Skip to main content

Advertisement

Log in

Maximizing coverage and maintaining connectivity in WSN and decentralized IoT: an efficient metaheuristic-based method for environment-aware node deployment

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The node deployment problem is a non-deterministic polynomial time (NP-hard). This study proposes a new and efficient method to solve this problem without the need for predefined circumstances about the environments independent of terrain. The proposed method is based on a metaheuristic algorithm and mimics the grey wolf optimizer (GWO) algorithm. In this study, we also suggested an enhanced version of the GWO algorithm to work adaptively in such problems and named it Mutant-GWO (MuGWO). Also, the suggested model ensures connectivity by generating topology graphs and potentially supports data transmission mechanisms. Therefore, the proposed method based on MuGWO can enhance resources utilization, such as reducing the number of nodes, by maximizing the coverage rate and maintaining the connectivity. While most studies assume classical rectangle uniform environments, this study also focuses on custom (environment-aware) maps in line with the importance and requirements of the real world. The motivation of supporting custom maps by this study is that environments can consist of custom shapes with prioritized and critical areas. In this way, environment awareness halts the deployment of nodes in undesired regions and averts resource waste. Besides, novel multi-purpose fitness functions of the proposed method satisfy a convenient approach to calculate costs instead of using complicated processes. Accordingly, this method is suitable for large-scale networks thanks to the capability of the distributed architecture and the metaheuristic-based approach. This study justifies the improvements in the suggested model by presenting comparisons with a Deterministic Grid-based approach and the Original GWO. Moreover, this method outperforms the fruit fly optimization algorithm, bat algorithm (BA), Optimized BA, harmony search, and improved dynamic deployment technique based on genetic algorithm methods in declared scenarios in literature, considering the results of simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kiani F, Amiri E, Zamani M et al (2015) Efficient ıntelligent energy routing protocol in wireless sensor networks. Int J Distrib Sens Netw 11:618072. https://doi.org/10.1155/2015/618072

    Article  Google Scholar 

  2. Othman MF, Shazali K (2012) Wireless sensor network applications: a study in environment monitoring system. Proc Eng 41:1204–1210. https://doi.org/10.1016/J.PROENG.2012.07.302

    Article  Google Scholar 

  3. Kiani F, Seyyedabbasi A (2018) Wireless sensor network and ınternet of things in precision agriculture. Int J Adv Comput Sci Appl 9:99–103. https://doi.org/10.14569/IJACSA.2018.090614

    Article  Google Scholar 

  4. Sharma R, Prakash S, Roy P (2020) Methodology, applications, and challenges of WSN-IoT. Int Conf Electr Electron Eng ICE3 2020:502–507. https://doi.org/10.1109/ICE348803.2020.9122891

    Article  Google Scholar 

  5. Fahmy HMA (2021) WSN applications. Signal Commun Tech. https://doi.org/10.1007/978-3-030-58015-5_3

    Article  Google Scholar 

  6. Kiani F (2018) Reinforcement learning based routing protocol for wireless body sensor networks. In: Proceedings - 2017 IEEE 7th International Symposium on Cloud and Service Computing, SC2 2017 2018-January:71–78. https://doi.org/10.1109/SC2.2017.18

  7. Assim M, Al-Omary A (2020) Design and implementation of smart home using WSN and IoT technologies. In: 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies, 3ICT 2020. https://doi.org/10.1109/3ICT51146.2020.9311966

  8. Imran MA, Zoha A, Zhang L, Abbasi QH (2020) Grand challenges in IoT and sensor networks. Front Commun Netw. https://doi.org/10.3389/FRCMN.2020.619452

    Article  Google Scholar 

  9. Kiani F, Nematzadehmiandoab S, Seyyedabbasi A (2019) Designing a dynamic protocol for real-time industrial internet of things-based applications by efficient management of system resources. Adv Mech Eng 11:1–20. https://doi.org/10.1177/1687814019866062

    Article  Google Scholar 

  10. Chiu TL, Chen PH, Chen H, Tsai CW (2019) An effective metaheuristic algorithm for the deployment problem of edge computing servers. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics 2019-October:1995–2000. https://doi.org/10.1109/SMC.2019.8914487

  11. Zhao Z, Min G, Gao W et al (2018) Deploying edge computing nodes for large-scale IoT: a diversity aware approach. IEEE Internet Things J 5:3606–3614. https://doi.org/10.1109/JIOT.2018.2823498

