Skip to main content
Log in

Developing artificial neural network models to predict corrosion of reinforcement in mechanically stabilized earth walls

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Corrosion of reinforcement in mechanically stabilized earth (MSE) walls is mainly due to physical and chemical properties of back-fill materials, types of metal reinforcement, and environmental factors. Therefore, it is imperative to evaluate the corrosion levels of reinforcement in the design and construction of MSE walls. This study employed artificial neural networks (ANN) to build prediction models of corrosion of reinforcement (COR) based on collected corrosion factors from 489 in-situ boring samples of MSE walls on highways in France. The ANN models were built, trained and achieved the best performance at an ANN structure (12-20-18-1) with one input layer (12 neurons), two hidden layers (20 and 18 neurons) and one output layer (1 neuron). The results have shown that the proposed model can provide a high coefficient correlation (R = 0.878) and a low mean squared error (MSE = 0.00454 µm2). Furthermore, a sensitivity study has shown that the factors of sulfate ion (SO42−), humidity, and time were the most important variables which influenced COR values. The research work could contribute significantly to geotechnical engineering with an optimal ANN model to predict the COR values of reinforcement metal in MSE walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ANN:

Artificial neural network

COR:

Corrosion of reinforcement

MSE walls:

Mechanically stabilized earth walls

R :

Coefficient of correlation

MSE:

Mean squared error

RMSE:

Root mean squared error

R 2 :

Coefficient of determination

w :

Weight

θ :

Bias

W :

Humidity

R es :

Resistivity

b :

Average width

E 0 :

Average thickness

N :

Tensile strength

F :

Tensile force of reinforcement

ε :

Elongation

E zn :

Zinc thickness

t :

Time

References

  1. Hai DH (2012) Design and construction of reinforced earth walls. Vietnam Construction Publishing House Limited Company (in Vietnamese)

  2. Department of Transportation Federal Highway Administration, FHWA-NHI-00-043 (2001) Mechanically stabilized earth walls and reinforced soil slopes design & construction guidelines

  3. Chau T-L, Corfdir A, Bourgeois E (2016) Corrosion des armatures sur le comportement des murs en terre armée—effect of reinforcement corrosion on the behavior of earth walls reinforced by steel elements (Soustitre: Scénarios de corrosion des armatures métalliques et les dégradations du mur en terre armée), ISBN 978-3-8417-2710-7, Éditions Universitaires Européennes (EUE)

  4. Mirmirani S, Rrokaj T (2018) A study in practice: evaluating the life expectancy of an MSE wall with steel strip reinforcement, conference of the Transportation Association of Canada

  5. Beckham TL, Sun L, Hopkins TC (2005) Corrosion evaluation of mechanically stabilized earth walls, University of Kentucky

  6. Siddharthan RV, Thornley J, Luke B (2010) Investigation of corrosion of MSE walls in Nevad, University of Nevada

  7. Bozorgzadeh N, Bathurst R, Allen T (2020) Influence of corrosion on reliability-based design of steel grid MSE walls. Mater Sci. https://doi.org/10.1016/j.strusafe.2019.101914

    Article  Google Scholar 

  8. Hu B, Luo Z (2018) Life-cycle reliability-based assessment of internal stability for mechanically stabilized earth walls in a heavy haul railway. Comput Geotech. https://doi.org/10.1016/j.compgeo.2018.04.023

    Article  Google Scholar 

  9. Al-Rawabdeh A, Aldosari M, Bullock D, Habib A (2020) Mobile LiDAR for scalable monitoring of mechanically stabilized earth walls with smooth panels. Appl Sci 10(13):4480. https://doi.org/10.3390/app10134480

    Article  Google Scholar 

  10. Darbin M, Jailloux và J-M, Montuelle J (1988) Durability of reinforced earth structures: the results of a long-term study conducted on galvanized steel. Proc Inst Civ Eng 84(1):1029-1057. https://doi.org/10.1680/IICEP.1988.508

  11. Li S, Kim Y-G, Jung S, Song H-S, Lee S-M (2007) Application of steel thin film electrical resistance sensor for in situ corrosion monitoring. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2006.02.029

    Article  Google Scholar 

  12. Padilla V, Ghods P, Alfantazi A (2013) Effect of de-icing salts on the corrosion performance of galvanized steel in sulphate contaminated soil. Constr Build Mater 40:908–918. https://doi.org/10.1016/j.conbuildmat.2012.09.077

