+05 | − 1.112E+06 | − 2.027E+06 | ||
Rank | 200 | W/T/L | 0/0/7 | 0/0/7 | 1/0/6 | 1/0/6 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 5/0/2 |
500 | W/T/L | 0/0/7 | 0/0/7 | 2/0/5 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/1/6 | 5/0/2 | |
1000 | W/T/L | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/0/7 | 0/1/6 | 7/0/0 | |
Overall OE | 0.0% | 0.0% | 14.28% | 4.76% | 0.0% | 0.0% | 0.0% | 0.0% | 4.76% | 80.95% |
Rights and permissions
About this article
Cite this article
Qaraad, M., Amjad, S., Hussein, N.K. et al. An innovative quadratic interpolation salp swarm-based local escape operator for large-scale global optimization problems and feature selection. Neural Comput & Applic 34, 17663–17721 (2022). https://doi.org/10.1007/s00521-022-07391-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-022-07391-2