    Article  Google Scholar 

  12. Dash L, Khuntia M (2020) Energy efficient techniques for 5G mobile networks in WSN: A Survey. In: 2020 International Conference on Computer Science, Engineering and Applications, ICCSEA 2020. https://doi.org/10.1109/ICCSEA49143.2020.9132941

  13. Shaikh RAJ, Naidu H, Kokate PA (2021) Next-generation WSN for environmental monitoring employing big data analytics, machine learning and artificial intelligence. Lect Notes Data Eng Commun Technol 53:181–196. https://doi.org/10.1007/978-981-15-5258-8_20

    Article  Google Scholar 

  14. Alazab M, Lakshmanna K, G TR, et al (2021) Multi-objective cluster head selection using fitness averaged rider optimization algorithm for IoT networks in smart cities. Sustain Energy Technol Assess 43:100973. https://doi.org/10.1016/J.SETA.2020.100973

    Article  Google Scholar 

  15. Baig Mohammad G, Shitharth S (2021) Wireless sensor network and IoT based systems for healthcare application. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2020.11.801

    Article  Google Scholar 

  16. Tao W, Zhao L, Wang G, Liang R (2021) Review of the internet of things communication technologies in smart agriculture and challenges. Comput Electron Agric 189:106352. https://doi.org/10.1016/J.COMPAG.2021.106352

    Article  Google Scholar 

  17. Seyyedabbasi A, Kiani F (2020) MAP-ACO: an efficient protocol for multi-agent pathfinding in real-time WSN and decentralized IoT systems. Microprocess Microsyst 79:103325. https://doi.org/10.1016/j.micpro.2020.103325

    Article  Google Scholar 

  18. Seyyedabbasi A, Dogan G, Kiani F (2020) HEEL: a new clustering method to improve wireless sensor network lifetime. IET Wirel Sens Syst 10:130–136. https://doi.org/10.1049/IET-WSS.2019.0153

    Article  Google Scholar 

  19. Ghosh A, Das SK (2008) Coverage and connectivity issues in wireless sensor networks: a survey. Pervasive Mob Comput 4:303–334. https://doi.org/10.1016/J.PMCJ.2008.02.001

    Article  Google Scholar 

  20. Kiani F, Aghaeirad A, Kemal SISM et al (2013) EEAR: an energy effective-accuracy routing algorithm for wireless sensor networks. Life Sci J 10:1097–8135

    Google Scholar 

  21. Aït S, DesprezFrédéric LebreAdrien (2020) An overview of service placement problem in fog and edge computing. ACM Comput Surv (CSUR). https://doi.org/10.1145/3391196

    Article  Google Scholar 

  22. Gupta SK, Kuila P, Jana PK (2016) Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Comput Electr Eng 56:544–556. https://doi.org/10.1016/J.COMPELECENG.2015.11.009

    Article  Google Scholar 

  23. Harizan S, Kuila P (2020) Design frameworks for wireless networks (nature-ınspired algorithms for k-coverage and m-connectivity problems in wireless sensor networks). Springer, Singapore, pp 281–301

    Google Scholar 

  24. Mohar SS, Goyal S, Kaur R (2020) Optimized sensor nodes deployment in wireless sensor network using bat algorithm. Wirel Person Commun 116:2835–2853. https://doi.org/10.1007/S11277-020-07823-Z

    Article  Google Scholar 

  25. Qiu C, Shen H, Chen K (2015) An energy-efficient and distributed cooperation mechanism for k-coverage hole detection and healing in WSNs. In: Proceedings - 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2015 73–81. https://doi.org/10.1109/MASS.2015.115

  26. Li J, Li K, Zhu W (2007) Improving sensing coverage of wireless sensor networks by employing mobile robots. In: 2007 IEEE International Conference on Robotics and Biomimetics, ROBIO. IEEE Computer Society, pp 899–903

  27. Liao WH, Kao Y, Li YS (2011) A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Syst Appl 38:12180–12188. https://doi.org/10.1016/J.ESWA.2011.03.053

    Article  Google Scholar 

  28. Liu X, He D (2014) Ant colony optimization with greedy migration mechanism for node deployment in wireless sensor networks. J Netw Comput Appl 39:310–318. https://doi.org/10.1016/J.JNCA.2013.07.010