    Article  Google Scholar 

  13. Chau T-L, Nguyen T-H, Vu D-P (2021) A study on the main factors affecting the reinforcement corrosion in mechanically stabilized earth walls and predict the service life of the wall. Lect Notes Civ Eng 203:987–996. https://doi.org/10.1007/978-981-16-7160-9_100

    Article  Google Scholar 

  14. Padila V, Ghods P, Alfantazi A (2014) Parametric studies and application of a practical model for corrosion of galvanized steel in soil. Corrosion 70(12):1189–1202. https://doi.org/10.5006/1284

    Article  Google Scholar 

  15. Sadowski L, Nikoo M (2014) Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm. Neural Comput Appl 25:1627–1638. https://doi.org/10.1007/s00521-014-1645-6

    Article  Google Scholar 

  16. Imam A, Anifowose F, Azad AK (2015) Residual strength of corroded reinforced concrete beams using an adaptive model based on ANN. Int J Concrete Struct Mater 9(2):159–172. https://doi.org/10.1007/s40069-015-0097-4

    Article  Google Scholar 

  17. Roxas CLC, Lejano BA (2019) An artificial neural network model for the corrosion current density of steel in mortar mixed with seawater. Int J Geomate. https://doi.org/10.21660/2019.56.458515

    Article  Google Scholar 

  18. El-Abbasya MS, Senoucib A, Zayeda T, Mirahadia F, Parvizsedghya L (2014) Artificial neural network models for predicting condition of offshore oil and gas pipelines. Autom Constr 45:50–65. https://doi.org/10.1016/j.autcon.2014.05.003

    Article  Google Scholar 

  19. Nwankwo CO, Ihueze CC (2018) Corrosion rate models for oil and gas pipeline systems: a numerical approach. Int J Eng Tech Res. https://doi.org/10.17577/IJERTV7IS080082

    Article  Google Scholar 

  20. Chen X, Wang L, Huang Z (2020) Principal component analysis based dynamic fuzzy neural network for internal corrosion rate prediction of gas pipelines. Math Probl Eng 2020:Article ID 3681032. https://doi.org/10.1155/2020/3681032

  21. Ossai CI (2020) Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation. Eng Fail Anal. https://doi.org/10.1016/j.engfailanal.2020.104397

    Article  Google Scholar 

  22. Xua Y, Jinb R (2018) measurement of reinforcement corrosion in concrete adopting ultrasonic tests and artificial neural network. Constr Build Mater 177:125–133. https://doi.org/10.1016/j.conbuildmat.2018.05.124

    Article  Google Scholar 

  23. Tiep VH (2018) Basic machine learning. Publishing Scientific and Technical

  24. Pham BT, Sing SK, Ly HB (2020) Using artificial neural network (ANN) for prediction of soil coefficient of consolidation. Viet Acad Sci Technol 42(4):311–319. https://doi.org/10.15625/0866-7187/42/4/15008

    Article  Google Scholar 

  25. Moayedi H, Mosallanezhad M, Rashid ASA, Jusoh WAW (2020) MA Muazu (2019) A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput Appl 32:495–518. https://doi.org/10.1007/s00521-019-04109-9

    Article  Google Scholar 

  26. Gordan B, Koopialipoor M, Clementking A et al (2019) Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques. Eng Comput 35:945–954. https://doi.org/10.1007/s00366-018-0642-2

    Article  Google Scholar 

  27. L-De Arriba-Rodríguez, F Ortega-Fernández, JM Villanueva-Balsera, V Rodríguez-Montequín, (2021) Corrosion predictive model in hot-dip galvanized steel buried in soil. Res Article Open Access. https://doi.org/10.1155/2021/9275779

    Article  Google Scholar 

  28. Elias V, Fishman KL, Christopher BR, Berg RR (2009) Corrosion/degradation of soil reinforcements for mechanically stabilized earth walls and reinforced soil slopes, Department of Transportation Federal Highway Administration, FHWA-NHI-09-087

  29. AFNOR EN P94-270:2020 Calcul géotechnique Ouvrages de soutènement

  30. NFP 94-050 (1995) Sols: Reconnaissance et Essais - Détermination de la teneur en eau pondérale des matériaux – Méthode par étuvage, Association Francaise de Normalisation

