Skip to main content

Advertisement

Log in

A genetic algorithm integrated with the initial solution procedure and parameter tuning for capacitated P-median problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

A Correction to this article was published on 12 April 2023

This article has been updated

Abstract

The capacitated p-median problem is a well-known location-allocation problem that is NP-hard. We proposed an advanced Genetic Algorithm (GA) integrated with an Initial Solution Procedure for this problem to solve the medium and large-size instances. A 33 Full Factorial Design was performed where three levels were selected for the probability of mutation, population size, and the number of iterations. Parameter tuning was performed to reach better performance at each instance. MANOVA and Post-Hoc tests were performed to identify significant parameter levels, considering both computational time and optimality gap percentage. Real data of Lorena and Senne (2003) and the data set presented by Stefanello et al. (2015) were used to test the proposed algorithm, and the results were compared with those of the other heuristics existing in the literature. The proposed GA was able to reach the optimal solution for some of the instances in contrast to other metaheuristics and the Mat-heuristic, and it reached a solution better than the best known for the largest instance and found near-optimal solutions for the other cases. The results show that the proposed GA has the potential to enhance the solutions for large-scale instances. Besides, it was also shown that the parameter tuning process might improve the solution quality in terms of the objective function and the CPU time of the proposed GA, but the magnitude of improvement may vary among different instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors acknowledge that the data sets used in this study were obtained from [58] and [59]. The addresses of these websites are presented in the References.

Change history

References

  1. Cruz C, Pelta D (2009) Soft computing and cooperative strategies for optimization. Appl Soft Comput 9(1):30–38

    Article  Google Scholar 

  2. Reese J (2006) Solution methods for the p-median problem: an annotated bibliography. Networks 48(3):125–142

    Article  MathSciNet  MATH  Google Scholar 

  3. Djenić A, Radojičić N, Marić M, Mladenović M (2016) Parallel VNS for bus terminal location problem. Appl Soft Comput 42:448–458

    Article  Google Scholar 

  4. Zheng YJ, Chen SY, Ling HF (2015) Evolutionary optimization for disaster relief operations: a survey. Appl Soft Comput 27:553–566

    Article  Google Scholar 

  5. Satoglu SI, Durmusoglu MB, Dogan I (2006) Evaluation of the conversion from central storage to decentralized storages in cellular manufacturing environments using activity-based costing. Int J Prod Econ 103(2):616–632

    Article  Google Scholar 

  6. Kariv O, Hakimi SL (1979) An algorithmic approach to network location problems. II: The p-medians. SIAM J Appl Math 37(3):539–560

    Article  MathSciNet  MATH  Google Scholar 

  7. Mladenović N, Brimberg J, Hansen P, Moreno-Pérez JA (2007) The p-median problem: a survey of metaheuristic approaches. Eur J Oper Res 179(3):927–939

    Article  MathSciNet  MATH  Google Scholar 

  8. Osaba E, Carballedo R, Diaz F, Onieva E, Lopez P, Perallos A (2014a) On the influence of using initialization functions on genetic algorithms solving combinatorial optimization problems: a first study on the TSP. In: IEEE conference on evolving and adaptive intelligent systems (EAIS) (pp 1–6). IEEE

  9. Veček N, Mernik M, Filipič B, Črepinšek M (2016) Parameter tuning with chess rating system (CRS-Tuning) for meta-heuristic algorithms. Inf Sci 372:446–469

    Article  Google Scholar 

  10. Lorena LAN, Senne ELF (2003) Local search heuristics for capacitated p-median problems. Netw Spat Econ 3(4):407–419

    Article  Google Scholar 

  11. Stefanello F, de Araújo OC, Müller FM (2015) Matheuristics for the capacitated p-median problem. Int Trans Oper Res 22(1):149–167

    Article  MathSciNet  MATH  Google Scholar 

  12. Jamshidi M (2009) Median location problem. In: Hekmatfar M (ed) Zanjirani Farahani, Reza. Physica-Verlag, Facility Location, pp 177–191

    Google Scholar 

  13. Baldacci R, Caserta M, Traversi E, Wolfler Calvo R (2022) Robustness of solutions to the capacitated facility location problem with uncertain demand. Optim Lett 16:2711–2727

    Article  MathSciNet  MATH  Google Scholar 

  14. Ryu J, Park S (2022) A branch-and-price algorithm for the robust single-source capacitated facility location problem under demand uncertainty. EURO J Trans Logistics 11:100069

    Article  Google Scholar 

  15. Lorena LAN, Senne ELF (2004) A column generation approach to capacitated p-median problems. Comput Oper Res 31(6):863–876

    Article  MathSciNet  MATH  Google Scholar 

  16. Baldacci R, Hadjiconstantinou E, Maniezzo V, Mingozzi A (2002) A new method for solving capacitated location problems based on a set partitioning approach. Comput Oper Res 29(4):365–386

    Article  MathSciNet  MATH  Google Scholar 

  17. Ceselli A (2003) Two exact algorithms for the capacitated p-median problem. Q J Belg Fr Ital Oper Res Soc 1(4):319–340

