Skip to main content

Advertisement

Log in

Biometric identification system using EEG signals

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study focuses on using EEG signal-based behavioral biometric data to classify and identify persons. A person identification system based on a nonlinear model with excellent estimation accuracy was proposed. Six tasks were performed on all subjects utilizing EEG data collected from 64 channels and 96 subjects. The stages of this model included feature creation, feature selection, and classification. To generate features from EEG signals, statistical methods were used. Using neighborhood component analysis, the best 15 features were chosen. The selected feature vector was given as input to deep feature neural network (DNN) model and traditional ML classifier decision tree (DT), k-nearest neighbor (KNN), support vector machine (SVM), ensemble—random forest (RF) classifiers. The classification performance of the proposed methods for six tasks was separately tested and compared. The average accuracy of DT, RF, KNN, SVM and DNN classifiers for all tasks was 98.63%, 100%, 99.96%, 99.91%, and 100%, respectively. The results show that RF and DNN classifier-based models are highly effective in the classification and person identification using EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The article includes all of the data that were utilized to support the study's findings.

References

  1. Xiao Q (2007) Biometrics-technology, application, challenge, and computational intelligence solutions. IEEE Comput Intell Mag. https://doi.org/10.1109/MCI.2007.353415

    Article  Google Scholar 

  2. Kaur G, Singh G, Kumar V (2014) A review on biometric recognition. Int J Bio-Sci Bio-Technol 6:69–76. https://doi.org/10.14257/ijbsbt.2014.6.4.07

    Article  Google Scholar 

  3. Campisi P, La RD (2014) Brain waves for automatic biometric-based user recognition. IEEE Trans Inf Forensics Secur 9:782–800. https://doi.org/10.1109/TIFS.2014.2308640

    Article  Google Scholar 

  4. Min BK, Il SH, Ahn MH et al (2017) Individual identification using cognitive electroencephalographic neurodynamics. IEEE Trans Inf Forensics Secur 12:2159–2167. https://doi.org/10.1109/TIFS.2017.2699944

    Article  Google Scholar 

  5. Curie T, Mongrain V, Dorsaz S, Mang GM, Emmenegger Y, Franken P (2013) Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36:311–323. https://doi.org/10.5665/sleep.2440

    Article  Google Scholar 

  6. Blume WT (2006) Drug effects on EEG. J Clin Neurophysiol 23:306–311. https://doi.org/10.1097/01.wnp.0000229137.94384.fa

    Article  Google Scholar 

  7. Chan HL, Chen YS, Chen LF (2012) Selection of independent components based on cortical mapping of electromagnetic activity. J Neural Eng 9:056006. https://doi.org/10.1088/1741-2560/9/5/056006

    Article  Google Scholar 

  8. Lee YY, Hsieh S (2014) Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9:e95415. https://doi.org/10.1371/journal.pone.0095415

    Article  Google Scholar 

  9. Soikkeli R, Partanen J, Soininen H, Paakkonen A, Riekkinen P (1991) Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 79:159–165. https://doi.org/10.1016/0013-4694(91)90134-p

    Article  Google Scholar 

  10. Kulkarni VP, Lin K, Benbadis SR (2007) EEG findings in the persistent vegetative state. J Clin Neurophysiol 24:433–437. https://doi.org/10.1097/WNP.0b013e31815c2810

    Article  Google Scholar 

  11. Young GB (2000) The EEG in coma. J Clin Neurophysiol 17:473–485. https://doi.org/10.1097/00004691-200009000-00006

    Article  Google Scholar 

  12. Alwasiti HH, Aris I, Jantan A (2010) Brain computer interface design and applications: challenges and future. Appl Sci 11:819–825

    Google Scholar 

  13. Sita J, Nair GJ (2013) Feature extraction and classification of EEG signals for mapping motor area of the brain. In: 2013 international conference on control communication computing ICCC 2013, vol 690525, pp 463–468. https://doi.org/10.1109/ICCC.2013.6731699

  14. Carrión-Ojeda D, Fonseca-Delgado R, Pineda I (2021) Analysis of factors that influence the performance of biometric systems based on EEG signals. Expert Syst Appl 165:113967. https://doi.org/10.1016/j.eswa.2020.113967

    Article  Google Scholar 

  15. Stassen HH (1980) Computerized recognition of persons by EEG spectral patterns Reconnaissance par ordinateur, des individus, au moyen de la configuration des spectres de leur EEG. Electroencephalogr Clin Neurophysiol 49:190–194

    Article  Google Scholar 

  16. Zhao H, Chen Y, Pei W et al (2021) Towards online applications of EEG biometrics using visual evoked potentials. Expert Syst Appl 177:114961. https://doi.org/10.1016/j.eswa.2021.114961

