Skip to main content
Log in

Event-triggered trajectory-tracking guidance for reusable launch vehicle based on neural adaptive dynamic programming

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To improve the trajectory-tracking guidance performance for reusable launch vehicle under various uncertainties and distortions, an event-triggered (ET) guidance method based on neural adaptive dynamic programming (ADP) is proposed. Firstly, the reference trajectory and corresponding steady-state control are generated optimally offline based on Gauss pseudo-spectral method. Secondly, the approximate optimal feedback controller based on single-critic ADP is designed. The great adaptation capacity inheriting from reinforcement learning technique ensures the tracking errors to converge to zero, and yet no offline dataset or pre-training is required. Event-triggered mechanism is introduced to reduce online training computation and save data transmission resource. Event-triggered condition is designed and the asymptotic stability of the event-triggered guidance system is proved. Comprehensive simulations are conducted and results validate the effectiveness of the feedback controller based on ADP and the significantly improved efficiency of ET mechanism. Besides, the improved performance of the proposed guidance method over traditional method of linear quadratic regulator has also been verified through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bae S, Shin HS, Savvaris A et al (2020) Multi-objective suborbit/orbit trajectory optimisation for spaceplanes. Acta Astronaut 170:431–442. https://doi.org/10.1016/j.actaastro.2020.01.003

    Article  Google Scholar 

  2. Aprovitola A, Iuspa L, Pezzella G, Viviani A (2021) Phase-A design of a reusable re-entry vehicle. Acta Astronaut 187:141–155. https://doi.org/10.1016/j.actaastro.2021.06.034

    Article  Google Scholar 

  3. Jiang CW, Zhou GF, Yang B et al (2018) Novel guidance model and its application for optimal re-entry guidance. Aeronaut J 122:1811–1825. https://doi.org/10.1017/aer.2018.94

    Article  Google Scholar 

  4. Sushnigdha G, Joshi A (2018) Re-entry trajectory optimization using pigeon inspired optimization based control profiles. Adv Sp Res 62:3170–3186. https://doi.org/10.1016/j.asr.2018.08.009

    Article  Google Scholar 

  5. Stevens BL (2016) Aircraft control and simulation: dynamics, Control Design and Autonomous Systems. John Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  6. Zhang H, Wang H, Li N et al (2020) Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones. Neural Comput Appl 32:2735–2749. https://doi.org/10.1007/s00521-018-3764-y

    Article  Google Scholar 

  7. Mao Y, Zhang D, Wang L (2017) Reentry trajectory optimization for hypersonic vehicle based on improved Gauss pseudospectral method. Soft Comput 21:4583–4592. https://doi.org/10.1007/s00500-016-2201-3

    Article  Google Scholar 

  8. Qiao H, Sun P, Li X (2019) General reentry trajectory planning method based on improved maneuver coefficient. IEEE Access 7:5447–5456. https://doi.org/10.1109/ACCESS.2018.2889926

    Article  Google Scholar 

  9. Chai R, Tsourdos A, Savvaris A et al (2020) Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network. IEEE Trans Ind Electron 67:6904–6915. https://doi.org/10.1109/TIE.2019.2939934

    Article  Google Scholar 

  10. Li Z, Yang T, Feng Z (2019) Re-entry guidance method based on decoupling control variables and waypoint. Aeronaut J 123:523–535. https://doi.org/10.1017/aer.2019.4

    Article  Google Scholar 

  11. Omar SR, Bevilacqua R (2019) Hardware and GNC solutions for controlled spacecraft re-entry using aerodynamic drag. Acta Astronaut 159:49–64. https://doi.org/10.1016/j.actaastro.2019.03.051

    Article  Google Scholar 

  12. Bu X, Lei H (2018) A fuzzy wavelet neural network-based approach to hypersonic flight vehicle direct nonaffine hybrid control. Nonlinear Dyn 94:1657–1668. https://doi.org/10.1007/s11071-018-4447-z

    Article  MATH  Google Scholar 

  13. Zhang W, Chen W, Yu W (2018) Entry guidance for high-L/D hypersonic vehicle based on drag-vs-energy profile. ISA Trans 83:176–188. https://doi.org/10.1016/j.isatra.2018.08.012

    Article  Google Scholar 

  14. Wang X, Li Y, Zhang J (2021) A novel IGC scheme for RLV with the capabilities of online aerodynamic coefficient estimation and trajectory generation. Mathematics 9:1–19. https://doi.org/10.3390/math9020172

    Article  Google Scholar 

  15. Sarkar R, Mukherjee J, Patil D, Kar IN (2021) Re-entry trajectory tracking of reusable launch vehicle using artificial delay based robust guidance law. Adv Sp Res 67:557–570. https://doi.org/10.1016/j.asr.2020.10.006

    Article  Google Scholar 

  16. Wang R, Tang S, Zhang D (2019) Short-range reentry guidance with impact angle and impact velocity constraints for hypersonic gliding reentry vehicle. IEEE Access 7:47435–47450. https://doi.org/10.1109/ACCESS.2019.2909589

