Skip to main content
Log in

Feature-enhanced embedding learning for heterogeneous collaborative filtering

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Heterogeneous information network (HIN) has recently been receiving increasing attention in recommender systems due to its practicability in depicting data heterogeneity. The rich structural and semantic information embodied in the HIN can help mining latent features of users and items for recommendations. However, almost all existing HIN-based recommendation methods focus on the design of complicated learning architecture while using simply initialized features. In this paper, we propose a novel feature-enhanced embedding learning model which combines informative feature initialization strategy with simple learning architecture for heterogeneous collaborative filtering. We first build multiple homogeneous sub-networks by extracting different relations guided by meta-paths from the HIN. We then design a comprehensive feature initialization strategy that contains semantic and spatial encoding module to characterize the node feature. After that, a simple learning architecture based on multi-layer perceptron is applied to learn the latent representation of users and items. Next, a novel convolutional neural network-based fusion mechanism is used to determine the attention weight of semantic relations and compress multiple embedding vectors into a compact representation to apply for final recommendation. Finally, we conduct extensive experiments on two classic datasets to demonstrate the effectiveness and feasibility of the proposed FHetCF method in solving HIN-based recommendation tasks. Results show that the proposed method soundly outperforms the competitive baselines by 1.71 to 10.46% on hit ratio and 3.17 to 13.75% on normalized discounted cumulative gain, respectively. The proposed method opens up a new avenue to effectively utilize heterogeneous information to improve recommendation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.yelp.com/dataset challenge.

  2. http://jmcauley.ucsd.edu/data/amazon/.

References

  1. Fan S, Zhu J, Han X, et al (2019) Metapath-guided heterogeneous graph neural network for intent recommendation[C]. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 2478–2486

  2. Chen L, Liu Y, Zheng Z, et al (2018) Heterogeneous neural attentive factorization machine for rating prediction[C]. In: Proceedings of the 27th ACM international conference on information and knowledge management. pp 833–842

  3. Yang X, Li Y, Wang H, et al (2019) Bid optimization by multivariable control in display advertising[C]. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 1966–1974

  4. Simsek A, Karagoz P (2020) Wikipedia enriched advertisement recommendation for microblogs by using sentiment enhanced user profiles[J]. J Intell Inform Syst 54(2):245–269

    Article  Google Scholar 

  5. Lian J, Zhou X, Zhang F, et al (2018) xdeepfm: Combining explicit and implicit feature interactions for recommender systems[C]. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. pp 1754–1763

  6. Pinto FM, Estefania M, Cerón N, et al (2016) iRecomendYou: a design proposal for the development of a pervasive recommendation system based on student’s profile for Ecuador’s students’ candidature to a scholarship[M]. In: New advances in information systems and technologies. Springer, Cham, pp 537–546

    Chapter  Google Scholar 

  7. Zhang Y, Xiong Y, Kong X, et al (2018) Deep collective classification in heterogeneous information networks[C]. In: Proceedings of the 2018 world wide web conference. pp 399–408

  8. Goldberg D, Nichols D, Oki BM, et al (1992) Using collaborative filtering to weave an information tapestry[J]. Commun ACM 35(12):61–70

    Article  Google Scholar 

  9. Su X, Khoshgoftaar T M (2009) A survey of collaborative filtering techniques [J]. Adv Artif Intell 2009(12)

  10. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems[J]. Computer 42(8):30–37

    Article  Google Scholar 

  11. Han X, Shi C, Wang S, et al (2018) Aspect-Level Deep Collaborative Filtering via Heterogeneous Information Networks[C]. In: Proceedings of the 27th international joint conference on artificial intelligence, vol 18. pp 3393–3399

  12. Zhao J, Zhou Z, Guan Z, et al (2019) Intentgc: a scalable graph convolution framework fusing heterogeneous information for recommendation[C]. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp 2347–2357

  13. Eswaran D, Günnemann S, Faloutsos C, et al (2017) Zoobp: Belief propagation for heterogeneous networks[J]. Proc VLDB Endowment 10(5):625–636