    Article  Google Scholar 

  17. El-Fiqi H, Wang M, Salimi N et al (2019) Convolution neural networks for person identification and verification using steady state visual evoked potential. In: Proceedings—2018 IEEE international conference on systems, man, and cybernetics (SMC) 2018, pp 1062–1069. https://doi.org/10.1109/SMC.2018.00188

  18. Ma L, Minett JW, Blu T, Wang WSY (2015) Resting State EEG-based biometrics for individual identification using convolutional neural networks. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society EMBS 2015-Novem, pp 2848–2851. https://doi.org/10.1109/EMBC.2015.7318985

  19. Mao Z, Yao WX, Huang Y (2017) EEG-based biometric identification with deep learning. In: International IEEE/EMBS conference on neural engineering NER, pp 609–612. https://doi.org/10.1109/NER.2017.8008425

  20. Chu L, Qiu R, Liu H et al (2017) Individual recognition in schizophrenia using deep learning methods with random forest and voting classifiers: insights from resting state EEG streams. arXiv:1707.03467, pp 1–7

  21. Zhang D, Yao L, Zhang X et al (2018) Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface. In: 32nd AAAI conference on artificial intelligence AAAI 2018, pp 1703–1710

  22. Palaniappan R (2004) Method of identifying individuals using VEP signals and neural network. IEE Proc Sci Meas Technol 151:16–20. https://doi.org/10.1049/ip-smt:20040003

    Article  Google Scholar 

  23. Das K, Zhang S, Giesbrecht B, Eckstein MP (2009) Using rapid visually evoked EEG activity for person identification. In: Proceedings of 31st Annual international conference of the IEEE engineering in medicine and biology society: engineering the future of biomedicine EMBC 2009, pp 2490–2493. https://doi.org/10.1109/IEMBS.2009.5334858

  24. Touyama H (2009) EEG-based personal identification. Biomed Eng Online. https://doi.org/10.5772/7858

    Article  Google Scholar 

  25. Yeom SK, Il SH, Lee SW (2013) Person authentication from neural activity of face-specific visual self-representation. Pattern Recognit 46:1159–1169. https://doi.org/10.1016/j.patcog.2012.10.023

    Article  Google Scholar 

  26. Chen JX, Mao ZJ, Yao WX, Huang YF (2020) EEG-based biometric identification with convolutional neural network. Multimed Tools Appl 79:10655–10675. https://doi.org/10.1007/s11042-019-7258-4

    Article  Google Scholar 

  27. Palaniappan R, Mandic DP (2007) EEG based biometric framework for automatic identity verification. J VLSI Signal Process Syst Signal Image Video Technol 49:243–250. https://doi.org/10.1007/s11265-007-0078-1

    Article  Google Scholar 

  28. Puengdang S, Tuarob S, Sattabongkot T, Sakboonyarat B (2019) EEG-Based Person Authentication Method Using Deep Learning with Visual Stimulation. 2019 11th Int Conf Knowl Smart Technol KST 2019, pp 6–10. https://doi.org/10.1109/KST.2019.8687819

  29. Phothisonothai M (2016) An investigation of using SSVEP for EEG-based user authentication system. In: 2015 Asia-Pacific Signal Inf Process Assoc Annu Summit Conf APSIPA ASC 2015, pp 923–926. https://doi.org/10.1109/APSIPA.2015.7415406

  30. Gui Q, Jin Z, Xu W (2015) Exploring EEG-based biometrics for user identification and authentication. In: 2014 IEEE Signal Process Med Biol Symp IEEE SPMB 2014—Proceedings. https://doi.org/10.1109/SPMB.2014.7002950

  31. Wilaiprasitporn T, Ditthapron A, Matchaparn K et al (2020) Affective EEG-based person identification using the deep learning approach. IEEE Trans Cogn Dev Syst 12:486–496. https://doi.org/10.1109/TCDS.2019.2924648

    Article  Google Scholar 

  32. Su F, Xia L, Cai A, et al (2010) EEG-based personal identification: From proof-of-concept to a practical system. Proc-Int Conf Pattern Recognit, 3728–3731. https://doi.org/10.1109/ICPR.2010.908

  33. Waili T, Johar MGM, Sidek KA et al (2019) EEG based biometric identification using correlation and MLPNN models. Int J Online Biomed Eng 15:77–90. https://doi.org/10.3991/ijoe.v15i10.10880

    Article  Google Scholar 

  34. Bouallegue G, Djemal R (2020) EEG Person Identification Using Facenet, LSTM-RNN and SVM. In: Proceedings 17th International Multi-Conference System Signals Devices, SSD 2020, pp 22–28. https://doi.org/10.1109/SSD49366.2020.9364129