    Article  Google Scholar 

  17. Halbe O, Raja RG, Padhi R (2014) Robust reentry guidance of a reusable launch vehicle using model predictive static programming. J Guid Control Dyn 37:134–148. https://doi.org/10.2514/1.61615

    Article  Google Scholar 

  18. Li G, Chao T, Wang S, Yang M (2020) Integrated guidance and control for the fixed-trim vehicle against the maneuvering target. Int J Control Autom Syst 18:1518–1529. https://doi.org/10.1007/s12555-018-0824-0

    Article  Google Scholar 

  19. Shao X, Wang H, Zhang H (2015) Enhanced trajectory linearization control based advanced guidance and control for hypersonic reentry vehicle with multiple disturbances. Aerosp Sci Technol 46:523–536. https://doi.org/10.1016/j.ast.2015.09.003

    Article  Google Scholar 

  20. Liu Y, Xing Z, Chen Z, Xu J (2021) Data-based robust optimal control of discrete-time systems with uncertainties via adaptive dynamic programming. Optim Control Appl Methods. https://doi.org/10.1002/oca.2775

    Article  Google Scholar 

  21. Zhang S, Zhao B, Liu D, Zhang Y (2021) Observer-based event-triggered control for zero-sum games of input constrained multi-player nonlinear systems. Neural Netw 144:101–112. https://doi.org/10.1016/j.neunet.2021.08.012

    Article  Google Scholar 

  22. Hu C, Zou Y, Li S (2021) Adaptive dynamic programming-based decentralized event-triggered control of large-scale nonlinear systems. Asian J Control. https://doi.org/10.1002/asjc.2662

    Article  Google Scholar 

  23. Zhang K, Zhang H, Jiang H, Wang Y (2018) Near-optimal output tracking controller design for nonlinear systems using an event-driven ADP approach. Neurocomputing 309:168–178. https://doi.org/10.1016/j.neucom.2018.05.010

    Article  Google Scholar 

  24. De Keyser A, Vansompel H, Crevecoeur G (2021) Real-time energy-efficient actuation of induction motor drives using approximate dynamic programming. IEEE Trans Ind Electron 68:11837–11846. https://doi.org/10.1109/TIE.2020.3044791

    Article  Google Scholar 

  25. Zhang K, Zhang H, Liang X, Wang Z (2019) Neurodynamic programming and tracking control scheme of constrained-input systems via a novel event-triggered PI algorithm. Appl Soft Comput J 83:105629. https://doi.org/10.1016/j.asoc.2019.105629

    Article  Google Scholar 

  26. Mu C, Sun C, Wang D, Song A (2017) Adaptive tracking control for a class of continuous-time uncertain nonlinear systems using the approximate solution of HJB equation. Neurocomputing 260:432–442. https://doi.org/10.1016/j.neucom.2017.04.043

    Article  Google Scholar 

  27. Xu D, Wang Q, Li Y (2020) Optimal guaranteed cost tracking of uncertain nonlinear systems using adaptive dynamic programming with concurrent learning. Int J Control Autom Syst 18:1116–1127. https://doi.org/10.1007/s12555-019-0165-7

    Article  Google Scholar 

  28. Yang X, Liu D, Wei Q, Wang D (2016) Guaranteed cost neural tracking control for a class of uncertain nonlinear systems using adaptive dynamic programming. Neurocomputing 198:80–90. https://doi.org/10.1016/j.neucom.2015.08.119

    Article  Google Scholar 

  29. Liu L, Wang Z, Zhang H (2018) Neural-network-based robust optimal tracking control for MIMO discrete-time systems with unknown uncertainty using adaptive critic design. IEEE Trans Neural Networks Learn Syst 29:1239–1251. https://doi.org/10.1109/TNNLS.2017.2660070

    Article  Google Scholar 

  30. Tymoshchuk P (2019) A neural circuit model of adaptive robust tracking control for continuous-time nonlinear systems. In: Artificial Neural Networks and Machine Learning – ICANN 2019. pp 819–835

  31. Wang D, Mu C (2018) Adaptive-critic-based robust trajectory tracking of uncertain dynamics and its application to a spring-mass-damper system. IEEE Trans Ind Electron 65:654–663. https://doi.org/10.1109/TIE.2017.2722424

    Article  Google Scholar 

  32. Cui L, Xie X, Wang X et al (2019) Event-triggered single-network ADP method for constrained optimal tracking control of continuous-time non-linear systems. Appl Math Comput 352:220–234. https://doi.org/10.1016/j.amc.2019.01.066

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang W, Yi W (2021) Composite adaptive dynamic programming for missile interception systems with multiple constraints and less sensor requirement. ISA Trans 117:40–53. https://doi.org/10.1016/j.isatra.2021.01.040

    Article  Google Scholar 

  34. Cui L, Wang S, Zhang J et al (2021) Learning-based balance control of wheel-legged robots. IEEE Robot Autom Lett 6:7667–7674. https://doi.org/10.1109/LRA.2021.3100269

