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Abstract
When dealing with complex thermal infrared (TIR) tracking scenarios, the single category feature is not sufficient to

portray the appearance of the target, which drastically affects the accuracy of the TIR target tracking method. In order to

address these problems, we propose an adaptively multi-feature fusion model (AMFT) for the TIR tracking task.

Specifically, our AMFT tracking method adaptively integrates hand-crafted features and deep convolutional neural net-

work (CNN) features. In order to accurately locate the target position, it takes advantage of the complementarity between

different features. Additionally, the model is updated using a simple but effective model update strategy to adapt to changes

in the target during tracking. In addition, a simple but effective model update strategy is adopted to adapt the model to the

changes of the target during the tracking process. We have shown through ablation studies that the adaptively multi-feature

fusion model in our AMFT tracking method is very effective. Our AMFT tracker performs favorably on PTB-TIR and

LSOTB-TIR benchmarks compared with state-of-the-art trackers.

Keywords Thermal infrared tracking � Multi-feature fusion � Model update

1 Introduction

Researchers are becoming increasingly interested in TIR

target tracking due to its effectiveness in dark environ-

ments [1–4]. Although the current research has made some

progress, the tracking result is not ideal due to the lack of a

single feature’s ability to express the target is still a

problem worthy of research [5–7].

Recently, influenced by the success of the CNN archi-

tecture in various visual tasks [8–16], some methods have

attempted to use the CNN’s powerful representation

capabilities to improve the TIR target tracking performance

[2, 17–20]. The MCFTS [2] tracker uses the pre-trained

CNN to extract multi-layer convolution features of the

infrared target and combines the kernel correlation filters

method to construct an integrated TIR tracking method,

which has achieved good tracking results. Gao et al. [17]

introduced the pre-trained deep appearance features and

deep optical flow features into the structure output support

vector machine for TIR target tracking. Li et al. [21] pro-

posed a TIR tracking method using sparse representation of

deep semantic features. The deep semantic feature is

obtained through a pre-trained convolutional neural net-

work combined with a target feature channel selection

module based on a supervised training method. The

HSSNet [20] tracker trains a hierarchical spatial perception

feature model end-to-end under the framework of the

matching task to represent the TIR image target and

designs a matching TIR tracking method. To adapt to the

change of target appearance, Gundogdu et al. [4] proposed

an integrated TIR tracking method based on correlation

filters using convolutional neural networks features. Zhang

et al. [19] proposed to use the generative confrontation

network to convert visible light images into the TIR images

and use these synthesized the TIR images to train a twin
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network based on matching. Then use the twin network to

extract the deep features of the TIR targets and integrate

these features for TIR target tracking. Although some

progress has been made with the above-mentioned meth-

ods, since a single type of feature cannot fully characterize

the appearance information of the target, the characteristics

of the TIR target obtained based on these networks can not

achieve the optimal tracking result for the target tracking.

To solve all of these issues, we developed an adaptively

multi-feature fusion model (AMFT) capable of tracking

TIR targets with high efficiency and robustness. Generally

speaking, it can be said that hand-crafted features have

good spatial structure information, which makes it easier to

distinguish targets from backgrounds, but their ability to

characterize the target is obviously insufficient. While the

deep convolutional neural networks features with dis-

criminative semantic information can help us accurately

detect the position of the target, they cannot adapt to

changes in the spatial location of the target. Our AMFT

tracking method can adaptively fuse the advantages of

hand-crafted features and deep convolutional neural net-

works features so that it can track targets more accurately

and robustly. Figure 1 shows that the tracking results of our

AMFT tracking method are similar to the ground-truth

labels of the tracking target, demonstrating the effective-

ness of the proposed multi-feature fusion model.

Following is a summary of the main contributions:

• An improved tracking method based on multi-feature

fusion (AMFT) is proposed for the TIR target tracking

task.

• The presented AMFT tracker could train a multi-feature

fusion model that may autonomously integrate the

direct benefits of several features to better characterize

the target appearance.

• Extensive comparative evaluations show that the pro-

posed AMFT tracker outperforms other trackers on

PTB-TIR [22] and LSOTB-TIR [23] benchmarks.

2 Related works

we will actually mainly introduce some of the most rele-

vant studies to our tracking method, including such track-

ing methods [24–28] and multiple features fused methods

[29–34] in this section.