  35. Di Y, An X, Zhong W et al (2021) The time-robustness analysis of individual identification based on resting-state EEG. Front Hum Neurosci 15:1–10. https://doi.org/10.3389/fnhum.2021.672946

    Article  Google Scholar 

  36. Kaewwit C, Lursinsap C, Sophatsathit P (2017) 373 high accuracy eeg biometrics identification using ICA and AR model Chesada Kaewwit, Chidchanok Lursinsap & Peraphon Sophatsathit. J ICT 2:354–373

    Google Scholar 

  37. Arnau-González P, Katsigiannis S, Ramzan N, et al (2017) ES1D: a deep network for EEG-based subject identification. In: Proceedings of—2017 IEEE 17th Int Conf Bioinforma Bioeng BIBE 2017 2018-Janua, pp 81–85. https://doi.org/10.1109/BIBE.2017.00-74

  38. Lai CQ, Ibrahim H, Abdullah MZ et al (2019) Arrangements of resting state electroencephalography as the input to convolutional neural network for biometric identification. Comput Intell Neurosci. https://doi.org/10.1155/2019/7895924

    Article  Google Scholar 

  39. Yu T, Wei CS, Chiang KJ, et al (2019) EEG-based user authentication using a convolutional neural network. In: Int IEEE/EMBS Conf Neural Eng NER 2019-March, pp 1011–1014. https://doi.org/10.1109/NER.2019.8716965

  40. Zhang R, Yan B, Tong L et al (2019) Identity authentication using portable electroencephalography signals in resting states. IEEE Access 7:160671–160682. https://doi.org/10.1109/ACCESS.2019.2950366

    Article  Google Scholar 

  41. Liew SH, Choo YH, Low YF, Mohd Yusoh ZI (2018) EEG-based biometric authentication modelling using incremental fuzzy-rough nearest neighbour technique. IET Biometrics 7:145–152. https://doi.org/10.1049/iet-bmt.2017.0044

    Article  Google Scholar 

  42. Mu Z, Hu J, Min J, Yin J (2017) Comparison of different entropies as features for person authentication based on EEG signals. IET Biometrics 6:409–417. https://doi.org/10.1049/iet-bmt.2016.0144

    Article  Google Scholar 

  43. Piciucco E, Maiorana E, Falzon O, et al (2017) Steady-state visual evoked potentials for EEG-based biometric identification. Lect Notes Informatics (LNI), Proc - Ser Gesellschaft fur Inform, pp 3–7. https://doi.org/10.23919/BIOSIG.2017.8053521

  44. Wang M, El-Fiqi H, Hu J, Abbass HA (2019) Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states. IEEE Trans Inf Forensics Secur 14:3359–3372. https://doi.org/10.1109/TIFS.2019.2916403

    Article  Google Scholar 

  45. Keshishzadeh S, Fallah A, Rashidi S (2016) Improved EEG based human authentication system on large dataset. In: 2016 24th Iran Conf Electr Eng ICEE 2016, pp 1165–1169. https://doi.org/10.1109/IranianCEE.2016.7585697

  46. Yang S, Hoque S, Deravi F (2019) Improved time-frequency features and electrode placement for EEG-based biometric person recognition. IEEE Access 7:49604–49613. https://doi.org/10.1109/ACCESS.2019.2910752

    Article  Google Scholar 

  47. Rodrigues D, Silva GFA, Papa JP et al (2016) EEG-based person identification through binary flower pollination algorithm. Expert Syst Appl 62:81–90. https://doi.org/10.1016/j.eswa.2016.06.006

    Article  Google Scholar 

  48. Yang S, Deravi F, Hoque S (2018) Task sensitivity in EEG biometric recognition. Pattern Anal Appl 21:105–117. https://doi.org/10.1007/s10044-016-0569-4

    Article  MathSciNet  Google Scholar 

  49. Wang M, Hu J, Abbass HA (2020) BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs. Pattern Recognit. https://doi.org/10.1016/j.patcog.2020.107381

    Article  Google Scholar 

  50. Alyasseri ZAA, Khader AT, Al-Betar MA, Alomari OA (2020) Person identification using EEG channel selection with hybrid flower pollination algorithm. Pattern Recognit 105:107393. https://doi.org/10.1016/j.patcog.2020.107393

    Article  Google Scholar 

  51. Monsy JC, Vinod AP (2020) EEG-based biometric identification using frequency-weighted power feature. IET Biometrics 9:251–258. https://doi.org/10.1049/iet-bmt.2019.0158

    Article  Google Scholar 

  52. Sun Y, Lo FPW, Lo B (2019) EEG-based user identification system using 1D-convolutional long short-term memory neural networks. Expert Syst Appl 125:259–267. https://doi.org/10.1016/j.eswa.2019.01.080