    Article  Google Scholar 

  29. Elhabyan R, Shi W, St-Hilaire M (2019) Coverage protocols for wireless sensor networks: review and future directions. J Commun Netw 21:45–60. https://doi.org/10.1109/JCN.2019.000005

    Article  Google Scholar 

  30. Meena N, Singh B (2020) Analysis of coverage hole problem in wireless sensor networks. Smart Innovation Syst Technol 141:187–196. https://doi.org/10.1007/978-981-13-8406-6_19

    Article  Google Scholar 

  31. Rapaic M, Kanovic Z, Jelicic Z (2008) Discrete particle swarm optimization algorithm for solving optimal sensor deployment problem. J Autom Control 18:9–14. https://doi.org/10.2298/JAC0801009R

    Article  Google Scholar 

  32. Rebai M, le Berre M, Snoussi H et al (2015) Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Comput Oper Res 59:11–21. https://doi.org/10.1016/J.COR.2014.11.002

    Article  MathSciNet  MATH  Google Scholar 

  33. Harizan S, Kuila P (2018) Coverage and connectivity aware energy efficient scheduling in target based wireless sensor networks: an improved genetic algorithm based approach. Wirel Netw 25:1995–2011. https://doi.org/10.1007/S11276-018-1792-2

    Article  Google Scholar 

  34. Benatia MA, Sahnoun M, Baudry D et al (2017) Multi-objective WSN deployment using genetic algorithms under cost, coverage, and connectivity constraints. Wirel Person Commun 94:2739–2768. https://doi.org/10.1007/S11277-017-3974-0

    Article  Google Scholar 

  35. El-Ghazali T (2009) Metaheuristics: from design to implementation. Wiley 74:5–39

    MATH  Google Scholar 

  36. Kiani F, Seyyedabbasi A, Nematzadeh S (2021) Improving the performance of hierarchical wireless sensor networks using the metaheuristic algorithms: efficient cluster head selection. Sens Rev 41:368–381. https://doi.org/10.1108/SR-03-2021-0094/FULL/PDF

    Article  Google Scholar 

  37. Nematzadeh S, Kiani F, Torkamanian-Afshar M, Aydin N (2022) Tuning hyperparameters of machine learning algorithms and deep neural networks using metaheuristics: a bioinformatics study on biomedical and biological cases. Comput Biol Chem 97:107619. https://doi.org/10.1016/J.COMPBIOLCHEM.2021.107619

    Article  Google Scholar 

  38. Kiani F, Seyyedabbasi A, Nematzadeh S et al (2022) Adaptive metaheuristic-based methods for autonomous robot path planning sustainable agricultural applications. Appl Sci 12:943. https://doi.org/10.3390/APP12030943

    Article  Google Scholar 

  39. Kiani F, Seyyedabbasi A, Aliyev R et al (2021) Adapted-RRT: novel hybrid method to solve three-dimensional path planning problem using sampling and metaheuristic-based algorithms. Neural Comput Appl. https://doi.org/10.1007/S00521-021-06179-0

    Article  Google Scholar 

  40. Tripathi A, Gupta HP, Dutta T et al (2018) Coverage and connectivity in WSNS: a survey, research issues and challenges. IEEE Access 6:26971–26992. https://doi.org/10.1109/ACCESS.2018.2833632

    Article  Google Scholar 

  41. Habibi J, Mahboubi H, Aghdam AG (2016) Distributed coverage control of mobile sensor networks subject to measurement error. IEEE Trans Autom Control 61:3330–3343. https://doi.org/10.1109/TAC.2016.2521370

    Article  MathSciNet  MATH  Google Scholar 

  42. Liao Z, Wang J, Zhang S et al (2015) Minimizing movement for target coverage and network connectivity in mobile sensor networks. IEEE Trans Parallel Distrib Syst 26:1971–1983. https://doi.org/10.1109/TPDS.2014.2333011

    Article  Google Scholar 

  43. Miah S, Nguyen B, Bourque A, Spinello D (2015) Nonuniform coverage control with stochastic intermittent communication. IEEE Trans Autom Control 60:1981–1986. https://doi.org/10.1109/TAC.2014.2368233

    Article  MathSciNet  MATH  Google Scholar 

  44. Mahboubi H, Aghdam AG (2017) Distributed deployment algorithms for coverage improvement in a network of wireless mobile sensors: relocation by virtual force. IEEE Trans Control Netw Syst 4:736–748. https://doi.org/10.1109/TCNS.2016.2547579

