Skip to main content

Advertisement

Log in

A hybrid artificial intelligence model for design of reinforced concrete columns

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the optimum design of structures, the optimization process is an iterative one and it may last a long time. If the structural plan is updated, the optimization process is needed to be redone since dimensions and internal forces change. Also, the local market prices may show differences and the proposed design may not be the optimum anymore. To skip the optimization process, intelligence methods can be used to predict the optimum values. In the study, a model is proposed for cost optimum results of reinforced concrete columns. A hybrid method is presented that uses harmony search as a metaheuristic method in the optimum design and multi-layer perceptions as a type of artificial neural networks in machine learning to generate a model. The prediction results were evaluated for several error metrics, and the model is feasible in proposing optimum solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. Lertpalangsunti N, Chan CW, Mason R, Tontiwachwuthikul P (1999) A toolset for construction of hybrid intelligent forecasting systems: Application for water demand prediction. Artif Intell Eng 13(1):21–42

    Article  Google Scholar 

  2. Msiza IS, Nelwamondo FV, Marwala T (2008) Water demand prediction using artificial neural networks and support vector regression. J Comput 3(11):1

    Article  Google Scholar 

  3. Brentan BM, Luvizotto E Jr, Herrera M, Izquierdo J, Pérez-García R (2017) Hybrid regression model for near real-time urban water demand forecasting. J Comput Appl Math 309:532–541

    Article  MathSciNet  MATH  Google Scholar 

  4. Zubaidi SL, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim KS, Gharghan SK, Kot P, Al-Khaddar R (2020) Urban water demand prediction for a city that suffers from climate change and population growth: gauteng province case study. Water 12(7):1885

    Article  Google Scholar 

  5. Hu W, Xiao X, Xie D, Tan T, Maybank S (2004) Traffic accident prediction using 3-D model-based vehicle tracking. IEEE Trans Veh Technol 53(3):677–694

    Article  Google Scholar 

  6. Sikka S (2014) Prediction of road accidents in Delhi using back propagation neural network model. Int J Comput Sci Eng Technol (IJCSET) 5(08):798–804

  7. Wenqi L, Dongyu L, Menghua Y (2017) A model of traffic accident prediction based on convolutional neural network, In: 2017 2nd IEEE international conference on intelligent transportation engineering (ICITE), pp. 198–202

  8. Huang HC, Chang YL, Lan TH, Chiu HJ, Liu WM, Lee TJF (2008) Prediction of optimal lithium doses for Taiwanese psychiatric patients. J Clin Pharm Ther 33(2):115–121

    Article  Google Scholar 

  9. Grossi E, Podda GM, Pugliano M, Gabba S, Verri A, Carpani G, Buscema M, Casazza G, Cattaneo M (2014) Prediction of optimal warfarin maintenance dose using advanced artificial neural networks. Pharmacogenomics 15(1):29–37

    Article  Google Scholar 

  10. McDonald JF, Mezencev R, Long TQ, Benigno B, Bonta I, Del Priore G (2015) Accurate prediction of optimal cancer drug therapies from molecular profiles by a machine-learning algorithm. J Clin Oncol 33(15_suppl):e22182–e22182. https://doi.org/10.1200/jco.2015.33.15_suppl.e22182

    Article  Google Scholar 

  11. Huang C, Mezencev R, McDonald JF, Vannberg F (2017) Open source machine-learning algorithms for the prediction of optimal cancer drug therapies. PLoS ONE 12(10):e0186906

    Article  Google Scholar 

  12. Koo C, Hong T, Hyun C (2011) The development of a construction cost prediction model with improved prediction capacity using the advanced CBR approach. Expert Syst Appl 38(7):8597–8606

    Article  Google Scholar 

  13. Magdum SK, Adamuthe AC (2017) Construction cost prediction using neural networks. ICTACT J Soft Comput 8(1):1549–1556

    Article  Google Scholar 

  14. Shutian F, Tianyi Z, Ying Z (2017) Prediction of construction projects’ costs based on fusion method. Eng Comput 34(7):2396–2408

    Article  Google Scholar 

  15. Chakraborty D, Elhegazy H, Elzarka H, Gutierrez L (2020) A novel construction cost prediction model using hybrid natural and light gradient boosting. Adv Eng Inform 46:101201. https://doi.org/10.1016/j.aei.2020.101201

    Article  Google Scholar 

  16. Yucel M, Bekdaş G, Nigdeli SM, Sevgen S (2019) Estimation of optimum tuned mass damper parameters via machine learning. J Build Eng 26:100847

