Skip to main content

Advertisement

Log in

Synchronization analysis and parameters identification of uncertain delayed fractional-order BAM neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, synchronization analysis and parameters identification issues are explored for uncertain delayed fractional-order BAM neural networks. By designing pertinent state feedback control strategies and parameters updated laws, some ample criteria are procured for ensuring the finite-time synchronization and the Mittag-Leffler synchronization of the considered networks via exploiting the Lyapunov function theory, fractional calculus theory and inequality analysis techniques, meanwhile, the settling time of finite-time synchronization is given, which relates to the initial values. Moreover, parameters identification is actualized triumphantly for uncertain or unknown parameters. Finally, numerical examples are provided to show the availability of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. He X, Ho D, Huang T, Yu J, Abu-Rub H, Li C (2018) Second-order continuous-time algorithms for economic power dispatch in smart grids. IEEE Trans Syst Man Cybern Syst 48:1482–1492

    Article  Google Scholar 

  2. Xu W, Cao J, Xiao M, Ho D, Wen G (2015) A new framework for analysis on stability and bifurcation in a class of neural networks with discrete and distributed delays. IEEE Trans Cyber 45:2224–2236

    Article  Google Scholar 

  3. Li X, Rakkiyappan R, Velmurugan G (2015) Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inf Sci 294:645–665

    Article  MathSciNet  MATH  Google Scholar 

  4. Hoppensteadt F, Izhikevich E (2000) Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans Neural Netw Learn Syst 11:734–738

    Article  Google Scholar 

  5. Chien T, Liao T (2005) Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos Solitons Fract 24:241–255

    Article  MATH  Google Scholar 

  6. Wu Y, Li Y, He S, Guan Y (2020) Sampled-data synchronization of network systems in industrial manufacture. IEEE Trans Syst Man Cybern Syst 50:3210–3219

    Article  Google Scholar 

  7. Shen H, Zhu Y, Zhang L, Park J (2017) Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans Neural Netw Learn Syst 28:346–358

    Article  MathSciNet  Google Scholar 

  8. Wang L, Dong T, Ge M (2019) Finite-time synchronization of memristor chaotic systems and its application in image encryption. Appl Math Comput 347:293–305

    MATH  Google Scholar 

  9. Kosko B (1987) Adpative bidirecctional associative memoreis. Appl Opt 26:4947–4960

    Article  Google Scholar 

  10. Cao J, Ying W (2014) Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw 53:165–172

    Article  MATH  Google Scholar 

  11. Chen S, Li H, Kao Y, Zhang L, Hu C (2021) Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach. J Frankl Inst 358:7650–7673

    Article  MathSciNet  MATH  Google Scholar 

  12. Anbuvithya R, Mathiyalagan K, Sakthivel R, Prakash P (2015) Non-fragile synchronization of memristive BAM networks with random feedback gain fluctuations. Commun Nonlinear Sci Numer Simul 29:427–440

    Article  MathSciNet  MATH  Google Scholar 

  13. Ali M, Saravanakumar R, Cao J (2016) New passivity criteria for memristor-based neutral-type stochastic BAM neural networks with mixed time-varying delays. Neurocomputing 171:1533–1547

    Article  Google Scholar 

  14. Xiao J, Wen S, Yang X, Zhong S (2020) New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality. Neural Netw 122:320–337

    Article  MATH  Google Scholar 

  15. Lakshmanan S, Lim C, Nahavandi S, Prakash M, Balasubramaniam P (2017) Dynamical analysis of the Hindmarsh-Rose neuron with time delays. IEEE Trans Neural Netw Learn Syst 28:1953–1958

    Article  MathSciNet  Google Scholar 

  16. Tanaka G, Aihara K (2009) Complex-valued multistate associative memory with nonlinear multilevel functions for gray-level image reconstruction. IEEE Trans Neural Netw Learn Syst 20:1463–1473

    Article  Google Scholar 

  17. Prakash M, Balasubramaniam P, Lakshmanan S (2016) Synchronization of Markovian jumping inertial neural networks and its applications in image encryption. Neural Netw 83:86–93

    Article  Google Scholar 

  18. Xu C, Liu Z, Liao M, Li P, Xiao Q, Yuan S (2021) Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation. Math Comput Simul 182:471–494

    Article  MathSciNet  MATH  Google Scholar 

  19. Li X, Rakkiyappan R (2013) Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays. Commun Nonlinear Sci Numer Simul 18:1515–1523

    Article  MathSciNet  MATH  Google Scholar 

  20. Li H, Zhang L, Hu C, Jiang Y, Teng Z (2017) Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J Appl Math Comput 54:435–449

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu G, Deng Z, Baleanu D, Zeng D (2019) New variable-order fractional chaotic systems for fast image encryption. Chaos 29:083103