    Article  MathSciNet  MATH  Google Scholar 

  45. CărbunarBogdan GA, VitekJan CO (2006) Redundancy and coverage detection in sensor networks. ACM Trans Sens Netw (TOSN) 2:94–128. https://doi.org/10.1145/1138127.1138131

    Article  Google Scholar 

  46. Sakai K, te Sun M, Ku WS et al (2015) A framework for the optimal k-coverage deployment patterns of wireless sensors. IEEE Sens J 15:7273–7283. https://doi.org/10.1109/JSEN.2015.2474711

    Article  Google Scholar 

  47. Goethals T, de Turck F, Volckaert B (2020) Near real-time optimization of fog service placement for responsive edge computing. J Cloud Comput 9:1–17. https://doi.org/10.1186/S13677-020-00180-Z

    Article  Google Scholar 

  48. Abbasi F, Mesbahi A, Mohammadpour Velni J (2019) A new voronoi-based blanket coverage control method for moving sensor networks. IEEE Trans Control Syst Technol 27:409–417. https://doi.org/10.1109/TCST.2017.2758344

    Article  MATH  Google Scholar 

  49. Boukerche A, Xin F (2007) A Voronoi approach for coverage protocols in wireless sensor networks. In: GLOBECOM - IEEE Global Telecommunications Conference. pp 5190–5194

  50. Sridhar M, Pankajavalli PB (2020) An optimization of distributed Voronoi-based collaboration for energy-efficient geographic routing in wireless sensor networks. Cluster Comput 23:1741–1754. https://doi.org/10.1007/S10586-020-03122-1

    Article  Google Scholar 

  51. Cǎrbunar B, Grama A, Vitek J, Cǎrbunar O (2004) Coverage preserving redundancy elimination in sensor networks. In: 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2004 377–386. https://doi.org/10.1109/SAHCN.2004.1381939

  52. So AM-C, Ye Y (2005) On solving coverage problems in a wireless sensor network using voronoi diagrams. Lect Notes Comput Sci (Incl Subser Lect Notes Artif Intell Lect Notes Bioinf) 3828:584–593. https://doi.org/10.1007/11600930_58

    Article  Google Scholar 

  53. Jiang J, Song Z, Zhang H, Dou W (2005) Voronoi-based ımproved algorithm for connected coverage problem in wireless sensor networks. Lect Notes Comput Sci (Incl Subser Lect Notes Artif Intell Lect Notes Bioinf) 3824:224–233. https://doi.org/10.1007/11596356_25

    Article  Google Scholar 

  54. Sarigiannidis P, Zygiridis T, Sarigiannidis A et al (2017) Connectivity and coverage in machine-type communications. IEEE Int Conf Commun. https://doi.org/10.1109/ICC.2017.7996897

    Article  Google Scholar 

  55. Yang C, Chin KW (2017) On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Trans Industr Inf 13:27–36. https://doi.org/10.1109/TII.2016.2603845

    Article  Google Scholar 

  56. Gupta HP, Rao SV, Venkatesh T (2016) Analysis of stochastic coverage and connectivity in three-dimensional heterogeneous directional wireless sensor networks. Pervasive Mobile Comput 29:38–56. https://doi.org/10.1016/J.PMCJ.2015.08.004

    Article  Google Scholar 

  57. Gupta HP, Rao SV, Venkatesh T (2016) Sleep scheduling protocol for κ-coverage of three-dimensional heterogeneous WSNs. IEEE Trans Veh Technol 65:8423–8431. https://doi.org/10.1109/TVT.2015.2508801

    Article  Google Scholar 

  58. Wei W, Sun Z, Song H et al (2018) Energy balance-based steerable arguments coverage method in WSNs. IEEE Access 6:33766–33773. https://doi.org/10.1109/ACCESS.2017.2682845

    Article  Google Scholar 

  59. Al-Karaki JN, Gawanmeh A (2017) The optimal deployment, coverage, and connectivity problems in wireless sensor networks: revisited. IEEE Access 5:18051–18065. https://doi.org/10.1109/ACCESS.2017.2740382

