Skip to main content

Advertisement

Log in

Passive ship detection and classification using hybrid cepstrums and deep compound autoencoders

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The acoustic noise radiated from various ships in the same class is varying due to the changing machinery regimes, the multi-path propagation effect, time-varying underwater channels, and fluctuating ambient noise. The complex underwater propagation environment causes random fluctuations in the frequency, amplitude, and phase of the signal at the receiver point. Hence, in order to overcome the aforementioned problems, this study proposes a novel deep convolutional-recurrent autoencoder, evolving by a compound cepstral lifter. In this approach, the compound autoencoders automatically extract the features without information loss and human intervention, and hybrid cepstral lifters reduce the multi-path distortion and time-varying shallow underwater channel effects. In order to evaluate the performance of the proposed model, three underwater acoustic datasets, including synthetic, ShipsEar, and real experimental datasets, are exploited. For the sake of having a comprehensive comparison, the performance of the designed model is compared with ten recently proposed benchmark models. The results approve that the designed model with an average accuracy of 96.11% and average giga-multiplier–accumulators equal to 0.019 reports the best accuracy and complexity than other benchmark models. Furthermore, the proposed model is less sensitive to SNR level compared to other benchmark models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets presented in this article are not publicly available because confidentiality agreement is required. Requests to access the datasets should be directed to hamed.agahi@iau.ac.ir.

Notes

  1. Available at http://atlanttic.uvigo.es/underwaternoise/.

References

  1. Chen H, Li S (2022) Collinear nonlinear mixed-frequency ultrasound with FEM and experimental method for structural health prognosis. Processes 10:656

    Google Scholar 

  2. Liu W, Liu L, Wu H, Chen Y, Zheng X, Li N, et al (2022) Performance analysis and offshore applications of the diffuser augmented tidal turbines. Ships Offshore Struct 1–10

  3. Zong C, Wang H (2022) An improved 3D point cloud instance segmentation method for overhead catenary height detection. Comput Electr Eng 98:107685

    Google Scholar 

  4. Liao L, Du L, Guo Y (2021) Semi-supervised SAR target detection based on an improved faster R-CNN. Remote Sens 14:143

    Google Scholar 

  5. Zong C, Wan Z (2022) Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation. Brodogr Teor i Praksa Brodogr i Pomor Teh 73:23–35

    Google Scholar 

  6. Zheng W, Cheng J, Wu X, Sun R, Wang X, Sun X (2022) Domain knowledge-based security bug reports prediction. Knowl-Based Syst 241:108293

    Google Scholar 

  7. Wang Y, Wang H, Zhou B, Fu H (2021) Multi-dimensional prediction method based on Bi-LSTMC for ship roll. Ocean Eng 242:110106

    Google Scholar 

  8. Chen H, Li S (2022) Multi-sensor fusion by CWT-PARAFAC-IPSO-SVM for intelligent mechanical fault diagnosis. Sensors 22:3647

    Google Scholar 

  9. Zhang L, Zhang H, Cai G (2022) The multi-class fault diagnosis of wind turbine bearing based on multi-source signal fusion and deep learning generative model. IEEE Trans Instrum Meas

  10. Zhou W, Wang H, Wan Z (2022) Ore image classification based on improved CNN. Comput Electr Eng 99:107819

    Google Scholar 

  11. Liu K, Ke F, Huang X, Yu R, Lin F, Wu Y et al (2021) DeepBAN: a temporal convolution-based communication framework for dynamic WBANs. IEEE Trans Commun 69:6675–6690

    Google Scholar 

  12. Chen X, Liu Y, Achuthan K, Zhang X (2020) A ship movement classification based on automatic identification system (AIS) data using convolutional neural network. Ocean Eng 218:108182

    Google Scholar 

  13. Qiao W, Khishe M, Ravakhah S (2021) Underwater targets classification using local wavelet acoustic pattern and Multi-Layer Perceptron neural network optimized by modified whale optimization algorithm. Ocean Eng 219:108415. https://doi.org/10.1016/j.oceaneng.2020.108415

    Article  Google Scholar 

  14. Gong X, Wang L, Mou Y, Wang H, Wei X, Zheng W et al (2022) Improved four-channel pbtdpa control strategy using force feedback bilateral teleoperation system. Int J Control Autom Syst 20:1002–1017

    Google Scholar 

  15. Meng F, Pang A, Dong X, Han C, Sha X (2018) H∞ optimal performance design of an unstable plant under bode integral constraint. Complexity 2018

  16. Chen Z, Xue J, Wu C, Qin L, Liu L, Cheng X (2018) Classification of vessel motion pattern in inland waterways based on automatic identification system. Ocean Eng 161:69–76