    MathSciNet  MATH  Google Scholar 

  18. Ceselli A, Righini G (2005) A branch-and-price algorithm for the capacitated p-median problem. Networks 45:125–142

    Article  MathSciNet  MATH  Google Scholar 

  19. Klose A, Görtz S (2007) A branch-and-price algorithm for the capacitated facility location problem. Eur J Oper Res 179(3):1109–1125

    Article  MATH  Google Scholar 

  20. Boccia M, Sforza A, Sterle C, Vasilyev I (2008) A cut and branch approach for the capacitated p-median problem based on Fenchel cutting planes. J Math Modell Algorithms 7(1):43–58

    Article  MathSciNet  MATH  Google Scholar 

  21. Avella P, Boccia M, Mattia S (2013) A branch-and-cut algorithm for the single-source capacitated facility location problem. In: Advanced logistics and transport (ICALT), 2013 international conference on (pp 181–186). IEEE

  22. Maniezzo V, Mingozzi A, Baldacci R (1998) A bionomic approach to the capacitated p-medianproblem. J Heuristics 4(3):263–280

    Article  MATH  Google Scholar 

  23. Ahmadi S, Osman IH (2005) Greedy random adaptive memory programming search for the capacitated clustering problem. Eur J Oper Res 162(1):30–44

    Article  MathSciNet  MATH  Google Scholar 

  24. Diaz JA, Fernandez E (2006) Hybrid scatter search and path relinking for the capacitated p-median problem. Eur J Oper Res 169(2):570–585

    Article  MathSciNet  MATH  Google Scholar 

  25. Scheuerer S, Wendolsky R (2006) A scatter search heuristic for the capacitated clustering problem. Eur J Oper Res 169(2):533–547

    Article  MathSciNet  MATH  Google Scholar 

  26. Fleszar K, Hindi KS (2008) An effective VNS for the capacitated p-median problem. Eur J Oper Res 191(3):612–622

    Article  MATH  Google Scholar 

  27. Shamsipoor H, Sandidzadeh MA, Yaghini M (2012) Solving capacitated p-median problem by a new structure of neural network. Int J Ind EngTheory Appl Pract 19(8):305–319

    Google Scholar 

  28. Hong JD, Jeong KY, Xie Y (2015) A multi-objective approach to planning in emergency logistics network design. Int J Indus Eng Eng Theory Appl Practice 22(4):412–425

    Google Scholar 

  29. Gnägi M, Baumann P (2021) A matheuristic for large-scale capacitated clustering. Comput Oper Res 132:105304

    Article  MathSciNet  MATH  Google Scholar 

  30. Osman IH, Christofides N (1994) Capacitated clustering problems by hybrid simulated annealing and tabu search. Int Trans Oper Res 1(3):317–336

    Article  MATH  Google Scholar 

  31. Chaves AA, de Assis Correa F, Lorena LAN (2007) Clustering search heuristic for the capacitated p-median problem. In: Emilio CR, Manuel J, Abraham A (eds) Innovations in hybrid intelligent systems, Corchado. Springer, Berlin Heidelberg, pp 136–143

    Chapter  Google Scholar 

  32. Landa-Torres I, Del Ser J, Salcedo-Sanz S, Gil-Lopez S, Portilla-Figueras JA, Alonso-Garrido O (2012) A comparative study of two hybrid grouping evolutionary techniques for the capacitated P-median problem. Comput Oper Res 39(9):2214–2222

    Article  MathSciNet  MATH  Google Scholar 

  33. Yaghini M, Karimi M, Rahbar M (2013) A hybrid metaheuristic approach for the capacitated p-median problem. Appl Soft Comput 13(9):3922–3930

    Article  Google Scholar 

  34. Alp O, Erkut E, Drezner Z (2003) An efficient genetic algorithm for the p-median problem. Ann Oper Res 122(1–4):21–42

    Article  MathSciNet  MATH  Google Scholar 

  35. Bozkaya B, Zhang J, Erkut E (2002) An efficient genetic algorithm for the p-median problem. In: Drezner Z, Hamacher HW (eds) Facility location: applications and theory. Springer Verlag, Berlin, New York, pp 179–205

    Chapter  Google Scholar 

  36. Fathali J (2006) A genetic algorithm for the p-median problem with pos/neg weights. Appl Math Comput 183(2):1071–1083

    Article  MathSciNet  MATH  Google Scholar 

  37. Oksuz MK, Satoglu SI, Kayakutlu G, Buyukozkan K (2016) A genetic algorithm for p-median facility location problem. In: Global joint conference on industrial engineering and its application areas (GCJIE 2016), Istanbul, Turkey, July 14–15

  38. Correa ES, Steiner MTA, Freitas AA, Carnieri C (2004) A genetic algorithm for solving a capacitated p-median problem. Numer Algorithms 35(2–4):373–388

    Article  MathSciNet  MATH  Google Scholar 

  39. Ghoseiri K, Ghannadpour SF (2007) Solving a capacitated p-median problem using genetic algorithm. In: IEEE international conference on industrial engineering and engineering management, (pp 885–889). IEEE