    Article  Google Scholar 

  14. Yang C, Liu M, He F, et al (2018) Similarity modeling on heterogeneous networks via automatic path discovery[C]. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, Cham, pp 37–54

    Google Scholar 

  15. Zhang W, Paudel B, Wang L, et al (2019) Iteratively learning embeddings and rules for knowledge graph reasoning[C]. In: The world wide web conference. pp 2366–2377

  16. Han Z, Anwaar M U, Arumugaswamy S, et al (2020) Metapath-and entity-aware graph neural network for recommendation[J]. CoRR, abs/2010.11793

  17. Wang J, Huang P, Zhao H, et al (2018) Billion-scale commodity embedding for e-commerce recommendation in alibaba[C]. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. pp 839–848

  18. Hu B, Shi C, Zhao W X, et al (2018) Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. pp 1531–1540

  19. Shi C, Hu B, Zhao WX, et al (2018) Heterogeneous information network embedding for recommendation[J]. IEEE Trans Knowl Data Eng 31(2):357–370

    Article  Google Scholar 

  20. Hu B, Shi C, Zhao W X, et al (2018) Local and global information fusion for top-n recommendation in heterogeneous information network[C]. In: Proceedings of the 27th ACM international conference on information and knowledge management. pp 1683–1686

  21. Zhao Z, Zhang X, Zhou H, et al (2020) HetNERec: heterogeneous network embedding based recommendation[J]. Knowl-Based Syst 204:106218

    Article  Google Scholar 

  22. Jin J, Du K, Zhang W, et al (2020) GraphHINGE: Learning interaction models of structured neighborhood on heterogeneous information network[J]. arXiv preprint arXiv:2011.12683

  23. Zhao H, Yao Q, Song Y, et al (2021) Side information fusion for recommender systems over heterogeneous information network[J]. ACM Trans Knowl Discov Data 15(4):1–32

    Article  Google Scholar 

  24. Xie F, Zheng A, Chen L, et al (2021) Attentive meta-graph embedding for item recommendation in heterogeneous information networks[J]. Knowl-Based Syst 211:106524

    Article  Google Scholar 

  25. Pham TAN, Li X, Cong G, et al (2016) A general recommendation model for heterogeneous networks[J]. IEEE Trans Knowl Data Eng 28(12):3140–3153

    Article  Google Scholar 

  26. Liang H (2020) Drprofiling: deep reinforcement user profiling for recommendations in heterogenous information networks[J]. IEEE Trans Knowl Data Eng 2020

  27. Xu Y, Chen H, Deng Z, et al (2020) Single-layer graph convolutional networks for recommendation[J]. arXiv preprint arXiv:2006.04164

  28. Wang Z, Liu H, Du Y, et al (2019) Unified embedding model over heterogeneous information network for personalized recommendation[C]. In: Proceedings of the 28th international joint conference on artificial intelligence, vol 2019. pp 3813–3819

  29. Shi J, Ji H, Shi C, et al (2020) Heterogeneous graph neural network for recommendation[J]. arXiv preprint arXiv:2009.00799

  30. Sun Y, Han J, Yan X, et al (2011) Pathsim: meta path-based top-k similarity search in heterogeneous information networks[J]. Proc VLDB Endowment 4(11):992–1003

    Article  Google Scholar 

  31. LeCun Y, Bottou L, Bengio Y, et al (1998) Gradient-based learning applied to document recognition[J]. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  32. Hamilton W L, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications[J]. arXiv preprint arXiv:1709.05584

  33. Santos LD, Piwowarski B, Gallinari P (2016) Multilabel classification on heterogeneous graphs with gaussian embeddings[C]. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, Cham, pp 606–622

    Chapter  Google Scholar 

  34. Chen T, Sun Y (2017) Task-guided and path-augmented heterogeneous network embedding for author identification[C]. In: Proceedings of the 10th ACM international conference on web search and data mining. 2017: 295–304.

