Skip to main content
Log in

Predicting stress–strain behavior of carbon nanotubes using neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Artificial neural networks are employed to predict stress–strain curves for all single-walled carbon nanotube configurations with diameters up to 4 nm. Three model architectures are investigated for the molecular dynamics-derived dataset: a multilayer perceptron, a one-dimensional convolutional neural network, and a residual neural network. The performance of the three models is compared, and they are found to closely match an atomistic-physics-based paradigm while being orders of magnitude faster. The effect of the dataset size on the prediction quality is analyzed. It is shown that 30% of the entire carbon nanotube configuration dataset is representative of the problem. Remarkably, all models demonstrate high accuracy, capturing even the smallest variations due to thermal fluctuations, and can provide averaged stress–strain curves without thermal fluctuations. Additionally, a sensitivity analysis was performed to investigate how the various input feature combinations affect the quality of elimination or prediction of thermal fluctuations. The results are determined by different combinations of input features, with current diameter in combination with temperature identified as the most important parameters affecting the inclusion or exclusion of thermal fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rafii-Tabar H (2008) Computational physics of carbon nanotubes, 1st edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511541278

    Book  Google Scholar 

  2. Liu B, Sun X, Bhattacharya K, Ortiz M (2021) Hierarchical multiscale quantification of material uncertainty. J Mech Phys Solids 153:104492. https://doi.org/10.1016/j.jmps.2021.104492

    Article  MathSciNet  Google Scholar 

  3. Uskokovic V (2009) Challenges for the modern science in its descend towards nano scale. Curr Nanosci 5(3):372–389. https://doi.org/10.2174/157341309788921381

    Article  Google Scholar 

  4. Rao R, Pint CL, Islam AE, Weatherup RS, Hofmann S, Meshot ER, Wu F, Zhou C, Dee N, Amama PB et al (2018) Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 12(12):11756–11784. https://doi.org/10.1021/acsnano.8b06511

    Article  Google Scholar 

  5. Liew KM, He XQ, Wong CH (2004) On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater 52(9):2521–2527. https://doi.org/10.1016/j.actamat.2004.01.043

    Article  Google Scholar 

  6. Mylvaganam K, Zhang LC (2004) Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon 42(10):2025–2032. https://doi.org/10.1016/j.carbon.2004.04.004

    Article  Google Scholar 

  7. Ma J, Wang J-N, Tsai C-J, Nussinov R, Ma B (2010) Diameters of single-walled carbon nanotubes (swcnts) and related nanochemistry and nanobiology. Front Mater Sci China 4(1):17–28. https://doi.org/10.1007/s11706-010-0001-8

    Article  Google Scholar 

  8. Kok ZKJ, Wong CH (2016) Molecular dynamics simulation studies of mechanical properties of different carbon nanotube systems. Mol Simul 42(15):1274–1280. https://doi.org/10.1080/08927022.2016.1185790

    Article  Google Scholar 

  9. Dereli G, Süngü B (2007) Temperature dependence of the tensile properties of single-walled carbon nanotubes: \(\rm O(n)\) tight-binding molecular-dynamics simulations. Phys Rev B 75:184104. https://doi.org/10.1103/PhysRevB.75.184104

    Article  Google Scholar 

  10. Gupta S, Dharamvir K, Jindal VK (2005) Elastic moduli of single-walled carbon nanotubes and their ropes. Phys Rev B 72:165428. https://doi.org/10.1103/PhysRevB.72.165428

    Article  Google Scholar 

  11. Zhou LG, Shi SQ (2002) Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput Mater Sci 23(1–4):166–174. https://doi.org/10.1016/S0927-0256(01)00233-6

    Article  Google Scholar 

  12. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79(7):1297–1300. https://doi.org/10.1103/PhysRevLett.79.1297

    Article  Google Scholar 

  13. Yazdani H, Hatami K, Eftekhari M (2017) Mechanical properties of single-walled carbon nanotubes: a comprehensive molecular dynamics study. Mater Res Express. https://doi.org/10.1088/2053-1591/aa7003

    Article  Google Scholar 

  14. Čanađija M (2021) Deep learning framework for carbon nanotubes: mechanical properties and modeling strategies. Carbon 184:891–901. https://doi.org/10.1016/j.carbon.2021.08.091

  15. Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101. https://doi.org/10.1016/j.cma.2016.02.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Karapiperis K, Stainier L, Ortiz M, Andrade J (2021) Data-driven multiscale modeling in mechanics. J Mech Phys Solids 147:104239. https://doi.org/10.1016/j.jmps.2020.104239

    Article  MathSciNet  Google Scholar 

  17. Förster GD, Castan A, Loiseau A, Nelayah J, Alloyeau D, Fossard F, Bichara C, Amara H (2020) A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images. Carbon 169:465–474. https://doi.org/10.1016/j.carbon.2020.06.086

    Article  Google Scholar 

  18. Rao R, Carpena-Núñez J, Nikolaev P, Susner MA, Reyes KG, Maruyama B (2021) Advanced machine learning decision policies for diameter control of carbon nanotubes. npj Comput Mater 7(1):1–9. https://doi.org/10.1038/s41524-021-00629-y

    Article  Google Scholar 

  19. Zhao Q, Winetrout JJ, Xu Y, Wang Y, Heinz H (2021) Prediction of carbon nanostructure mechanical properties and role of defects using machine learning. arXiv: org/abs/2110.00517