  31. AFNOR A05-250 (1990) Corrosion par les sols - Évaluation de la corrosivité - Canalisations enterrées en matériaux ferreux non ou peu allies, Association Francaise de Normalisation

  32. NF T90-014 (2017) Essais des eaux - Dosage des ions chlore, Association Francaise de Normalisation

  33. NF T90-009 (2008) Essais des eaux - Dosage des ions sulfate - Méthode gravimétrique, Association Francaise de Normalisation

  34. A05-252 (1990) Corrosion dans les sols - Aciers galvanisés ou non mis au contact de matériaux naturels de remblai (sols), Association Francaise de Normalisation

  35. BS 8006-1:2010—Code of practice for strengthened/reinforced soils and other fills. ISBN 978 0 580 53842 1

  36. Padila V, Ghods P, Alfantazi A (2013) A novel model to predict the corrosion of mechanically stabilized earth structures. In: Conference of the Transportation Association of Canada Winnipeg, Manitoba

  37. Klinesmith DE, McCuen RH, Albrecht P (2007) Effect of environmental conditions on corrosion Rates. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(121)

    Article  Google Scholar 

  38. Kim Y, Oh H (2021) Comparison between multiple regression analysis, polynomial regression analysis, and an artificial neural network for tensile strength prediction of BFRP and GFRP. Materials 14:4861. https://doi.org/10.3390/ma14174861

    Article  Google Scholar 

  39. Dung TQ, Ha LT, Khang PD (2019) Using artificial neural network to predict porosity. Viet Oil Gas J 7:18–27

    Google Scholar 

  40. Oreta A (2012) Artificial neural networks: multi-layer feedforward networks using back propagation, CIV578D Lecture Notes, De La Salle University-Manila

  41. Nguyen T, Nguyen-Phuoc DQ, Wong YD (2021) Developing artificial neural networks to estimate real-time onboard bus ride comfort. Neural Comput Appl 33:5287–5299. https://doi.org/10.1007/s00521-020-05318-3

    Article  Google Scholar 

  42. Tran TTT, Nguyen T, Pham PN, Nguyen HH, Nguyen PQ (2021) Thermal distribution in cement-treated base: effect of curing methods and temperature estimation using. Artif Neural Netw Constr Build Mater 279:122528. https://doi.org/10.1016/j.conbuildmat.2021.122528

    Article  Google Scholar 

  43. Olden JD, Jackson DA (2002) Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol Model 154:135–150. https://doi.org/10.1016/S0304-3800(02)00064-9

    Article  Google Scholar 

  44. Ibrahim OM (2013) A comparison of methods for assessing the relative importance of input variables in artificial neural networks. J Appl Sci Res 9(11):5692–5700

    Google Scholar 

  45. Garson GD (1991) Interpreting neural-network connection weights. AI Expert 6(4):46–51

    Google Scholar 

  46. Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178:389–397. https://doi.org/10.1016/j.ecolmodel.2004.03.013

    Article  Google Scholar 

  47. Beck MW (2018) NeuralNetTools: visualization and analysis tools for neural networks. J Stat Softw 85(11):66. https://doi.org/10.18637/jss.v085.i11

    Article  Google Scholar 

  48. Kolay PK, Tajhya D, Mondal K (2019) Corrosion of steel in MSE walls due to deicers and backfill aggregates. Geotech Geol Eng 38:2493–2507

    Article  Google Scholar 

  49. Pham VN, Oh E, Ong DEL (2022) Effects of binder types and other significant variables on the unconfined compressive strength of chemical-stabilized clayey soil using gene-expression programming. Neural Comput Appl. https://doi.org/10.1007/s00521-022-06931-0

    Article  Google Scholar 

  50. Pham V-N, Oh E, Ong DEL (2021) Gene-expression programming-based model for estimating the compressive strength of cement-fly ash stabilized soil and parametric study. Infrastructures 6(12):181. https://doi.org/10.3390/infrastructures6120181

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The University of Danang, University of Science and Technology, the code number of Project: T2022-02-21.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Truong-Linh Chau or Tung Hoang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TH., Chau, TL., Hoang, T. et al. Developing artificial neural network models to predict corrosion of reinforcement in mechanically stabilized earth walls. Neural Comput & Applic 35, 6787–6799 (2023). https://doi.org/10.1007/s00521-022-08043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08043-1

Keywords

Navigation