The correlation filters (CF) can determine the degree of

similarity between the signals by performing correlation

operations on two signals. For the target tracking task, it

can be regarded as a similarity measurement between

tracking target and candidates, and the candidate sample

who with the greatest similarity to the target will be found

in the search area as the tracking target. Because CF could

perform a fast operation on numerous training samples,

these CF-based trackers have achieved better tracking

results [35–38]. Most trackers based on the CF framework

use the cyclic structure of training samples to learn linear

Fig. 1 Tracking examples. AMFT_H represents the tracking results with only hand-crafted features, while AMFT_D represents the tracking

results with only deep convolutional neural networks features
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filters. The image patch produced by the cyclic shift is

similar to the translation of the target and cannot simulate

the real tracking scene. When the tracking scene is more

complicated, the tracking results usually obtained by

relying on the response map will be inaccurate, and the

target will be lost. In order to obtain the desired output

response map, Bibi et al. [39] used the score of the real

sample to replace the score of the cyclic shift sample,

which made up for the shortcomings of the manually set

response map. Based on the good properties of the CF-

based tracking framework, many attempts are made to

introduce it into the TIR target tracking task

[1, 4, 6, 29, 40]. He et al. [1] introduce a weighted corre-

lation filter-based infrared target tracking method to obtain

efficient tracking results. Gundogdu et al. [4] verifies that

good TIR target tracking accuracy can be achieved by

using deep convolutional feature in the CF-based tracker.

Recently, deep learning-based trackers have achieved

good results on target tracking task. Convolutional neural

networks have becomes more popular in target tracking

tasks due to their formidable feature extraction capabilities

[41–47]. In [42], Wang et al. propose that an unsupervised

CNN model be trained on large-scale unlabeled sample

images, which can successfully solve the issue of insuffi-

cient training samples with labels. The Siamese network-

based tracking framework approaches treat the tracking

task as a template-matching problem, and returning the

most similar target candidate as the tracking result by

calculating the similarity between the template target and

the target candidates. The SiamFC [43] tracker introduces a

fully-convolutional Siamese network for the tracking task.

The CFNet [44] tracker attempts to treat the correlation

filters as a network layer in the deep network architecture

to obtain a faster tracking speed. Dong et al. [45] intro-

duces a triplet loss to extract expressive deep features for

visual tracking tasks by adding them into the Siamese

network framework instead of pairwise loss for model

training. In [48], a structured target-aware model has been

proposed to improve the target tracking performance in the

TIR scenarios.

Multi-feature fusion is a common method to improve

tracker performance in target tracking task [31–33, 49–52].

Liu et al. [31] propose to simultaneously learn local

structural features and global semantic features of the TIR

images under the framework of matching network to

enhance the discrimination ability of feature model to

similar interferers. The HDT [32] tracker integrates mul-

tiple weak correlation filters based on deep features

through a Hedge method, which can be used to automati-

cally update the weight of each weak tracker so as to locate

the target more accurately. The MFFT [33] tracker adopts

the complementarity between multiple different features to

enhance the robustness of the proposed tracking method. In

[2], a MCFTS tracker has been proposed to uses a Kull-

back–Leibler divergence fusion method to integrate mul-

tiple convolution feature-based correlation filters for the

TIR target tracking task. Zhang et al. [53] propose a

tracking framework to integrate the RGB and TIR images

in the RGBT tracking task in an end-to-end way. In a deep

RGBT tracking framework, Li et al. [54] describe a multi-

adapter convolutional network that performs modality-

shared, modality-specific, and instance-aware feature

learning simultaneously.

Although these trackers have produced some accept-

able tracking performance, the existing tracking approa-

ches are still unable to obtain optimal tracking results when

faced with identical object interference, occlusions, and

other difficult challenges due to the complexity of the TIR

tracking scenarios. We present a multi-feature fusion-based

tracking approach that relies on the complementarity

between different types of features to increase the tracker’s

tracking performance in these TIR tracking scenarios.

3 The proposed AMFT tracker

For more accurate TIR target tracking performance, we

propose a multi-feature fusion model for characterizing the

target appearance more comprehensively. We use the

correlation filters-based tracking framework to generate the

corresponding response map complementary fusion of

different features to a better accurate target location. First,

we briefly introduce the correlation filters-based tracking

framework. After that, we propose a multi-feature fusion

mode for accurate TIR target tracking results.