  35. Tommasel A, Godoy D (2016) Integrating heterogeneous information from social networks into community detection[C]. In: 4th IJCAI workshop on heterogeneous information network analysis (HINA)

  36. Luo C, Pang W, Wang Z (2014) Semi-supervised clustering on heterogeneous information networks[C]. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Cham, pp 548–559

    Chapter  Google Scholar 

  37. Yang C, Xiao Y, Zhang Y, et al (2020) Heterogeneous network representation learning: a unified framework with survey and benchmark[J]. IEEE Trans Knowl Data Eng 2020

  38. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations[C]. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. pp 701–710

  39. Dong Y, Chawla N V, Swami A (2017) metapath2vec: Scalable representation learning for heterogeneous networks[C]. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. pp 135–144

  40. Fu T, Lee W C, Lei Z (2017) Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning[C]. In: Proceedings of the 2017 ACM on conference on information and knowledge management. pp 1797–1806

  41. Tang J, Qu M, Mei Q (2015) Pte: Predictive text embedding through large-scale heterogeneous text networks[C]. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining. pp 1165–1174

  42. Schlichtkrull M, Kipf TN, Bloem P, et al (2018) Modeling relational data with graph convolutional networks[C]. In: European semantic web conference. Springer, Cham, pp 593–607

    Chapter  Google Scholar 

  43. Wang X, Ji H, Shi C, et al (2019) Heterogeneous graph attention network[C]. In: The world wide web conference. pp 2022–2032

  44. Fu X, Zhang J, Meng Z, et al (2020) MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding[C]. In: Proceedings of the web conference, vol 2020. pp 2331–2341

  45. Hu Z, Dong Y, Wang K, et al (2020) Heterogeneous graph transformer[C]. In: Proceedings of the web conference, vol 2020. pp 2704–2710

    Google Scholar 

  46. Hong H, Guo H, Lin Y, et al (2020) An attention-based graph neural network for heterogeneous structural learning[C]. Proc AAAI Conf Artif Intell 34(04):4132–4139

    Google Scholar 

  47. Yu L, Sun L, Du B, et al (2021) Heterogeneous graph representation learning with relation awareness[J]. arXiv preprint arXiv:2105.11122

  48. Zhao J, Wang X, Shi C, et al (2021) Heterogeneous graph structure learning for graph neural networks[C]. Proc AAAI Conf Artif Intell 35(5):4697–4705

    Google Scholar 

  49. Liu Z, Zheng V W, Zhao Z, et al (2018) Interactive paths embedding for semantic proximity search on heterogeneous graphs[C]. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. pp 1860–1869

  50. Qu Y, Bai T, Zhang W, et al (2019) An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation[C]. In: Proceedings of the 1st international workshop on deep learning practice for high-dimensional sparse data, vol 2019, pp 1–9

  51. Rendle S, Freudenthaler C, Gantner Z, et al (2012) BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv preprint arXiv:1205.2618

  52. He X, Liao L, Zhang H, et al (2017) Neural collaborative filtering[C]. In: Proceedings of the 26th international conference on world wide web. pp 173–182

  53. Wang X, He X, Wang M, et al (2019) Neural graph collaborative filtering[C]. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval. pp 165–174

  54. Yu X, Chu Y, Jiang F, et al (2018) SVMs classification based two-side cross domain collaborative filtering by inferring intrinsic user and item features[J]. Knowl-Based Syst 141:80–91

    Article  Google Scholar 

  55. Cantador I, Fernández-Tobías I, Berkovsky S, et al (2015) Cross-domain recommender systems[M]. In: Recommender systems handbook. Springer, Boston, pp 919–959

    Chapter  Google Scholar 

  56. Yu X, Jiang F, Du J, et al (2019) A cross-domain collaborative filtering algorithm with expanding user and item features via the latent factor space of auxiliary domains[J]. Pattern Recogn 94:96–109