    Article  MathSciNet  MATH  Google Scholar 

  22. Li R, Wu H (2018) Adaptive synchronization control based on QPSO algorithm with interval estimation for fractional-order chaotic systems and its application in secret communication. Nonlinear Dyn 92:935–959

    Article  MATH  Google Scholar 

  23. Li H, Hu C, Zhang L, Jiang H, Cao J (2021) Non-separation method-based robust finite-time synchronization of uncertain fractional-order quaternion-valued neural networks. Appl Math Comput 409:126377

    MathSciNet  MATH  Google Scholar 

  24. Yang X, Li C, Song Q, Chen J, Huang J (2018) Global Mittag-Leffler stability ang synchronization analisis of fractional-order quaternion-valued neural networks with linear threshold neurons. Neural Netw 105:88–103

    Article  MATH  Google Scholar 

  25. Li H, Hu C, Zhang L, Jiang H, Cao J (2022) Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control. Fuzzy Sets Syst 443:50–69

    Article  MathSciNet  Google Scholar 

  26. Chen L, Cao J, Wu R, Machado J, Lopes A, Yang H (2017) Stability and synchronization of fractional-order memristive neural networks with multiple delays. Neural Netw 94:76–85

    Article  MATH  Google Scholar 

  27. Yan H, Qiao Y, Duan L, Miao J (2022) New inequalities to finite-time synchronization analysis of delayed fractional-order quaternion-valued neural networks. Neural Comput Appl 34:9919–9930

    Article  Google Scholar 

  28. Li H, Hu C, Cao J, Jiang H, Alsaedi A (2019) Quasi-projective and complete synchronization of fractional-order complex-valued networks with time delays. Neural Netw 118:102–109

    Article  MATH  Google Scholar 

  29. Lakshmanan S, Prakash M, Lim C, Rakkiyappan R, Balasubramaniam P, Nahavandi S (2018) Synchronization of an inertial neural network with time-varying delays and its application to secure communication. IEEE Trans Neural Netw Learn Syst 29:195–207

    Article  MathSciNet  Google Scholar 

  30. Liu S, Zhang F (2014) Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn 76:1087–1097

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang X, Liu X, She K, Zhong S (2017) Finite-time lay synchronization of master-slave complex dynamical networks with unknown signal propagaton delays. J Frankl Inst 354:4913–4929

    Article  MATH  Google Scholar 

  32. Xiao J, Zhong S, Li Y, Xu F (2017) Finite-time Mittag-Leffler synchronization of fractional-order memristive BAM neural networks with time delays. Neurocomputing 219:431–439

    Article  Google Scholar 

  33. Chen C, Li L, Peng H, Yang Y (2017) Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay. Neural Netw 96:47–54

    Article  MATH  Google Scholar 

  34. Pratap A, Raja R, Cao J, Rihan Fathalla A, Seadawy Aly R (2020) Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos Solitons Fract 131:109491

    Article  MathSciNet  MATH  Google Scholar 

  35. Kilbas A, Srivastava H, Trujillo J (2006) Theory and application of fractional differential equations. Elsevier, New York

    MATH  Google Scholar 

  36. Zhang S, Yu Y, Wang H (2015) Mittag-Leffler stability of fractional-order hopfield neural networks. Nonlinear Anal Hybrid Syst 16:104–121

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu J, Hu C, Jiang H (2015) Corrogendum to projective synchronization for fractional-order hopfield neural networks. Neural Netw 67:152–154

    Article  Google Scholar 

  38. Li H, Jiang Y, Wang Z, Zhang L, Teng Z (2015) Mittag-Leffler stability of coupled system of fractional-order differential equations on network. Appl Math Comput 207:269–277

    MathSciNet  MATH  Google Scholar 

  39. Zhang Y, Tan K (2004) Multistability of discrete-time recurrent neural networks with unsaturating piecewise linear activation functions. IEEE Trans Neural Netw Learn Syst 15:329–336

    Article  Google Scholar 

  40. Chua L, Yang L (1988) Cellular neural networks: theory. IEEE Trans Cricuits Syst 35:1257–1272

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Tianshan Youth Program-Training Program for Excellent Young Scientific and Technological Talents (Grant No. 2019Q017), Project Funded by China Postdoctoral Science Foundation (Grant No. 2018M632205), the Scientific Research Program of the Higher Education Institution of Xinjiang (Grant Nos. XJEDU2017S001, XJEDU2021I002), the National Natural Science Foundation of China (Grant Nos. 11702237, 11861065, 61866036, 61963033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Li Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, HL., Zhang, L. et al. Synchronization analysis and parameters identification of uncertain delayed fractional-order BAM neural networks. Neural Comput & Applic 35, 1041–1052 (2023). https://doi.org/10.1007/s00521-022-07791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07791-4

Keywords