3.1 Correlation filters-based tracking framework

The correlation filters (CF)-based trackers have been

extensively studied in recent years, and it has greatly

improved the tracking speed under the premise of ensuring

tracking accuracy. The CF-based tracking methods usually

train a classifier to identify the target from the background

[35, 36, 46]. We construct a weak target tracker using the

correlation filters for every single category of features and

then construct a multi-feature fusion tracker through the

fusion of the response maps of multiple weak trackers to

better handle the challenging problems in the TIR target

tracking task. The correlation filters wk corresponding to

the k-th features can be obtained as follow:

wk ¼ argmin
wk

ðjjwk � xk � yjj2 þ kjjwkjj2Þ; ð1Þ

where wk is the trained correlation filters for the k-th fea-

tures, xk denotes the k-th features of the training samples, y

denotes the Gaussian-shape label of training samples, and k
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is a regularization parameter. Define F as the Fourier

transform, and Eq. (1) in the Fourier domain yields a

closed solution of the following form:

wk ¼ F�1 x̂k � ŷ

x̂k� � x̂k þ k

� �
: ð2Þ

where FðxkÞ ¼ x̂k, FðyÞ ¼ ŷ and x̂k
� is the conjugate

transpose of x̂k.

The main purpose of the search phase is to obtain the

response map of the target position in the search image

frame. First, given the search area z of a TIR image target

and extract the different types of features zk. Then, the

features zk are transformed into the Fourier domain:

FðzkÞ ¼ ẑk. Therefore, the response map of the target

location dependent on the k-th features zk can be obtained

by the following cross-correlation operation:

Rk ¼ F�1ðẑk � ŵkÞ; ð3Þ

where � is the cross-correlation operator and Rk is the

response map of the k-th features zk.

3.2 Multi-feature fusion model

Given the target position response map generated by the

tracker based on the different types of features, the goal of

the integrated model is to fuse each response map Rk to

obtain a stronger response map R and predict the target

location. Each response map Rk can be regarded as a

probability distribution with position (i, j) as the tar-

get(
P

rijk ¼ 1, where rijk represents the probability of the

position (i, j) in the response map Rk, i ¼ f1; 2; . . .;Ng,
j ¼ f1; 2; . . .;Mg). The fused response map R can reflect

the consistent part of each response map Rk. The position

of the maximum value in the fused response map should be

considered as the predicted position of the target, so as to

locate the target more accurately. Figure 2 shows the

overview of the proposed multi-feature fusion model for

the TIR target tracking process. To achieve this, the dis-

tribution of response map R is expected to be as close as

possible to the distribution of each response map Rk. To

measure the difference between the two probability distri-

butions of each response map Rk and response map R after

fusion, Jensen–Shannon (JS) divergence is adopted to

measure the generalized distance between them and

believes that the smaller of the distance, the smaller of the

difference in their distribution. The JS divergence is a

symmetric measure of the similarity of two distributions,

which can give full play to the advantages of each response

map [55, 56]. By minimizing the JS divergence, we can get

the optimal fused response map:

R ¼ argmin
R

X
JSðRkjjRÞ

s.t.
X

rij ¼ 1;

ð4Þ

where JSðRkjjRÞ ¼ 1
2
KLðRkjjMÞ þ 1

2
KLðRjjMÞ,

M ¼ 1
2
ðRk þ RÞ, KLðRkjjMÞ ¼

P
rijk log

rij
k

mij, KLðRjjMÞ ¼P
rijlog rij

mij KL denotes the Kullback–Leibler divergences,

and rijk , r
ij, mij represent the value of the (i, j) position in

response maps Rk, R and M, respectively.

To effectively utilize the complementarity between

different type of features [2, 57], we filter the response

maps corresponding to a different type of features as

follow:

Rj;k ¼ Rj � Rk; ð5Þ

Equation (5) indicates that if two response maps in the

same area have similar probability distributions, the filtered

response map has a higher response value in that area;

otherwise, it returns a lower response value. After that,

Eq. (4) can be rewrite as follow:

R ¼ argmin
R

X
JSðRj;kjjRÞ

s.t.
X

rij ¼ 1:

ð6Þ

Finding the position with the highest value in the fused

response map R, and yields the tracking target location.

3.3 Model update

To adapt to the dynamic changes in the TIR target

appearance during the whole tracking process, the corre-

lation filters need to be updated continuously. We follow

other correlation filters-based trackers [2, 35] who use a

simple but effective linear update method to update the

correlation filters:

Fig. 2 The overview of the

proposed multi-feature fusion

model for the TIR target

tracking
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wt
k ¼ wt�1

k þ cwt
k; ð7Þ

where c represents the filters learning rate, wk represents

the correlation filters corresponding to the k-th features,

and wt
k represents the trained filters in the t-th frame.

