Skip to main content
Log in

Development of Lévy flight-based reptile search algorithm with local search ability for power systems engineering design problems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The need for better-performing algorithms to solve real-world power systems engineering problems has always been a challenging topic. Due to their stochastic nature, metaheuristic algorithms can provide better results. Thus, they have a rising trend in terms of investigation. This paper is a further attempt to offer a better optimizing structure, therefore, aims to provide a better-performing algorithm both for designing an appropriate proportional–integral–derivative (PID) controller to effectively operate an automatic voltage regulator (AVR) system and extracting the optimum parameters of a power system stabilizer (PSS) employed in a single-machine infinite-bus (SMIB) power system. Therefore, the paper discusses the development of the Lévy flight-based reptile search algorithm with local search capability and evaluates its potential against challenging power systems engineering optimization problems. The Lévy flight concept is used for better exploration capability in the proposed algorithm, whereas the Nelder–Mead simplex search algorithm is integrated for further exploitation. The latter case is confirmed through 23 benchmark functions with different features using statistical and nonparametric tests. The superiority of the proposed Lévy flight-based reptile search and Nelder–Mead (L-RSANM) algorithm-based PID controller for the AVR system is demonstrated comparatively using convergence, statistical and nonparametric tests along with transient and frequency responses. Besides, it is also assessed against previously reported and different methods, showing further superiority for AVR system control. Furthermore, the extraordinary ability of the L-RSANM algorithm to design an efficient PSS employed in the SMIB power system is demonstrated, as well. In conclusion, the proposed L-RSANM algorithm is shown to be more capable to solve the challenging power systems engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The authors confirm that all data generated or analyzed during this study are included in this published article.

References

  1. Zhang WJ, van Luttervelt CA (2011) Toward a resilient manufacturing system. CIRP Ann 60:469–472. https://doi.org/10.1016/j.cirp.2011.03.041

    Article  Google Scholar 

  2. Izci D (2021) A novel improved atom search optimization algorithm for designing power system stabilizer. Evol Intell. https://doi.org/10.1007/s12065-021-00615-9

    Article  Google Scholar 

  3. Ekinci S, Izci D, Hekimoglu B (2020) Henry Gas Solubility Optimization Algorithm Based FOPID Controller Design for Automatic Voltage Regulator. In: 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, pp 1–6

  4. Kose E (2020) Optimal control of AVR system With Tree seed algorithm-based PID controller. IEEE Access 8:89457–89467. https://doi.org/10.1109/ACCESS.2020.2993628

    Article  Google Scholar 

  5. Dasu B, Siva Kumar M, Srinivasa Rao R (2019) Design of robust modified power system stabilizer for dynamic stability improvement using particle swarm optimization technique. Ain Shams Eng J 10:769–783. https://doi.org/10.1016/j.asej.2019.07.002

    Article  Google Scholar 

  6. Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Autom Electr Syst 27:419–440. https://doi.org/10.1007/s40313-016-0242-6

    Article  Google Scholar 

  7. Peng S, Wang Q (2018) Power system stabilizer parameters optimization using immune genetic algorithm. IOP Conf Ser Mater Sci Eng 394:042091. https://doi.org/10.1088/1757-899X/394/4/042091

    Article  Google Scholar 

  8. Gaing Z-L (2004) A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans Energy Convers 19:384–391. https://doi.org/10.1109/TEC.2003.821821

    Article  Google Scholar 

  9. Li X, Wang Y, Li N et al (2017) Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization. Int J Mach Learn Cybern 8:1595–1605. https://doi.org/10.1007/s13042-016-0530-2

    Article  Google Scholar 

  10. Odili JB, Mohmad Kahar MN, Noraziah A (2017) Parameters-tuning of PID controller for automatic voltage regulators using the African buffalo optimization. PLoS ONE 12:e0175901. https://doi.org/10.1371/journal.pone.0175901

    Article  Google Scholar 

  11. Bingul Z, Karahan O (2018) A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. J Franklin Inst 355:5534–5559. https://doi.org/10.1016/j.jfranklin.2018.05.056

    Article  MathSciNet  MATH  Google Scholar 

  12. Ekinci S, Hekimoglu B (2019) Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system. IEEE Access 7:39935–39947. https://doi.org/10.1109/ACCESS.2019.2906980

    Article  Google Scholar 

  13. Khan IA, Alghamdi AS, Jumani TA et al (2019) Salp swarm optimization algorithm-based fractional order PID controller for dynamic response and stability enhancement of an automatic voltage regulator system. Electronics 8:1472. https://doi.org/10.3390/electronics8121472