    Google Scholar 

  17. Khishe M, Mohammadi H (2019) Passive sonar target classification using multi-layer perceptron trained by salp swarm algorithm. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2019.04.013

    Article  Google Scholar 

  18. Luo G, Yuan Q, Li J, Wang S, Yang F (2022) Artificial intelligence powered mobile networks: from cognition to decision. IEEE Netw 36:136–144

    Google Scholar 

  19. Jeong U-C, Kim J-S, Kim Y-D, Oh J-E (2016) Reduction of radiated exterior noise from the flexible vibrating plate of a rectangular enclosure using multi-channel active control. Appl Acoust 105:45–54

    Google Scholar 

  20. Zhang J, Liu W, Li L, Li Z (2018) The master adaptive impedance control and slave adaptive neural network control in underwater manipulator uncertainty teleoperation. Ocean Eng 165:465–479

    Google Scholar 

  21. Zou M-S, Liu S-X, Yang Y-N (2021) On near-and far-field acoustic radiation characteristics of ships in finite-depth water environment. Appl Acoust 172:107644

    Google Scholar 

  22. Das A, Kumar A, Bahl R (2010) Radiated signal characteristics of marine vessels in the cepstral domain for shallow underwater channel. J Acoust Soc Am 128:EL151–EL156

    Google Scholar 

  23. Malliouri DI, Memos CD, Tampalis ND, Soukissian TH, Tsoukala VK (2019) Integrating short-and long-term statistics for short-crested waves in deep and intermediate waters. Appl Ocean Res 82:346–361

    Google Scholar 

  24. Arase EM, Arase T (1967) Ambient sea noise in the deep and shallow ocean. J Acoust Soc Am 42:73–77

    Google Scholar 

  25. Tani G, Viviani M, Hallander J, Johansson T, Rizzuto E (2016) Propeller underwater radiated noise: a comparison between model scale measurements in two different facilities and full scale measurements. Appl Ocean Res 56:48–66

    Google Scholar 

  26. Khishe M, Mosavi MR (2020) Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm. Appl Acoust. https://doi.org/10.1016/j.apacoust.2019.107005

    Article  Google Scholar 

  27. Wang S, Zeng X (2014) Robust underwater noise targets classification using auditory inspired time–frequency analysis. Appl Acoust 78:68–76

    Google Scholar 

  28. Zhang C, Mousavi AA, Masri SF, Gholipour G, Yan K, Li X (2022) Vibration feature extraction using signal processing techniques for structural health monitoring: a review. Mech Syst Signal Process 177:109175

    Google Scholar 

  29. Lin P, Liu PL-F (1998) A numerical study of breaking waves in the surf zone. J Fluid Mech 359:239–264

    MATH  Google Scholar 

  30. Liu PL-F, Lin P, Chang K-A, Sakakiyama T (1999) Numerical modeling of wave interaction with porous structures. J Waterw Port Coastal Ocean Eng 125:322–330

    Google Scholar 

  31. Song X, Wang S, Hu Z, Li H (2019) A hybrid rayleigh and weibull distribution model for the short-term motion response prediction of moored floating structures. Ocean Eng 182:126–136. https://doi.org/10.1016/j.oceaneng.2019.04.059

    Article  Google Scholar 

  32. Datta N, Thekinen JD (2016) A rayleigh-ritz based approach to characterize the vertical vibration of non-uniform hull girder. Ocean Eng 125:113–123. https://doi.org/10.1016/j.oceaneng.2016.07.046

    Article  Google Scholar 

  33. Wang Q, Gong X (2009) Analysis of non-rayleigh reverberation model with ocean experiment data in coastal area. Kybernetes. https://doi.org/10.1108/03684920910994024

    Article  Google Scholar 

  34. Abraham DA, Lyons AP (2010) Reliable methods for estimating the K-distribution shape parameter. IEEE J Ocean Eng 35:288–302. https://doi.org/10.1109/JOE.2009.2025645

    Article  Google Scholar 

  35. Swanson DC, Hirsch SM, Reichard KM, Tichy J (1999) Development of a frequency-domain filtered-x intensity ANC algorithm. Appl Acoust 57:39–49

    Google Scholar 

  36. Aunsri N, Chamnongthai K (2021) Stochastic description and evaluation of ocean acoustics time-series for frequency and dispersion estimation using particle filtering approach. Appl Acoust 178:108010

    Google Scholar 

  37. Najafzadeh M, Barani GA, Azamathulla HM (2013) GMDH to predict scour depth around a pier in cohesive soils. Appl Ocean Res 40:35–41. https://doi.org/10.1016/j.apor.2012.12.004