    Article  Google Scholar 

  53. Albasri A, Abdali-Mohammadi F, Fathi A (2019) EEG electrode selection for person identification thru a genetic-algorithm method. J Med Syst. https://doi.org/10.1007/s10916-019-1364-8

    Article  Google Scholar 

  54. Das BB, Kumar P, Kar D et al (2019) A spatio-temporal model for EEG-based person identification. Multimed Tools Appl 78:28157–28177. https://doi.org/10.1007/s11042-019-07905-6

    Article  Google Scholar 

  55. Jijomon CM, Vinod AP (2018) EEG-based biometric identification using frequently occurring maximum power spectral features. In: Proc 2018 IEEE Appl Signal Process Conf ASPCON 2018, pp 249–252. https://doi.org/10.1109/ASPCON.2018.8748581

  56. Suppiah R, Prasad Vinod A (2018) Biometric identification using single channel EEG during relaxed resting state. IET Biometrics 7:342–348. https://doi.org/10.1049/iet-bmt.2017.0142

    Article  Google Scholar 

  57. Goldberger AL, Amaral LAN, Glass L et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101:2015–2220

    Article  Google Scholar 

  58. Tuncer T, Dogan S, Ertam F (2019) Automatic voice based disease detection method using one dimensional local binary pattern feature extraction network. Appl Acoust 155:500–506. https://doi.org/10.1016/j.apacoust.2019.05.023

    Article  Google Scholar 

  59. Goldberger J, Hinton GE, Roweis ST, Salakhutdinov RR (2005) Neighbourhood components analysis. Advances in neural information processing systems, pp 513–20.

  60. Sun S, Huang R (2010) An adaptive k-nearest neighbor algorithm. In: Seventh international conference on fuzzy systems and knowledge discovery. IEEE, pp 91–4.

  61. Yaman O, Tuncer T, Tasar B (2021) DES-Pat: A novel DES pattern-based propeller recognition method using underwater acoustical sounds. Appl Acoust 175:107859. https://doi.org/10.1016/j.apacoust.2020.107859

    Article  Google Scholar 

  62. Hashemizadeh A, Maaref A, Shateri M et al (2021) Experimental measurement and modeling of water-based drilling mud density using adaptive boosting decision tree, support vector machine, and K-nearest neighbors: a case study from the South Pars gas field. J Pet Sci Eng 207:109132. https://doi.org/10.1016/j.petrol.2021.109132

    Article  Google Scholar 

  63. Kashef R (2021) A boosted SVM classifier trained by incremental learning and decremental unlearning approach. Expert Syst Appl 167:114154. https://doi.org/10.1016/j.eswa.2020.114154

    Article  Google Scholar 

  64. Rivera-Lopez R, Canul-Reich J, Mezura-Montes E, Cruz-Chávez MA (2022) Induction of decision trees as classification models through metaheuristics. Swarm Evol Comput 69:101006. https://doi.org/10.1016/j.swevo.2021.101006

    Article  Google Scholar 

  65. Zakariazadeh A (2021) Smart meter data classification using optimized random forest algorithm. ISA Trans. https://doi.org/10.1016/j.isatra.2021.07.051

    Article  Google Scholar 

  66. Bjorck J, Gomes C, Selman B, Weinberger KQ (2018) Understanding batch normalization. In: Adv Neural Inf Process Syst 2018-Decem, pp 7694–7705

  67. van Bejisterveldt CEM, van Baal GCM (2002) Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol Psychol 61:111–138. https://doi.org/10.1016/s0301-0511(02)00055-8

    Article  Google Scholar 

  68. Smit CM, Wright MJ, Hansell NK, Geffen GM, Martin NG (2006) Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample. Int J Psychophysiol 61:235–243. https://doi.org/10.1016/j.ijpsycho.2005.10.004

    Article  Google Scholar 

  69. Zietch BP, Hansen JL, Hansell NK, Geffen GM, Martin NG, Wright MJ (2007) Common and specific genetic influences on EEG power bands delta, theta, alpha and beta. Biol Psychol 75:154–164. https://doi.org/10.1016/j.biopsycho.2007.01.004

    Article  Google Scholar 

  70. Chan HL, Kuo PC, Cheng CY, Chen YS (2018) Challenges and future perspectives on electroencephalogram-based biometrics in person recognition. Front Neuroinform 12

Download references

Funding

There is no funding source for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Burak Tatar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A total of 30 confusion matrices, each 96 × 96 in size, were created for the 5 classifiers in each task. These matrices are given in the link of the Internet page, as there will be too many pages when added in the article. https://github.com/abttr23/Confussion-Matrices/blob/main/All_Confusion_matrices.rar.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatar, A.B. Biometric identification system using EEG signals. Neural Comput & Applic 35, 1009–1023 (2023). https://doi.org/10.1007/s00521-022-07795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07795-0

Keywords