    Article  Google Scholar 

  57. Yu X, Peng Q, Xu L, et al (2021) A selective ensemble learning based two-sided cross-domain collaborative filtering algorithm[J]. Inf Process Manage 58(6):102691

    Article  Google Scholar 

  58. Qian C, Yu Y, Zhou Z H (2015) Pareto ensemble pruning[C]. In: 29th AAAI conference on artificial intelligence

  59. Yang Y, Guan Z, Li J, et al (2021) Interpretable and efficient heterogeneous graph convolutional network [J]. IEEE Trans Knowl Data Eng

  60. Shi C, Kong X, Huang Y, et al (2014) Hetesim: a general framework for relevance measure in heterogeneous networks[J]. IEEE Trans Knowl Data Eng 26(10):2479–2492

    Article  Google Scholar 

  61. Kipf T N, Welling M (2016) Semi-supervised classification with graph convolutional networks [J]. arXiv preprint arXiv:1609.02907

  62. Von Luxburg U (2007) A tutorial on spectral clustering[J]. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  63. Chung F R K, Graham F C (1997) Spectral graph theory[M]. Am Math Soc

  64. Pal SK, Mitra S (1992) Multilayer perceptron, fuzzy sets, classification [J]. IEEE Trans Neural Networks 3(5):683

    Article  Google Scholar 

  65. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks[C]. In: Proceedings of the 14th international conference on artificial intelligence and statistics. JMLR workshop and conference proceedings. pp 315–323

  66. Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need [J]. Adv Neural Inf Process Syst 30

  67. Kalchbrenner N, Grefenstette E, Blunsom P, et al (2020) A Convolutional Neural Network for Modelling Sentences[C]. In: Proceedings of the 52nd annual meeting of the association for computational linguistics. Association for computational linguistics. pp 212–217

  68. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions [J]. arXiv preprint arXiv:1511.07122

  69. Wang Y, Tian L, Li C (2020) An improved text classification model based on memory convolution neural network[C]. In: Proceedings of the 2020 6th international conference on computing and artificial intelligence. pp 19–23

  70. Gao M, Dong J, Zhou D, et al (2019) End-to-end speech emotion recognition based on one-dimensional convolutional neural network[C]. In: Proceedings of the 2019 3rd international conference on innovation in artificial intelligence. pp 78–82

  71. Kingma D P, Ba J (2014) Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980

  72. Bayer I, He X, Kanagal B, et al (2017) A generic coordinate descent framework for learning from implicit feedback[C]. In: Proceedings of the 26th international conference on world wide web. pp 1341–1350

  73. He X, Zhang H, Kan M Y, et al (2016) Fast matrix factorization for online recommendation with implicit feedback[C]. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval. pp 549–558

  74. Ebesu T, Shen B, Fang Y (2018) Collaborative memory network for recommendation systems[C]. In: The 41th international ACM SIGIR conference on research & development in information retrieval. pp 515–524

  75. Abadi M (2016) TensorFlow: learning functions at scale[C]. In: Proceedings of the 21th ACM SIGPLAN international conference on functional programming. p 1

  76. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks[C]. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR workshop and conference proceedings. pp 249–256

Download references

Acknowledgements

X.L. and Y.T. acknowledges the Natural Science Foundation of China under Grant 72025405, 91846301, 72088101and 71790615, and the Innovation Team Project of Colleges in Guangdong Province (2020KCXTD040). W.Y. are partially supported by the Natural Science Foundation of China under Grant 71690233. J.L. are partially supported by the Natural Science Foundation of China under Grant 71690233 and 72001209. S.T. are partially supported by the National Natural Science Foundation of China (72001211) and the Hunan Science and Technology Plan Project (2020JJ5679 and 2020TP1013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lu.

Ethics declarations

Conflict of interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, J., Tan, S. et al. Feature-enhanced embedding learning for heterogeneous collaborative filtering. Neural Comput & Applic 34, 18741–18756 (2022). https://doi.org/10.1007/s00521-022-07490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07490-0

Keywords

Navigation