Skip to main content

Advertisement

Log in

Rao algorithms based on elite local search method

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The Rao algorithms, which have been proposed for solving complex and continuous optimization problems lately, are described as metaphor-less optimization algorithms because they do not contain algorithm-specific parameters. The Rao algorithms have variants called Rao-1, Rao-2 and Rao-3, respectively, depending on different population updating procedures. In Rao 1–3 algorithms, random interactions between candidate solutions and the best and worst solution in the whole population for solving optimizations problems were determined as the basic principle. Although this situation makes the Rao 1–3 algorithms increase the speed of convergence, it can cause the diversity of candidate solutions to decrease and the local search capacity to reduce. In this study, a new elite local search procedure was added to the population updating procedure of Rao algorithms to expand the capacity of Rao 1–3 algorithms and develop their solutions. The proposed method was called ELSRao-1, ELSRao-2 and ELSRao-3. Fifteen unconstrained unimodal, fifteen unconstrained multimodal functions and twenty-nine unconstrained CEC 2017 benchmark test functions were used to analyze the performance of the proposed ELSRao 1–3 algorithms. Jaya, dragonfly algorithm, arithmetic optimization algorithm, whale optimization algorithm and standard Rao 1–3 algorithms which are all state-of-the-art algorithms were used to compare the superiority and success of the proposed ELSRao 1–3 algorithms in benchmark functions. Friedman's mean rank test and Tukey–Kramer post hoc test were applied for statistical analysis. According to the experimental studies and statistical analysis, it was concluded that the proposed ELSRao 1–3 algorithms proved to be efficient and robust in the solution to unconstrained optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Code availability

Source code can be found at https://github.com/mftefek/ElitLocalSearchProsedure.

References

  1. Holland JH (1992) Adaptation in nature and artificial systems. MIT Press, Cambridge, MA, United States, p 66

    Book  Google Scholar 

  2. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MATH  Google Scholar 

  3. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE Int. Conf. Neural Netw. IEEE vol. 4, pp 1942–1948

  4. Dorigo M, Caro GD (1999) Ant colony optimization: a new meta-heuristic. In: 1999 IEEE Congr. Evol. Comp-CEC99 (Cat. No. 99TH8406), 2 p 1470–1477. https://doi.org/10.1109/CEC.1999.782657

  5. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MATH  Google Scholar 

  6. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541. https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  7. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041

    Article  MATH  Google Scholar 

  8. Beşkirli A, Özdemir D, Temurtaş H (2020) A comparison of modified tree–seed algorithm for high-dimensional numerical functions. Neural Comput Appl 32:6877–6911. https://doi.org/10.1007/s00521-019-04155-3

    Article  Google Scholar 

  9. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer: Pathfinder algorithm. Appl Soft Comput 78:545–568. https://doi.org/10.1016/j.asoc.2019.03.012

    Article  Google Scholar 

  10. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  11. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MATH  Google Scholar 

  12. Rana N, Latiff MSA, Abdulhamid SIM, Chiroma H (2020) Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments. Neural Comput Appl 32:16245–16277. https://doi.org/10.1007/s00521-020-04849-z

    Article  Google Scholar 

  13. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  14. Askari Q, Younas I, Saeed M (2020) Political optimizer: a novel socio-inspired meta-heuristic for global optimization. Knowl Based Syst 195:105709. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  15. Askari Q, Saeed M, Younas I (2020) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl 161:113702. https://doi.org/10.1016/j.eswa.2020.113702

    Article  Google Scholar 

  16. Kiran MS (2015) TSA: tree-seed algorithm for continuous optimization. Expert Syst Appl 42(19):6686–6698. https://doi.org/10.1016/j.eswa.2015.04.055

    Article  Google Scholar 

  17. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  18. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  19. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  20. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  21. Kaveh A, Hosseini SM, Akbari H (2020) Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems. Eng Comput. https://doi.org/10.1108/EC-05-2020-0235