    Article  Google Scholar 

  60. Gupta HP, Rao SV, Tamarapalli VT (2015) Analysis of stochastic κ-coverage and connectivity in sensor networks with boundary deployment. IEEE Trans Intell Transp Syst 16:1861–1871. https://doi.org/10.1109/TITS.2014.2379699

    Article  Google Scholar 

  61. Tsai CW, Tsai PW, Pan JS, Chao HC (2015) Metaheuristics for the deployment problem of WSN: a review. Microprocess Microsyst 39:1305–1317. https://doi.org/10.1016/J.MICPRO.2015.07.003

    Article  Google Scholar 

  62. Vales-Alonso J, Parrado-García FJ, López-Matencio P et al (2013) On the optimal random deployment of wireless sensor networks in non-homogeneous scenarios. Adv Hoc Netw 11:846–860. https://doi.org/10.1016/J.ADHOC.2012.10.001

    Article  Google Scholar 

  63. Megiddo N, Supowit KJ (2006) On the complexity of some common geometric location problems. SIAM J Comput 13:182–196

    Article  MathSciNet  MATH  Google Scholar 

  64. Djenouri D, Bagaa M (2017) Energy-aware constrained relay node deployment for sustainable wireless sensor networks. IEEE Trans Sustain Comput 2:30–42. https://doi.org/10.1109/TSUSC.2017.2666844

    Article  Google Scholar 

  65. Mostafaei H, Shojafar M (2015) A new meta-heuristic algorithm for maximizing lifetime of wireless sensor networks. Wirel Pers Commun 82:723–742. https://doi.org/10.1007/S11277-014-2249-2

    Article  Google Scholar 

  66. Gupta HP, Rao SV (2016) Demand-based coverage and connectivity-preserving routing in wireless sensor networks. IEEE Syst J 10:1380–1389. https://doi.org/10.1109/JSYST.2014.2333656

    Article  Google Scholar 

  67. Kilinc D, Ozger M, Akan OB (2015) On the maximum coverage area of wireless networked control systems with maximum cost-efficiency under convergence constraint. IEEE Trans Autom Control 60:1910–1914. https://doi.org/10.1109/TAC.2014.2366611

    Article  MathSciNet  MATH  Google Scholar 

  68. Han G, Liu L, Jiang J et al (2017) Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Trans Industr Inf 13:135–143. https://doi.org/10.1109/TII.2015.2513767

    Article  Google Scholar 

  69. Sheikh-Hosseini M, Samareh Hashemi SR (2022) Connectivity and coverage constrained wireless sensor nodes deployment using steepest descent and genetic algorithms. Expert Syst Appl 190:116164. https://doi.org/10.1016/J.ESWA.2021.116164

    Article  Google Scholar 

  70. ZainEldin H, Badawy M, Elhosseini M et al (2020) An improved dynamic deployment technique based-on genetic algorithm (IDDT-GA) for maximizing coverage in wireless sensor networks. J Ambient Intell Hum Comput 11:4177–4194. https://doi.org/10.1007/S12652-020-01698-5

    Article  Google Scholar 

  71. Ouyang A, Lu Y, Liu Y et al (2021) An improved adaptive genetic algorithm based on DV-Hop for locating nodes in wireless sensor networks. Neurocomputing 458:500–510. https://doi.org/10.1016/J.NEUCOM.2020.04.156

    Article  Google Scholar 

  72. Tam NT, Binh HTT, Dat VT et al (2020) Towards optimal wireless sensor network lifetime in three dimensional terrains using relay placement metaheuristics. Knowl-Based Syst 206:106407. https://doi.org/10.1016/J.KNOSYS.2020.106407

    Article  Google Scholar 

  73. Elfouly FH, Ramadan RA, Khedr AY et al (2021) Efficient node deployment of large-scale heterogeneous wireless sensor networks. Appl Sci 11:10924. https://doi.org/10.3390/APP112210924

    Article  Google Scholar 

  74. Musikawan P, Kongsorot Y, Muneesawang P, So-In C (2022) An enhanced obstacle-aware deployment scheme with an opposition-based competitive swarm optimizer for mobile WSNs. Expert Syst Appl 189:116035. https://doi.org/10.1016/J.ESWA.2021.116035

    Article  Google Scholar 

  75. Strumberger I, Minovic M, Tuba M, Bacanin N (2020) Performance of elephant herding optimization and tree growth algorithm adapted for node localization in wireless sensor networks. Sensors 19:2515. https://doi.org/10.3390/S19112515