    Article  Google Scholar 

  14. Altbawi SMA, Bin MAS, Jumani TA et al (2021) Optimal design of Fractional order PID controller based Automatic voltage regulator system using gradient-based optimization algorithm. J King Saud Univ - Eng Sci. https://doi.org/10.1016/j.jksues.2021.07.009

    Article  Google Scholar 

  15. Micev M, Ćalasan M, Oliva D (2021) Design and robustness analysis of an automatic voltage regulator system controller by using equilibrium optimizer algorithm. Comput Electr Eng 89:106930. https://doi.org/10.1016/j.compeleceng.2020.106930

    Article  Google Scholar 

  16. Elsisi M (2021) Optimal design of non-fragile PID controller. Asian J Control 23:729–738. https://doi.org/10.1002/asjc.2248

    Article  Google Scholar 

  17. Çelik E, Durgut R (2018) Performance enhancement of automatic voltage regulator by modified cost function and symbiotic organisms search algorithm. Eng Sci Technol an Int J 21:1104–1111. https://doi.org/10.1016/j.jestch.2018.08.006

    Article  Google Scholar 

  18. Shakarami MR, Faraji Davoudkhani I (2016) Wide-area power system stabilizer design based on grey wolf optimization algorithm considering the time delay. Electr Power Syst Res 133:149–159. https://doi.org/10.1016/j.epsr.2015.12.019

    Article  Google Scholar 

  19. Chaib L, Choucha A, Arif S (2017) Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm. Ain Shams Eng J 8:113–125. https://doi.org/10.1016/j.asej.2015.08.003

    Article  Google Scholar 

  20. Dasu B, Sivakumar M, Srinivasarao R (2019) Interconnected multi-machine power system stabilizer design using whale optimization algorithm. Prot Control Mod Power Syst 4:2. https://doi.org/10.1186/s41601-019-0116-6

    Article  Google Scholar 

  21. Singh M, Patel RN, Neema DD (2019) Robust tuning of excitation controller for stability enhancement using multi-objective metaheuristic Firefly algorithm. Swarm Evol Comput 44:136–147. https://doi.org/10.1016/j.swevo.2018.01.010

    Article  Google Scholar 

  22. Ekinci S, Izci D, Zeynelgil HL, Orenc S (2020) An Application of Slime Mould Algorithm for Optimizing Parameters of Power System Stabilizer. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, pp 1–5

  23. Ghasemi-Marzbali A (2020) A novel nature-inspired meta-heuristic algorithm for optimization: bear smell search algorithm. Soft Comput 24:13003–13035. https://doi.org/10.1007/s00500-020-04721-1

    Article  Google Scholar 

  24. Alshammari BM, Farah A, Alqunun K, Guesmi T (2021) Robust design of dual-input power system stabilizer using chaotic JAYA algorithm. Energies 14:5294. https://doi.org/10.3390/en14175294

    Article  Google Scholar 

  25. Abualigah L, Elaziz MA, Sumari P et al (2021) Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  26. Gabis AB, Meraihi Y, Mirjalili S, Ramdane-Cherif A (2021) A comprehensive survey of sine cosine algorithm: variants and applications. Artif Intell Rev 54:5469–5540. https://doi.org/10.1007/s10462-021-10026-y

    Article  Google Scholar 

  27. Wang JW, Wang HF, Ip WH et al (2013) Predatory search strategy based on swarm intelligence for continuous optimization problems. Math Probl Eng 2013:1–11. https://doi.org/10.1155/2013/749256

    Article  MathSciNet  Google Scholar 

  28. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1:330. https://doi.org/10.1504/IJMMNO.2010.035430

    Article  MATH  Google Scholar 

  29. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  30. Storn R, Price K (1997) Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  31. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112–147. https://doi.org/10.1137/S1052623496303470

    Article  MathSciNet  MATH  Google Scholar 

  32. Luo X, Cao L, Wang L et al (2018) Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm. Optik (Stuttg) 171:200–203. https://doi.org/10.1016/j.ijleo.2018.06.047

    Article  Google Scholar 

  33. Zhang H, Heidari AA, Wang M et al (2020) Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules. Energy Convers Manag 211:112764. https://doi.org/10.1016/j.enconman.2020.112764

    Article  Google Scholar 

  34. Xu J, Yan F (2019) Hybrid Nelder-mead algorithm and dragonfly algorithm for function optimization and the training of a multilayer perceptron. Arab J Sci Eng 44:3473–3487. https://doi.org/10.1007/s13369-018-3536-0

    Article  Google Scholar 

  35. Izci D, Hekimoğlu B, Ekinci S (2022) A new artificial ecosystem-based optimization integrated with Nelder-Mead method for PID controller design of buck converter. Alexandria Eng J 61:2030–2044. https://doi.org/10.1016/j.aej.2021.07.037