    Article  Google Scholar 

  22. Salih SQ, Alsewari AA (2020) A new algorithm for normal and large-scale optimization problems: nomadic People Optimizer. Neural Comput Appl 32:10359–10386. https://doi.org/10.1007/s00521-019-04575-1

    Article  Google Scholar 

  23. Rao RV (2016) Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7:19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  24. Rao RV (2020) Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput 11:107–130. https://doi.org/10.5267/j.ijiec.2019.6.002

    Article  Google Scholar 

  25. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  26. Wang L, Wang Z, Liang H, Huang C (2020) Parameter estimation of photovoltaic cell model with Rao-1 algorithm. Optik 210:163846. https://doi.org/10.1016/j.ijleo.2019.163846

    Article  Google Scholar 

  27. Premkumar M, Babu TS, Umashankar S, Sowmya R (2020) A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik 208:164559. https://doi.org/10.1016/j.ijleo.2020.164559

    Article  Google Scholar 

  28. Suyanto S, Wibowo AT, Faraby SA, Saadah S, Rismala R (2021) Evolutionary rao algorithm. J Comput Sci. https://doi.org/10.1016/j.jocs.2021.101368

    Article  Google Scholar 

  29. Rao RV, Pawar RB (2020) Self-adaptive multi-population rao algorithms for engineering design optimization. Appl Artif Intell 34:187–250. https://doi.org/10.1080/08839514.2020.1712789

    Article  Google Scholar 

  30. Rao RV, Pawar RB (2020) Quasi-oppositional-based Rao algorithms for multi-objective design optimization of selected heat sinks. J Comput Des Eng 7(6):830–863. https://doi.org/10.1093/jcde/qwaa060

    Article  Google Scholar 

  31. Lekouaghet B, Boukabou A, Boubakir C (2021) Estimation of the photovoltaic cells/modules parameters using an improved Rao-based chaotic optimization technique. Energy Convers Manag 229:113722. https://doi.org/10.1016/j.enconman.2020.113722

    Article  Google Scholar 

  32. Jian X, Zhu Y (2021) Parameters identification of photovoltaic models using modified Rao-1 optimization algorithm. Optik 231:166439. https://doi.org/10.1016/j.ijleo.2021.166439

    Article  Google Scholar 

  33. Sharma SR, Singh B, Kaur M (2021) Classification of Parkinson disease using binary Rao optimization algorithms. Expert Syst 38:e12674. https://doi.org/10.1111/exsy.12674

    Article  Google Scholar 

  34. Tefek MF, Beşkirli M (2021) JayaL: a novel Jaya algorithm based on elite local search for optimization problems. Arab J Sci Eng 46:8925–8952. https://doi.org/10.1007/s13369-021-05677-6

    Article  Google Scholar 

  35. Pereira DG, Afonso A, Medeiros FM (2015) Overview of Friedman’s test and post-hoc analysis. Commun Stat Simul Comput 44(10):2636–2653. https://doi.org/10.1080/03610918.2014.931971

    Article  MATH  Google Scholar 

  36. Li J, Gao Y, Zhang H, Yang Q (2022) Self-adaptive opposition-based differential evolution with subpopulation strategy for numerical and engineering optimization problems. Complex Intell Syst 8(3):2051–2089. https://doi.org/10.1007/s40747-022-00734-5

    Article  Google Scholar 

  37. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92

    Article  MATH  Google Scholar 

  38. Farah A, Belazi A (2018) A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn 93:1451–1480. https://doi.org/10.1007/s11071-018-4271-5

    Article  Google Scholar 

  39. Yu K, Liang JJ, Qu BY, Chen X, Wang H (2017) Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energ Convers Manage 150:742–753. https://doi.org/10.1016/j.enconman.2017.08.063

    Article  Google Scholar 

  40. Kaveh A, Hosseini SM, Zaerreza A (2021) Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with discrete variables. Structures 29:107–128. https://doi.org/10.1016/j.istruc.2020.11.008