    Article  Google Scholar 

  38. Wang Y, Yuan LP, Khishe M, Moridi A, Mohammadzade F (2020) Training RBF NN using sine-cosine algorithm for sonar target classification. Arch Acoust. https://doi.org/10.24425/aoa.2020.135281

    Article  Google Scholar 

  39. Zhou G, Zhang R, Huang S (2021) Generalized buffering algorithm. IEEE Access 9:27140–27157

    Google Scholar 

  40. Lazakis I, Raptodimos Y, Varelas T (2018) Predicting ship machinery system condition through analytical reliability tools and artificial neural networks. Ocean Eng 152:404–415. https://doi.org/10.1016/j.oceaneng.2017.11.017

    Article  Google Scholar 

  41. Wang Y, Han L, Liu W, Yang S, Gao Y (2019) Study on wavelet neural network based anomaly detection in ocean observing data series. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2019.106129

    Article  Google Scholar 

  42. Mosavi MR, Khishe M, Moridi A (2016) Classification of sonar target using hybrid particle swarm and gravitational search. IJMT 3:1–13

    Google Scholar 

  43. Khishe M, Mosavi MR (2019) Improved whale trainer for sonar datasets classification using neural network. Appl Acoust. https://doi.org/10.1016/j.apacoust.2019.05.006

    Article  Google Scholar 

  44. Chen J, Du L, Guo Y (2021) Label constrained convolutional factor analysis for classification with limited training samples. Inf Sci (Ny) 544:372–394

    MathSciNet  MATH  Google Scholar 

  45. Li J, Xu K, Chaudhuri S, Yumer E, Zhang H, Guibas L (2017) Grass: generative recursive autoencoders for shape structures. ACM Trans Graph 36:1–14

    Google Scholar 

  46. Li Y, Du L, Wei D (2021) Multiscale CNN based on component analysis for SAR ATR. IEEE Trans Geosci Remote Sens 60:1–12

    Google Scholar 

  47. Feng Y, Zhang B, Liu Y, Niu Z, Dai B, Fan Y et al (2021) A 200–225-GHz manifold-coupled multiplexer utilizing metal waveguides. IEEE Trans Microw Theory Tech 69:5327–5333

    Google Scholar 

  48. Bonet-Solà D, Alsina-Pagès RM (2021) A comparative survey of feature extraction and machine learning methods in diverse acoustic environments. Sensors 21:1274

    Google Scholar 

  49. Garg A, Sharma P. (2016) Survey on acoustic modeling and feature extraction for speech recognition. In: 2016 3rd international conference on computing for sustainable global development (INDIACom). IEEE, p 2291–2295

  50. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal. https://doi.org/10.3233/IDA-1997-1302

    Article  Google Scholar 

  51. Sharma G, Umapathy K, Krishnan S (2020) Trends in audio signal feature extraction methods. Appl Acoust. https://doi.org/10.1016/j.apacoust.2019.107020

    Article  Google Scholar 

  52. Goldobin DS, Teramae JN, Nakao H, Ermentrout GB (2010) Dynamics of limit-cycle oscillators subject to general noise. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.105.154101

    Article  MATH  Google Scholar 

  53. Xiang M, Wang Z, Liu J (2015) Extracting array acoustic logging signal information by combining fractional Fourier transform and Choi-Williams distribution. Appl Acoust 90:111–115. https://doi.org/10.1016/j.apacoust.2014.11.004

    Article  Google Scholar 

  54. Yang S, Li Z (2003) Classification of ship-radiated signals via chaotic features. Electron Lett 39:395–397

    Google Scholar 

  55. Li Y, Li Y, Chen X (2017) Ships’ radiated noise feature extraction based on EEMD. J Vib Shock 36:114–119

    Google Scholar 

  56. Yu L, Ma N, Gu X (2016) Early detection of parametric roll by application of the incremental real-time Hilbert-Huang Transform. Ocean Eng 113:224–236. https://doi.org/10.1016/j.oceaneng.2015.12.050

    Article  Google Scholar 

  57. Li Y, Li Y, Chen X, Yu J (2018) Feature extraction of ship-radiated noise based on VMD and center frequency. J Vib Shock 37:213–218

    Google Scholar 

  58. Li Y, Jiao S, Geng B, Zhou Y (2021) Research on feature extraction of ship-radiated noise based on multi-scale reverse dispersion entropy. Appl Acoust 173:107737

    Google Scholar 

  59. Fortuna P, Nunes S (2018) A survey on automatic detection of hate speech in text. ACM Comput Surv. https://doi.org/10.1145/3232676