    Article  Google Scholar 

  76. Kotiyal V, Singh A, Sharma S et al (2021) ECS-NL: an enhanced cuckoo search algorithm for node localisation in wireless sensor networks. Sensors 21:3576. https://doi.org/10.3390/S21113576

    Article  Google Scholar 

  77. Joshi H, Arora S (2017) Enhanced grey wolf optimization algorithm for global optimization. Fund Inform 153:235–264. https://doi.org/10.3233/FI-2017-1539

    Article  MathSciNet  MATH  Google Scholar 

  78. Zhang Y, Cao L, Yue Y et al (2021) A novel coverage optimization strategy based on grey wolf algorithm optimized by simulated annealing for wireless sensor networks. Comput Intell Neurosci. https://doi.org/10.1155/2021/6688408

    Article  Google Scholar 

  79. Rajakumar R, Amudhavel J, Dhavachelvan P, Vengattaraman T (2017) GWO-LPWSN: grey wolf optimization algorithm for node localization problem in wireless sensor networks. J Comput Netw Commun. https://doi.org/10.1155/2017/7348141

    Article  Google Scholar 

  80. Wang Z, Xie H, Hu Z et al (2020) Node coverage optimization algorithm for wireless sensor networks based on improved grey wolf optimizer. J Algorithms Comput Technol. https://doi.org/10.1177/1748302619889498

    Article  Google Scholar 

  81. Cao B, Zhao J, Yang P et al (2018) 3-d multiobjective deployment of an industrial wireless sensor network for maritime applications utilizing a distributed parallel algorithm. IEEE Trans Industr Inf 14:5487–5495. https://doi.org/10.1109/TII.2018.2803758

    Article  Google Scholar 

  82. Tian J, Gao M, Ge G (2016) Wireless sensor network node optimal coverage based on improved genetic algorithm and binary ant colony algorithm. EURASIP J Wirel Commun Netw 2016:1–11. https://doi.org/10.1186/S13638-016-0605-5

    Article  Google Scholar 

  83. Alia OMD, Al-Ajouri A (2017) Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sens J 17:882–896. https://doi.org/10.1109/JSEN.2016.2633409

    Article  Google Scholar 

  84. Hao Y-Y, Wu Y, Yang B, Huang Y-F (2016) Deployment approach to nodes of the iot for monitoring systems in ports. J Mar Sci Technol 24:39–46. https://doi.org/10.6119/JMST-016-0125-6

    Article  Google Scholar 

  85. Tong Y, Tıan L, Lı J (2019) Novel node deployment scheme and reliability quantitative analysis for an IoT-based monitoring system. Turk J Electr Eng Comput Sci 27:2052–2067

    Article  Google Scholar 

  86. Alablani I, Alenazi M (2020) EDTD-SC: an IoT sensor deployment strategy for smart cities. Sensors 20:7191. https://doi.org/10.3390/S20247191

    Article  Google Scholar 

  87. Jaiswal K, Anand V (2021) A QoS aware optimal node deployment in wireless sensor network using Grey wolf optimization approach for IoT applications. Telecommun Syst 78:559–576. https://doi.org/10.1007/S11235-021-00831-9/TABLES/8

    Article  Google Scholar 

  88. Ramzanpoor Y, Mirsaeid A, Shirvani H, Golsorkhtabaramiri M (2021) Multi-objective fault-tolerant optimization algorithm for deployment of IoT applications on fog computing infrastructure. Complex Intell Syst 2021(1):1–32. https://doi.org/10.1007/S40747-021-00368-Z

    Article  Google Scholar 

  89. Gunawan G, Nasution BB, Zarlis M et al (2021) Design of earthquake early warning system based on internet of thing. J Phys: Conf Ser 1830:012010. https://doi.org/10.1088/1742-6596/1830/1/012010

    Article  Google Scholar 

  90. Zainol Abidin H, Din NMd (2013) Sensor node placement in wireless sensor network based on territorial predator scent marking algorithm. ISRN Sens Netw 2013:1–7. https://doi.org/10.1155/2013/170809

    Article  Google Scholar 

  91. Tripathi RN, Gaurav K, Singh YN (2019) On partial coverage and connectivity relationship in deterministic WSN topologies