    Article  Google Scholar 

  36. Panagant N, Yıldız M, Pholdee N et al (2021) A novel hybrid marine predators-Nelder-Mead optimization algorithm for the optimal design of engineering problems. Mater Test 63:453–457. https://doi.org/10.1515/mt-2020-0077

    Article  Google Scholar 

  37. Izci D (2021) Design and application of an optimally tuned PID controller for DC motor speed regulation via a novel hybrid Lévy flight distribution and Nelder-Mead algorithm. Trans Inst Meas Control 43:3195–3211. https://doi.org/10.1177/01423312211019633

    Article  Google Scholar 

  38. Yang X-S, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40:1616–1624. https://doi.org/10.1016/j.cor.2011.09.026

    Article  MathSciNet  MATH  Google Scholar 

  39. Pare S, Bhandari AK, Kumar A, Singh GK (2018) A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm. Comput Electr Eng 70:476–495. https://doi.org/10.1016/j.compeleceng.2017.08.008

    Article  Google Scholar 

  40. Abdulwahab HA, Noraziah A, Alsewari AA, Salih SQ (2019) An enhanced version of black hole algorithm via levy flight for optimization and data clustering problems. IEEE Access 7:142085–142096. https://doi.org/10.1109/ACCESS.2019.2937021

    Article  Google Scholar 

  41. Zhang Y, Jin Z, Zhao X, Yang Q (2020) Backtracking search algorithm with Lévy flight for estimating parameters of photovoltaic models. Energy Convers Manag 208:112615. https://doi.org/10.1016/j.enconman.2020.112615

    Article  Google Scholar 

  42. Mokeddem D (2021) Parameter extraction of solar photovoltaic models using enhanced levy flight based grasshopper optimization algorithm. J Electr Eng Technol 16:171–179. https://doi.org/10.1007/s42835-020-00589-1

    Article  Google Scholar 

  43. Ingle KK, Jatoth DRK (2020) An Efficient JAYA Algorithm with Lévy Flight for Non-linear channel equalization. Expert Syst Appl 145:112970. https://doi.org/10.1016/j.eswa.2019.112970

    Article  Google Scholar 

  44. Mohseni S, Brent AC, Burmester D, Browne WN (2021) Lévy-flight moth-flame optimisation algorithm-based micro-grid equipment sizing: an integrated investment and operational planning approach. Energy AI 3:100047. https://doi.org/10.1016/j.egyai.2021.100047

    Article  Google Scholar 

  45. Jensi R, Jiji GW (2016) An enhanced particle swarm optimization with levy flight for global optimization. Appl Soft Comput 43:248–261. https://doi.org/10.1016/j.asoc.2016.02.018

    Article  Google Scholar 

  46. Izci D, Ekinci S, Zeynelgil HL, Hedley J (2022) Performance evaluation of a novel improved slime mould algorithm for direct current motor and automatic voltage regulator systems. Trans Inst Meas Control 44:435–456. https://doi.org/10.1177/01423312211037967

    Article  Google Scholar 

  47. Izci D, Ekinci S, Kayri M, Eker E (2022) A novel improved arithmetic optimization algorithm for optimal design of PID controlled and Bode’s ideal transfer function based automobile cruise control system. Evol Syst 13:453–468. https://doi.org/10.1007/s12530-021-09402-4

    Article  Google Scholar 

  48. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  49. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  50. Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  51. Mirjalili S (2016) SCA: a Sine Cosine Algorithm for solving optimization problems. Knowledge-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  52. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  53. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  54. Eberhart R, Kennedy J (1995) A New optimizer using particle swarm theory. In: Proceedings of the International Symposium on Micro Machine and Human Science. Ieee, pp 39–43

  55. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  56. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  57. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowledge-Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  58. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9:159–195. https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  59. Izci D, Ekinci S (2021) Comparative performance analysis of slime mould algorithm for efficient design of proportional–integral–derivative controller. Electrica 21:151–159. https://doi.org/10.5152/electrica.2021.20077

    Article  Google Scholar 

  60. Sauer PW, Pai MA, Chow H. J (2017) Power system dynamics and stability: With Synchrophasor Measurement and Power System Toolbox, 2nd ed

  61. Ekinci S (2019) Optimal design of power system stabilizer using sine cosine algorithm. J Fac Eng Archit Gazi Univ 34:1330–1350. https://doi.org/10.17341/gazimmfd.460529

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davut Izci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekinci, S., Izci, D., Abu Zitar, R. et al. Development of Lévy flight-based reptile search algorithm with local search ability for power systems engineering design problems. Neural Comput & Applic 34, 20263–20283 (2022). https://doi.org/10.1007/s00521-022-07575-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07575-w

Keywords

Navigation