4 Experiments

We verified the tracking performance of the proposed

AMFT tracker on the PTB-TIR [22] and LSOTB-TIR [23]

benchmarks against several other trackers, such as MCFTS

[2], HSSNet [20], SianFC [43], TADT [58], MLSSNet

[31], HCF [49], HDT [32], SRDCF [38], UDT [42], CFNet

[44], SiamTri [45], CREST [46], VITAL [59], GFSDCF

[60], MDNet [61], Staple [62], and MCCT [63]. The

evaluation criteria are precision score and success score

under the One Pass Evaluation (OPE) [22].

4.1 Implementation details

Experiments implemented in MATLAB2019b, and the PC

is equipped with with an i7-10700-2.90GHz-CPU, and an

Nvidia-GTX-1660-GPU with the matconvnet1.0-beta25

toolbox. The tracking speed of the proposed AMFT tracker

is around 7 fps. The features we used in this AMFT tracker

include Color Names (CN) [64], HOG [35], and deep CNN

features from ResNet50 [65]. The regularization parameter

k ¼ 10e-4, and the learning rate c ¼ 10e-2. The inter-

polation strategy has been adopted to estimate the target

scale [36, 60], and it is used to predict the target location

and scale with a scale factor of 7 and a scale step of 1.01.

Table 1 Ablation studies on

PTB-TIR [22] benchmark
Trackers Hand-crafted feature Deep feature Precision (%) AUC (%) Speed (fps)

AMFT_H U 78.0 58.9 10.6

AMFT_D U 74.4 54.5 7.8

AMFT U U 81.1 61.1 7.2

Fig. 3 Experimental comparison on PTB-TIR [22] benchmark

Fig. 4 Comparison results of tracking speed and tracking accuracy on

the LSOTB-TIR [23] benchmark
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4.2 Ablation studies

In an effort to demonstrate the effectiveness of each type of

the features in the proposed AMFT tracker, we provide the

ablation studies using the PTB-TIR [22] benchmark. The

experimental results are shown in Table 1. Note that

AMFT_H represents the tracking results with only hand-

crafted features, while AMFT_D represents the tracking

results with only deep convolutional neural networks fea-

tures. Due to the lack of color, rich texture and relatively

fuzzy contour of the target in the thermal infrared image,

deep features or hand-crafted features can not be used to

Fig. 5 Experimental comparison on PTB-TIR [22] benchmark for some attributes

Fig. 6 Experimental comparison on LSOTB-TIR [23] benchmark
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represent the target well, resulting in low tracking accu-

racy. Table 1 shows that our AMFT tracker has signifi-

cantly improved tracking performance when compared to a

single-type features-based tracker. We also give the

tracking speed of different types of trackers on the PTB-

TIR benchmark. It can be seen from the tracking speed that

multi-feature fusion will slightly increase the computation

amount and reduce the tracking speed.

4.3 Comparative experiments on PTB-TIR
benchmark

The experimental comparison outputs of the proposed

tracker and other state-of-the-art trackers are shown in

Fig. 3. We may conclude from this figure that our AMFT

tracker outperformed the competition results in terms of

precision and success metrics. When compared to these

single-type features-based trackers [38, 43, 46, 62], our

AMFT tracker performs dramatically better in terms of

tracking evaluation metrics. Besides, compared with those

multi-layers fused trackers [2, 20, 31, 32, 49], our tracker

also achieved competitive tracking performance. Though

our AMFT tracker performs somewhat worse in the pre-

cision metric than that of the MDNet [61] tracker, our

AMFT tracker has a dramatically higher success score than

that of the MDNet tracker, demonstrating that our tracker is

more competitive than the MDNet tracker. What’s more, as

shown in Fig. 4 that our tracker is much faster than the

MDNet tracker. The experimental results show that the

multi-feature fusion model can adaptively use the com-

plementarity between different types of features to

Fig. 7 Qualitative comparison of our AMFT tracking method and

VITAL [59], GFSDCF [60], MDNet [61], TADT [58], SRDC4F [38]

tracking methods on some TIR target tracking test video

sequences(from top to bottom are dog-D-002, street-S-001, bus-S-

004, person-V-007, and leopard-H-001)
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characterize the target appearance, which is particularly

useful in the TIR target tracking task.

Figure 5 compares the performance of the proposed

AMFT tracking method with that of some state-of-the-art

tracking methods on the PTB-TIR [22] benchmark on some

different attributes. The proposed multi-feature fusion

model could further be verified to be effective in the TIR

target tracking task. In comparison with these state-of-the-

art trackers, our AMFT tracker has obtained good tracking

results under these attributes, as shown in Fig. 5. The

comparison of the thermal crossover attribute shows that

our tracker could reduce the interference by other analogs.