    Article  Google Scholar 

  35. Wei Q, Liao Z, Shi G (2021) Generalized actor-critic learning optimal control in smart home energy management. IEEE Trans Ind Informatics 17:6614–6623. https://doi.org/10.1109/TII.2020.3042631

    Article  Google Scholar 

  36. Yang Y, Xu C, Yue D et al (2020) Event-triggered ADP control of a class of non-affine continuous-time nonlinear systems using output information. Neurocomputing 378:304–314. https://doi.org/10.1016/j.neucom.2019.08.097

    Article  Google Scholar 

  37. Xu Y, Li T, Bai W et al (2021) Online event-triggered optimal control for multi-agent systems using simplified ADP and experience replay technique. Nonlinear Dyn. https://doi.org/10.1007/s11071-021-06816-2

    Article  Google Scholar 

  38. Mu C, Liao K, Wang K (2021) Event-triggered design for discrete-time nonlinear systems with control constraints. Nonlinear Dyn 103:2645–2657. https://doi.org/10.1007/s11071-021-06218-4

    Article  Google Scholar 

  39. Yang X, He H (2021) decentralized event-triggered control for a class of nonlinear-interconnected systems using reinforcement learning. IEEE Trans Cybern 51:635–648. https://doi.org/10.1109/TCYB.2019.2946122

    Article  Google Scholar 

  40. Cui L, Zhang Y, Wang X, Xie X (2021) Event-triggered distributed self-learning robust tracking control for uncertain nonlinear interconnected systems. Appl Math Comput. https://doi.org/10.1016/j.amc.2020.125871

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen X, Chen X, Bai W, Guo Z (2021) Event-triggered optimal control for macro-micro composite stage system via single-network ADP method. IEEE Trans Ind Electron 68:4190–4198. https://doi.org/10.1109/TIE.2020.2984462

    Article  Google Scholar 

  42. Zhang G, Zhu Q (2021) Event-triggered optimal control for nonlinear stochastic systems via adaptive dynamic programming. Nonlinear Dyn 105:387–401. https://doi.org/10.1007/s11071-021-06624-8

    Article  Google Scholar 

  43. Zhang P, Yuan Y, Guo L (2021) Fault-tolerant optimal control for discrete-time nonlinear system subjected to input saturation: a dynamic event-triggered approach. IEEE Trans Cybern 51:2956–2968. https://doi.org/10.1109/TCYB.2019.2923011

    Article  Google Scholar 

  44. Xue S, Luo B, Liu D (2021) Event-triggered adaptive dynamic programming for unmatched uncertain nonlinear continuous-time systems. IEEE Trans Neural Netw Learn Syst 32:2939–2951. https://doi.org/10.1109/TNNLS.2020.3009015

    Article  MathSciNet  Google Scholar 

  45. Zhang G, Zhu Q (2021) Event-triggered optimized control for nonlinear delayed stochastic systems. IEEE Trans Circuits Syst I Regul Pap 68:3808–3821. https://doi.org/10.1109/TCSI.2021.3095092

    Article  Google Scholar 

  46. Zhang XM, Han QL, Zhang BL (2017) An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans Ind Inform 13:4–16. https://doi.org/10.1109/TII.2016.2607150

    Article  Google Scholar 

  47. Xu ML, Chen KJ, Liu LH, Tang GJ (2012) Quasi-equilibrium glide adaptive guidance for hypersonic vehicles. Sci China Technol Sci 55:856–866. https://doi.org/10.1007/s11431-011-4727-z

    Article  Google Scholar 

  48. Liu F, Hager WW, Rao AV (2015) Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J Franklin Inst 352:4081–4106. https://doi.org/10.1016/j.jfranklin.2015.05.028

    Article  MathSciNet  MATH  Google Scholar 

  49. Vamvoudakis KG, Lewis FL (2010) Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46:878–888. https://doi.org/10.1016/j.automatica.2010.02.018

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu Y, Kao Y, Karimi HR, Gao Z (2016) Input-to-state stability for discrete-time nonlinear switched singular systems. Inf Sci (Ny). https://doi.org/10.1016/j.ins.2016.04.013

    Article  MATH  Google Scholar 

  51. Eqtami A, Dimarogonas D V., Kyriakopoulos KJ (2010) Event-triggered control for discrete-time systems. Proc 2010 Am Control Conf ACC 2010 4719–4724. https://doi.org/10.1109/acc.2010.5531089

  52. Agamawi YM, Rao AV (2020) CGPOPS: a C++ software for solving multiple-phase optimal control problems using adaptive gaussian quadrature collocation and sparse nonlinear programming. ACM Trans Math Softw. https://doi.org/10.1145/3390463

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research is funded by the Aeronautical Science Fund (2019ZC051009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyun Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Quan, Z., Li, Y. et al. Event-triggered trajectory-tracking guidance for reusable launch vehicle based on neural adaptive dynamic programming. Neural Comput & Applic 34, 18725–18740 (2022). https://doi.org/10.1007/s00521-022-07468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07468-y

Keywords

Navigation