  20. Yadav U, Pathrudkar S, Ghosh S (2021) Interpretable machine learning model for the deformation of multiwalled carbon nanotubes. Phys Rev B 103(3):035407. https://doi.org/10.1103/PhysRevB.103.035407

    Article  Google Scholar 

  21. Vijayaraghavan V, Garg A, Wong C, Tai K (2014) Estimation of mechanical properties of nanomaterials using artificial intelligence methods. Appl Phys A 116(3):1099–1107. https://doi.org/10.1007/s00339-013-8192-3

    Article  Google Scholar 

  22. Vivanco-Benavides LE, Martínez-González CL, Mercado-Zúñiga C, Torres-Torres C (2022) Machine learning and materials informatics approaches in the analysis of physical properties of carbon nanotubes: A review. Comput Mater Sci 201:110939. https://doi.org/10.1016/j.commatsci.2021.110939

    Article  Google Scholar 

  23. Le Cun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Handwritten digit recognition with a back-propagation network. In: Proceedings of the 2nd international conference on neural information processing systems. NIPS’89. MIT Press, Cambridge, MA, USA, pp 396– 404 ( 1989)

  24. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770– 778 . https://doi.org/10.1109/CVPR.2016.90

  25. Chen D, Hu F, Nian G, Yang T (2020) Deep residual learning for nonlinear regression. Entropy 22(2):193. https://doi.org/10.3390/e22020193

    Article  MathSciNet  Google Scholar 

  26. Malhotra BD, Srivastava S, Augustine S (2015) Biosensors for food toxin detection: carbon nanotubes and graphene. MRS Online Proceedings Library (OPL), vol 1725. https://doi.org/10.1557/opl.2015.165

  27. Kajendirarajah U, Avilés MO, Lagugné-Labarthet F (2020) Deciphering tip-enhanced raman imaging of carbon nanotubes with deep learning neural networks. Phys Chem Chem Phys 22(32):17857–17866. https://doi.org/10.1039/D0CP02950E

    Article  Google Scholar 

  28. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8(1):1–74. https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  30. Shenderova O, Brenner D, Omeltchenko A, Su X, Yang L (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877. https://doi.org/10.1103/PhysRevB.61.3877

    Article  Google Scholar 

  31. Košmerl V, Štajduhar I, Čanađija M. SWCNT dataset and CNN models. https://doi.org/10.17632/t835gsrt66.1

  32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  33. Goodfellow I, Bengio Y, Courville A (2016) Deep learning, 1st edn. MIT Press, Cambridge

    MATH  Google Scholar 

  34. Chollet F et al (2015) Keras. https://keras.io

  35. Agarap AF (2018) Deep learning using rectified linear units (ReLu). arXiv:1803.08375

  36. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980

  37. Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ (2021) 1D convolutional neural networks and applications: a survey. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2020.107398

    Article  Google Scholar 

  38. Adhikari A, Ram A, Tang R, Lin J (2019) Rethinking complex neural network architectures for document classification. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol 1 (Long and short papers), pp 4046–4051. https://aclanthology.org/N19-1408

  39. Phaniraj MP, Lahiri AK (2003) The applicability of neural network model to predict flow stress for carbon steels. J Mater Process Technol 141(2):219–227. https://doi.org/10.1016/S0924-0136(02)01123-8

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in full by the Croatian Science Foundation under the project IP-2019-04-4703 and partially supported by the University of Rijeka under the project number uniri-tehnic-18-37. These supports are gratefully acknowledged.

Research data

The input dataset file with data about all SWCNT configurations and CNN models are available at Košmerl, Valentina; Štajduhar, Ivan; Čanađija, Marko (2022), SWCNT Dataset and CNN Models, Mendeley Data, V1, doi: 10.17632/t835gsrt66.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Čanađija.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Code availability

All experiments were carried out on a publicly available data set.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Supplementary figures

Appendix: Supplementary figures

The present study has yielded a variety of results which we hope will be of interest to the reader. For clarity, only the most relevant illustrations are used in the main body of the article; the others are presented in the Appendix. Comments are provided in the main text.

See Figures 11, 12, 13 and 14.

Fig. 11
figure 11

TF-model: stress–strain curves for small diameter CNT (5,2) predicted by: a 2-Dense50, b 1-Conv64-Dense50, c 10-ResNet16 (a color version of this figure can be viewed online)

Fig. 12
figure 12

TF-model: stress–strain curves for large diameter CNT (26,2) predicted by: a 2-Dense50, b 1-Conv64-Dense50, c 10-ResNet16 (a color version of this figure can be viewed online)

Fig. 13
figure 13

S-model: stress–strain curves for small diameter CNT (6,3) predicted by: a 2-Dense50, b 1-Conv64-Dense50, c 10-ResNet16 (a color version of this figure can be viewed online)

Fig. 14
figure 14

S-model: stress–strain curves for large diameter CNT (28,5) predicted by: a 2-Dense50, b 1-Conv64-Dense50, c 10-ResNet16 (a color version of this figure can be viewed online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Košmerl, V., Štajduhar, I. & Čanađija, M. Predicting stress–strain behavior of carbon nanotubes using neural networks. Neural Comput & Applic 34, 17821–17836 (2022). https://doi.org/10.1007/s00521-022-07430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07430-y

Keywords

Navigation