    Article  Google Scholar 

  41. Zhang Y, Ma M, Jin Z (2020) Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models. Energy 211:118644. https://doi.org/10.1016/j.energy.2020.118644

    Article  Google Scholar 

  42. Christian B, Andrea R (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35:268–308. https://doi.org/10.1145/937503.937505

    Article  Google Scholar 

  43. Hussain K, Mohd Salleh MN, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52:2191–2233. https://doi.org/10.1007/s10462-017-9605-z

    Article  Google Scholar 

  44. Zhang X et al (2016) Binary artificial algae algorithm for multidimensional knapsack problems. Appl Soft Comput 43:583–595. https://doi.org/10.1016/j.asoc.2016.02.027

    Article  Google Scholar 

  45. Aslan M, Gunduz M, Kiran MS (2019) JayaX: Jaya algorithm with xor operator for binary optimization. Appl Soft Comput 82:105576. https://doi.org/10.1016/j.asoc.2019.105576

    Article  Google Scholar 

  46. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933. https://doi.org/10.1016/j.cma.2004.09.007

    Article  MATH  Google Scholar 

  47. Beskirli M, Hakli H, Kodaz H (2017) The energy demand estimation for Turkey using differential evolution algorithm. Sādhanā 42(10):1705–1715. https://doi.org/10.1007/s12046-017-0724-7

    Article  Google Scholar 

  48. Wang Y, Li T, Liu X, Yao J (2022) An adaptive clonal selection algorithm with multiple differential evolution strategies. Inf Sci 604:142–169. https://doi.org/10.1016/j.ins.2022.04.043

    Article  Google Scholar 

  49. Tefek MF (2020) Time-varying random inertia weighted Jaya algorithm for the solution of global optimization problems. J Polytech. https://doi.org/10.2339/politeknik.745819

    Article  Google Scholar 

  50. Kıran MS, Gündüz M (2013) A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl Soft Comput 13:2188–2203. https://doi.org/10.1016/j.asoc.2012.12.007

    Article  Google Scholar 

  51. Awad, NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. In: Presented at the 2017 IEEE Congr. Evol. Computer

  52. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  53. Kayri M (2009) Arastirmalarda gruplar arasi farkin belirlenmesine yönelik çoklu karsilastirma (post-hoc) teknikleri. Firat Univ J Soc Sci 19:51–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.F.T.: Methodology. Writing—original draft. Conceptualization. Validation. Writing—review & editing.

Corresponding author

Correspondence to Mehmet Fatih Tefek.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Tables used to explain the ELSRao-1 method: (Tables 10, 11, 12).

Table 10 Demonstration of the application of the proposed ELSRao-1 in the first iteration to the F1 (sphere) function implementation
Table 11 Demonstration of the application of the proposed ELSRao-1 in 10th iteration to the F1 (sphere) function implementation
Table 12 Demonstration of the application of the proposed ELSRao-1 in 20th iteration to the F1 (sphere) function implementation

Experimental study results: (Tables 13, 14, 15).

Table 13 Experimental study results of unimodal benchmark function (F1–F15)
Table 14 Experimental study results of multimodal benchmark functions (F16–F30)
Table 15 Experimental study results of unconstrained CEC 2017 functions

Tukey–Kramer post hoc test statistical analyzes: (Tables 16, 17, 18).

Table 16 Tukey–Kramer Post hoc test analysis results of ELSRao-1 and other algorithms for unimodal benchmark functions
Table 17 Tukey–Kramer Post hoc test analysis results of ELSRao-1 and other algorithms for multimodal benchmark functions
Table 18 Tukey–Kramer Post hoc test analysis results of ELSRao-1 and other algorithms for CEC 2017 benchmark functions

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tefek, M.F. Rao algorithms based on elite local search method. Neural Comput & Applic 35, 4435–4465 (2023). https://doi.org/10.1007/s00521-022-07932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07932-9

Keywords