  40. Yang K, Wang R, He H, Yang X, Zhang G (2021) Multi-supply multi-capacitated p-median location optimization via a hybrid bi-level intelligent algorithm. Comput Ind Eng 160:107584

    Article  Google Scholar 

  41. Taghavi A, Ghanbari R, Ghorbani-Moghadam K, Davoodi A, Emrouznejad A (2022) A genetic algorithm for solving bus terminal location problem using data envelopment analysis with multi-objective programming. Ann Oper Res 309:259–276

    Article  MathSciNet  Google Scholar 

  42. Liu D (2014) Network site optimization of reverse logistics for E-commerce based on genetic algorithm. Neural Comput Appl 25(1):67–71

    Article  Google Scholar 

  43. Guo K (2020) Research on location selection model of distribution network with constrained line constraints based on genetic algorithm. Neural Comput Appl 32(6):1679–1689

    Article  Google Scholar 

  44. Liu J, Xiao Y, Wang D, Pang Y (2019) Optimization of site selection for construction and demolition waste recycling plant using genetic algorithm. Neural Comput Appl 31(1):233–245

    Article  Google Scholar 

  45. Osaba E, Carballedo R, Diaz F, Onieva E, De La Iglesia I, Perallos A (2014) Crossover versus mutation: a comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial optimization problems. Sci World J 2014:1–22

    Google Scholar 

  46. Paul PV, Moganarangan N, Kumar SS, Raju R, Vengattaraman T, Dhavachelvan P (2015) Performance analyses overpopulation seeding techniques of the permutation-coded genetic algorithm: an empirical study based on traveling salesman problems. Appl Soft Comput 32:383–402

    Article  Google Scholar 

  47. Ravichandran D, Praveenkumar P, Rayappan JBB, Amirtharajan R (2016) Chaos-based crossover and mutation for securing DICOM image. Comput Biol Med 72:170–184

    Article  Google Scholar 

  48. Doerr B, Le HP, Makhmara R, Nguyen, TD (2017) Fast genetic algorithms. In: Proceedings of the genetic and evolutionary computation conference (pp 777–784). ACM

  49. Salcedo-Sanz S, Portilla-Figueras JA, Ortiz-García EG, Pérez-Bellido AM, Thraves C, Fernández-Anta A, Yao X (2008) Optimal switch location in mobile communication networks using hybrid genetic algorithms. Appl Soft Comput 8(4):1486–1497

    Article  Google Scholar 

  50. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80(5):8091–8126

    Article  Google Scholar 

  51. Corus D, Oliveto PS (2020) On the benefits of populations for the exploitation speed of standard steady-state genetic algorithms. Algorithmica 82:3676–3706

    Article  MathSciNet  MATH  Google Scholar 

  52. Reeves C (2003) Genetic algorithms. Springer, USA

    MATH  Google Scholar 

  53. Mulvey JM, Beck MP (1984) Solving capacitated clustering problems. Eur J Oper Res 18(3):339–348

    Article  MATH  Google Scholar 

  54. Adenso-Diaz B, Laguna M (2006) Fine-tuning of algorithms using fractional experimental designs and local search. Oper Res 54(1):99–114

    Article  MATH  Google Scholar 

  55. Buyukozkan K, Kucukkoc I, Satoglu SI, Zhang DZ (2016) Lexicographic bottleneck mixed-model assembly line balancing problem: artificial bee colony and tabu search approaches with optimized parameters. Expert Syst Appl 50:151–166

    Article  Google Scholar 

  56. Duncan DB (1955) Multiple ranges and multiple F tests. Biometrics 11:1–42

    Article  MathSciNet  Google Scholar 

  57. Tukey J (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114

    Article  MathSciNet  Google Scholar 

  58. Url-1. http://www.lac.inpe.br/~lorena/instancias.html. Last access date: June 1st, 2021

  59. Url-2. http://www-usr.inf.ufsm.br/~stefanello/instances/CPMP/group2/. Last access date: July 12st, 2021

Download references

Acknowledgements

This study has been financially supported by the Turkish National Science Foundation (TUBITAK) with project number 215M143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sule Itir Satoglu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A–Results of parameter tuning

Appendix A–Results of parameter tuning

See Tables

Table 5 Fine-tuned parameter values for the test problems according to the DOE

5,

Table 6 Parameters for different N*P values

6,

Table 7 Impact of the parameter tuning

7,

Table 8 Analyzed parameter values for the real data problem SJC1

8,

Table 9 MANOVA multivariate test results

9,

Table 10 MANOVA tests of between-subjects effects

10,

Table 11 Result of Post-hoc test for the population size (p_size)

11,

Table 12 Result of post-hoc test for the mutation probability (mp)

12 and

Table 13 Result of post-hoc test for the iteration number (max_iter)

13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksuz, M.K., Buyukozkan, K., Bal, A. et al. A genetic algorithm integrated with the initial solution procedure and parameter tuning for capacitated P-median problem. Neural Comput & Applic 35, 6313–6330 (2023). https://doi.org/10.1007/s00521-022-08010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08010-w

Keyword

Navigation