    Article  Google Scholar 

  17. Yucel M, Kayabekir AE, Nigdeli SM, Bekdaş G (2020) Optimum design of carbon fiber-reinforced polymer (CFRP) beams for shear capacity via machine learning methods: optimum prediction methods on advance ensemble algorithms–bagging combinations. In: Bekdaş G, Nigdeli SM, Yücel M (eds) Artificial intelligence and machine learning applications in civil, mechanical, and industrial engineering. IGI Global, pp 85–103. https://doi.org/10.4018/978-1-7998-0301-0.ch005

    Chapter  Google Scholar 

  18. Yucel M, Bekdaş G, Nigdeli SM (2021) Decision-making model based multilayer perceptrons for estimation of optimum design properties for truss structure. Challenge 7(4):170–179

    Google Scholar 

  19. Bekdaş G, Yücel M, Nigdeli SM (2021) Estimation of optimum design of structural systems via machine learning. Front Struct Civ Eng 15(6):1441–1452. https://doi.org/10.1007/s11709-021-0774-0

    Article  Google Scholar 

  20. Yücel M, Nigdeli SM, Kayabekir AE, Bekdaş G (2021) Optimization and artificial neural network models for reinforced concrete members. In: Carbas S, Toktas A, Ustun D (eds) Nature-inspired metaheuristic algorithms for engineering optimization applications. Springer Singapore, Singapore, pp 181–199. https://doi.org/10.1007/978-981-33-6773-9_9

    Chapter  MATH  Google Scholar 

  21. Yücel M, Bekdaş G, Nigdeli SM, Kayabekir AE (2021) An artificial intelligence-based prediction model for optimum design variables of reinforced concrete retaining walls. Int J Geomech 21(12):04021244

    Article  Google Scholar 

  22. Camp CV, Assadollahi A (2015) CO2 and cost optimization of reinforced concrete footings subjected to uniaxial uplift. J Build Eng 3:171–183

    Article  Google Scholar 

  23. Paya-Zaforteza I, Yepes V, Hospitaler A, Gonzalez-Vidosa F (2009) CO2-optimization of reinforced concrete frames by simulated annealing. Eng Struct 31(7):1501–1508

    Article  MATH  Google Scholar 

  24. Yepes V, Gonzalez-Vidosa F, Alcala J, Villalba P (2012) CO 2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386

    Article  Google Scholar 

  25. Arama ZA, Kayabekir AE, Bekdaş G, Geem ZW (2020) CO2 and cost optimization of reinforced concrete cantilever soldier piles: a parametric study with harmony search algorithm. Sustainability 12(15):5906

    Article  Google Scholar 

  26. Yeo D, Potra FA (2015) Sustainable design of reinforced concrete structures through CO2 emission optimization. J Struct Eng 141(3):B4014002

    Article  Google Scholar 

  27. Bekdaş G, Nigdeli SM (2016) Optimum design of reinforced concrete columns employing teaching learning-based optimization. Chall J Struct Mech 2(4):216–219

    Google Scholar 

  28. Bekdaş G, Nigdeli SM (2015) Optimization of reinforced concrete columns subjected to uniaxial loading. In: Lagaros ND, Papadrakakis M (eds) Engineering and applied sciences optimization. Springer International Publishing, Cham, pp 399–412. https://doi.org/10.1007/978-3-319-18320-6_21

    Chapter  Google Scholar 

  29. Bekdas G, Nigdeli SM (2014) The optimization of slender reinforced concrete columns. PAMM 14(1):183–184

    Article  Google Scholar 

  30. Nigdeli SM, Bekdas G, Kim S, Geem ZW (2015) A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Struct Eng Mech Int J 54(6):1097–1109

    Article  Google Scholar 

  31. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  32. ACI Committee. Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05)

  33. Han J, Kamber M (2006) Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann, California

    MATH  Google Scholar 

  34. Olivas ES, Guerrero JDM, Sober MM, Benedito JRM, López AJS (eds) (2009) Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI Global, Hershey, New York

    Google Scholar 

  35. Sarle WS (1994) Neural networks and statistical models. In: Proceedings of the nineteenth annual sas users group International conference, April 1994. Cary-USA, SAS Institute, pp. 1538–1550

  36. Chou JS, Lin CW, Pham AD, Shao JY (2015) Optimized artificial intelligence models for predicting project award price. Autom Constr 54:106–115

    Article  Google Scholar 

  37. MATLAB Mathworks Matlab (2018a) Neural net fitting, https://www.mathworks.com/ help/deeplearning/ref/neuralnetfitting-app.html, last accessed 2021/11/01.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebrail Bekdaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigdeli , S.M., Yücel, M. & Bekdaş, G. A hybrid artificial intelligence model for design of reinforced concrete columns. Neural Comput & Applic 35, 7867–7875 (2023). https://doi.org/10.1007/s00521-022-08164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-08164-7

Keywords