  92. Guo Y, Cheng J, Liu H et al (2016) A novel knowledge-guided evolutionary scheduling strategy for energy-efficient connected coverage optimization in WSNs. Peer-to-Peer Netw Appl 10:547–558. https://doi.org/10.1007/S12083-016-0518-4

    Article  Google Scholar 

  93. Wang X, Xing G, Zhang Y, et al (2003) Integrated coverage and connectivity configuration in wireless sensor networks. In: 1st international conference on Embedded networked sensor systems. Association for Computing Machinery (ACM), pp 28–39

  94. Wang CF, Lee CC (2010) The optimization of sensor relocation in wireless mobile sensor networks. Comput Commun 33:828–840. https://doi.org/10.1016/J.COMCOM.2009.12.001

    Article  Google Scholar 

  95. Ahmed Nadeem SK, Jha S (2005) The holes problem in wireless sensor networks. ACM Sıgmob Mob Comput Commun Rev 9:4–18. https://doi.org/10.1145/1072989.1072992

    Article  Google Scholar 

  96. Khedr AM, Osamy W, Salim A (2018) Distributed coverage hole detection and recovery scheme for heterogeneous wireless sensor networks. Comput Commun 124:61–75. https://doi.org/10.1016/J.COMCOM.2018.04.002

    Article  Google Scholar 

  97. Hu K, Sivaraman V, Luxan BG, Rahman A (2016) Design and evaluation of a metropolitan air pollution sensing system. IEEE Sens J 16:1448–1459. https://doi.org/10.1109/JSEN.2015.2499308

    Article  Google Scholar 

  98. Fisher RB, Konolige K (2008) Range sensors. Springer Handb Robot. https://doi.org/10.1007/978-3-540-30301-5_23

    Article  Google Scholar 

  99. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  100. Mirjalili S, Aljarah I, Mafarja M et al (2020) Grey wolf optimizer: theory, literature review, and application in computational fluid dynamics problems. Stud Comput Intell 811:87–105. https://doi.org/10.1007/978-3-030-12127-3_6

    Article  MathSciNet  Google Scholar 

  101. Seyyedabbasi A, Kiani F (2019) I-GWO and Ex-GWO: improved algorithms of the grey wolf optimizer to solve global optimization problems. Eng Comput 37:509–532. https://doi.org/10.1007/S00366-019-00837-7

    Article  Google Scholar 

  102. Yigitel MA, Incel OD, Ersoy C (2011) QoS-aware MAC protocols for wireless sensor networks: a survey. Comput Netw 55:1982–2004. https://doi.org/10.1016/J.COMNET.2011.02.007

    Article  Google Scholar 

  103. Sharma N, Gupta V (2020) Meta-heuristic based optimization of WSNs localisation problem- a survey. Proc Comput Sci 173:36–45. https://doi.org/10.1016/J.PROCS.2020.06.006

    Article  Google Scholar 

  104. Seyyedabbasi A, Aliyev R, Kiani F et al (2021) Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems. Knowl-Based Syst 223:107044. https://doi.org/10.1016/J.KNOSYS.2021.107044

    Article  Google Scholar 

  105. Ding S, Chen C, Zhang Q et al (2021) Metaheuristics for resource deployment under uncertainty in complex systems. CRC Press

    Book  MATH  Google Scholar 

  106. Zhao H, Zhang Q, Zhang L, Wang Y (2016) A novel sensor deployment approach using fruit fly optimization algorithm in wireless sensor networks. In: Proceedings - 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 1:1292–1297. https://doi.org/10.1109/TRUSTCOM.2015.520

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SN, FK. Methodology: SN, FK. Software: SN. Validation: SN, FK. Formal analysis: SN, FK. Investigation: SN, FK, MT-A, AS. Resources: SN, FK, MT-A, AS. Writing - Original Draft: SN, FK, MT-A, AS. Writing - Review & Editing: SN, FK, MT-A, AS. Visualization: SN. Supervision: SN, FK. Project administration: FK.

Corresponding author

Correspondence to Sajjad Nematzadeh.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Other publish name is Ferzat Anka.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematzadeh, S., Torkamanian-Afshar, M., Seyyedabbasi, A. et al. Maximizing coverage and maintaining connectivity in WSN and decentralized IoT: an efficient metaheuristic-based method for environment-aware node deployment. Neural Comput & Applic 35, 611–641 (2023). https://doi.org/10.1007/s00521-022-07786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07786-1

Keywords