    Article  Google Scholar 

  60. Zhang T, Shao Y, Wu Y, Geng Y, Fan L (2020) An overview of speech endpoint detection algorithms. Appl Acoust. https://doi.org/10.1016/j.apacoust.2019.107133

    Article  Google Scholar 

  61. Babaee E, Anuar NB, Abdul Wahab AW, Shamshirband S, Chronopoulos AT (2017) An overview of audio event detection methods from feature extraction to classification. Appl Artif Intell. https://doi.org/10.1080/08839514.2018.1430469

    Article  Google Scholar 

  62. Lurton X (2010) An introduction to underwater acoustics. https://doi.org/10.1007/978-3-642-13835-5

  63. Karimi R, Shokri V, Khishe M (2020) Marine propellers design using slime mould optimization algorithm to improve the efficiency and reduce the cavitation. IJMT 8(1):69–90

    Google Scholar 

  64. Qian S, Chen D (1999) Joint time-frequency analysis. IEEE Signal Process Mag 16(2):52–67

    Google Scholar 

  65. Chu S, Member S, Narayanan S, Kuo CJ (2009) Time – frequency audio features. Language (Baltim) 17(6):1142–1158

    Google Scholar 

  66. Quian S, Chen D (1998) Joint time-frequency analysis: methods and applications

  67. Mallat SG (2009) A theory for multiresolution signal decomposition: the wavelet representation. Fundamental papers in wavelet theory. Princeton University Press, New Jersey, pp 494–513. https://doi.org/10.1515/9781400827268.494

    Chapter  Google Scholar 

  68. Zibulevsky M, Pearlmutter BA (2001) Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. https://doi.org/10.1162/089976601300014385

    Article  MATH  Google Scholar 

  69. Selesnick IW (2011) Resonance-based signal decomposition: a new sparsity-enabled signal analysis method. Signal Process 91:2793–2809. https://doi.org/10.1016/j.sigpro.2010.10.018

    Article  Google Scholar 

  70. Jia H, Wang W, Mei S (2021) Combining adaptive sparse NMF feature extraction and soft mask to optimize DNN for speech enhancement. Appl Acoust. https://doi.org/10.1016/j.apacoust.2020.107666

    Article  Google Scholar 

  71. Huang NE, Shen Z, Long SR, Wu MC, Snin HH, Zheng Q et al (1998) The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rspa.1998.0193

    Article  Google Scholar 

  72. Frei MG, Osorio I (2007) Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals. Proc R Soc A Math Phys Eng Sci 463:321–342. https://doi.org/10.1098/rspa.2006.1761

    Article  MathSciNet  MATH  Google Scholar 

  73. Yeh JR, Peng CK, Huang NE (2016) Scale-dependent intrinsic entropies of complex time series. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2015.0204

    Article  MATH  Google Scholar 

  74. Tu W, Zhong S, Incecik A, Fu X (2018) Defect feature extraction of marine protective coatings by terahertz pulsed imaging. Ocean Eng 155:382–391. https://doi.org/10.1016/j.oceaneng.2018.01.033

    Article  Google Scholar 

  75. Lyon RF (2010) Machine hearing: an emerging field. IEEE Signal Process Mag. https://doi.org/10.1109/MSP.2010.937498

    Article  Google Scholar 

  76. Lyon RF (2017) Human and machine hearing: extracting meaning from sound. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781139051699

    Book  Google Scholar 

  77. Zhang T, Mustiere F, Micheyl C (2016) Intelligent hearing aids: the next revolution. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC). https://doi.org/10.1109/EMBC.2016.7590643.

  78. Einsidler D, Dhanak M, Beaujean PP (2019) A deep learning approach to target recognition in side-scan sonar imagery. In: Ocean. 2018 MTS/IEEE Charleston, Ocean 2018. https://doi.org/10.1109/OCEANS.2018.8604879

  79. Santos-Domínguez D, Torres-Guijarro S, Cardenal-López A, Pena-Gimenez A (2016) ShipsEar: an underwater vessel noise database. Appl Acoust 113:64–69

    Google Scholar 

  80. Das A, Kumar A, Bahl R (2013) Marine vessel classification based on passive sonar data: the cepstrum-based approach. IET Radar Sonar Navig 7:87–93

    Google Scholar 

  81. Jensen FB, Ferla CM (1990) Numerical solutions of range-dependent benchmark problems in ocean acoustics. J Acoust Soc Am 87:1499–1510

    Google Scholar 

  82. Doan V-S, Huynh-The T, Kim D-S (2020) Underwater acoustic target classification based on dense convolutional neural network. IEEE Geosci Remote Sens Lett