Although the success score of our AMFT tracker is lower

than the GFSDCF [60] tracker on the scale variation

attribute, the success score of our AMFT tracker is higher

than the GFSDCF [60] tracker on the rest of the other

attributes, which shows that our tracker has better tracking

performance. In general, these experimental results dis-

played the effectiveness of our multi-feature fusion method

for the TIR tracking task.

4.4 Comparative experiments on LSOTB-TIR
benchmark

Figure 6 shows the tracking results comparison of our

AMFT tracking method and some state-of-the-art tracking

methods on the LSOTB-TIR [23] benchmark. According to

Fig. 6, we know that our AMFT tracking method achieved

the best success scores and the second-best precision

scores. Compared with the group feature selection-based

GFSDCF [60] tracker, the proposed AMFT tracker is

slightly lower in the tracking precision score, but higher in

tracking success precision score, which indicates that the

proposed AMFT tracker achieves better performance on

the LSOTB-TIR benchmark. Compared with these multi-

layer deep features-based trackers (such as MFCTS [2],

HDT [32], and HCF [49]), our tracker adopts the adaptive

fusion strategy of hand-crafted features and deep features,

which could get more accurate TIR target tracking results.

Compared with the Siamese network-based trackers (such

as SiamFC [43], and SiamTri [45]), our tracker obtained

more than 10% improvement in each evaluation metric.

Compared to other tracking methods, our AMFT tracking

method also achieved better TIR target tracking results.

We compare the tracking performance of our proposed

AMFT tracking method against other state-of-the-art

tracking methods on some attributes and scenarios on the

LSOTB-TIR [23] benchmark in order to show the tracking

effectiveness of our AMFT tracking method. Table 2

shows the proposed AMFT tracking method obtained best

success scores on most of the attributes (e.g., fast motion

(FM), scale variation (SV), motion blur (MB), etc). For the

deformation (DEF) and occlusion (OCC) attributes, the

tracking success score of the proposed AMFT tracking

method is lower than the MDNet [61] tracking method,

probably due to the MDNet tracking method applies

effective and efficient hard negative mining technology.

The success score of the MDNet tracker is lower than that

of our tracker in most attributes, which illustrates the

effectiveness of the multiple-types of features fusion model

in our AMFT tracker. In all of these tracking scenarios, our

proposed AMFT tracking method received the top three

success scores, as shown in Table 3. In conclusion, our

proposed AMFT tracking method outperformed these state-

Fig. 8 Failure cases (from top to bottom are campus2, stranger3, and saturated). The proposed AMFT tracking results shows in red boxes and the

target ground truth shows in green boxes
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of-the-art tracking methods in terms of the TIR target

tracking scenarios.

4.5 Qualitative comparison

Figure 7 shows the results of visual comparison between

our AMFT tracking method and other state-of-the-art

tracking methods on some TIR target tracking test video

sequences. The MDNet [61] tracking method easily dis-

turbed by the fast motion and scale variation attributes

(e.g., dog-D-002, and person-V-007). The GFSDCF [60]

tracking method gets some accurate tracking results on the

dog-D-002 and leopard-H-001 test video sequences due to

the group feature selection model that has been usefully

adopted. However, the tracking results of the GFSDCF [60]

tracking method on other test video sequences (such as

street-S-001, and bus-S-004) are still unacceptable. Com-

pared to other tracking methods, the proposed AMFT

tracking method could accurately be tracking these targets

in the complex tracking scenarios, which verified the pro-

posed multi-featured fusion model is fully effective.

4.6 Failure cases

Figure 8 shows some failure cases of the proposed AMFT

tracker. To display the tracking result more intuitively, we

also give the ground-truth label of the target as a reference.

For the stranger3 testing sequence, the main reason why the

proposed AMFT tracker cannot track the target is the

challenge of low resolution. For the campus2 and saturated

testing sequences, due to the influence of similar distracts,

our AMFT tracker shifted to other similar targets, leading

to the failure of the tracking task. For these failure tracking

cases, we will further explore them in future work.

5 Conclusions

In this paper, we propose a multiple types of features fusion

model for the TIR target tracking task. The multi-feature

fusion model adaptively integrates the hand-crafted fea-

tures and the deep features by the JS divergence and gives

play to their complementarity, to better model the target

appearance. Meanwhile, we adopt a model update strategy

to adapt to the changes of target appearance during the

tracking process. Furthermore, we verify the validity of the

multi-feature fusion model through the ablation studies.

We demonstrate in extensive experiments on the PTB-TIR

and LSOTB-TIR benchmarks that the proposed AMFT

tracker has competitive tracking performance when com-

pared to other state-of-the-art trackers.
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