  83. Hong F, Liu C, Guo L, Chen F, Feng H (2021) Underwater acoustic target recognition with a residual network and the optimized feature extraction method. Appl Sci 11:1442

    Google Scholar 

  84. Li C, Liu Z, Ren J, Wang W, Xu J (2020) A feature optimization approach based on inter-class and intra-class distance for ship type classification. Sensors 20:5429

    Google Scholar 

  85. Yang H, Gu H, Yin J, Yang J (2020) GAN-based sample expansion for underwater acoustic signal. In: Journal of physics: conference series, vol 1544. IOP Publishing, p 12104

  86. Wang Y, Han X, Jin S (2022) MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wirel Networks 1–22

  87. Huang J, Zhao J, Xie Y (1997) Source classification using pole method of AR model. In: 1997 IEEE international conference on acoustics, speech, and signal processing, vol 1. IEEE, pp 567–70

  88. Manolakis DG, Ingle VK, Kogon SM (2000) Statistical and adaptive signal processing: spectral estimation, signal modeling, adaptive filtering, and array processing

  89. Dudani SA (1976) The distance-weighted k-nearest-neighbor rule. IEEE Trans Syst Man Cybern 325–327.

  90. Byun H, Lee S-W (2002) Applications of support vector machines for pattern recognition: a survey. International workshop on support vector machines. Springer, New York, pp 213–236

    MATH  Google Scholar 

  91. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305

    MathSciNet  MATH  Google Scholar 

  92. Zhang J, Zhu C, Zheng L, Xu K (2021) ROSEFusion: random optimization for online dense reconstruction under fast camera motion. ACM Trans Graph 40:1–17

    Google Scholar 

  93. Sui T, Marelli D, Sun X, Fu M (2020) Multi-sensor state estimation over lossy channels using coded measurements. Automatica 111:108561

    MathSciNet  MATH  Google Scholar 

  94. Sedgwick P (2012) Pearson’s correlation coefficient. Bmj 345

  95. Krishnamoorthy K (2020) Wilcoxon signed-rank test. In: Handbook of statistical distributions with applications. pp 339–342. https://doi.org/10.1201/9781420011371-34

  96. Li C, Dong M, Li J, Xu G, Chen X-B, Liu W, et al (2022) Efficient medical big data management with keyword-searchable encryption in healthchain. IEEE Syst J

  97. Zheng H, Jin S (2022) A multi-source fluid queue based stochastic model of the probabilistic offloading strategy in a MEC system with multiple mobile devices and a single MEC server. Int J Appl Math Comput Sci 32

  98. Wu H, Jin S, Yue W (2022) Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. J Syst Sci Syst Eng 31:133–149

    Google Scholar 

  99. Zhao H, Zhu C, Xu X, Huang H, Xu K (2022) Learning practically feasible policies for online 3D bin packing. Sci China Inf Sci 65:1–17

    MathSciNet  Google Scholar 

  100. Fernandes RP, Apolinário Jr JA (n.d.) Underwater target classification with optimized feature selection based on Genetic Algorithms

  101. Testolin A, Kipnis D, Diamant R (2020) Detecting submerged objects using active acoustics and deep neural networks: a test case for pelagic fish. IEEE Trans Mob Comput

  102. Ke X, Yuan F, Cheng E (2018) Underwater acoustic target recognition based on supervised feature-separation algorithm. Sensors 18:4318

    Google Scholar 

  103. Liu F, Shen T, Luo Z, Zhao D, Guo S (2021) Underwater target recognition using convolutional recurrent neural networks with 3-D Mel-spectrogram and data augmentation. Appl Acoust 178:107989

    Google Scholar 

  104. Hu G, Wang K, Liu L (2020) An features extraction and recognition method for underwater acoustic target based on ATCNN. ArXiv Preprint http://arxiv.org/abs/2011.14336.

  105. Dumpala SH, Sheikh I, Chakraborty R, Kopparapu SK (2019) A Cycle-GAN approach to model natural perturbations in speech for ASR applications. ArXiv Preprint http://arxiv.org/abs/1912.1115.

  106. Ashraf H, Jeong Y-S, Lee CH (2020) Improved CycleGAN for underwater ship engine audio translation. J Acoust Soc Korea 39:292–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Agahi.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalipour, M., Agahi, H., Khishe, M. et al. Passive ship detection and classification using hybrid cepstrums and deep compound autoencoders. Neural Comput & Applic 35, 7833–7851 (2023). https://doi.org/10.1007/s00521-022-08075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08075-7

Keywords

Navigation