Skip to main content
Log in

Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Data-driven control methods are strong tools due to their predictions for controlling the systems with a nonlinear dynamic model. In this paper, the Koopman operator is used to linearize the nonlinear dynamic model. Generating the Koopman operator is the most important part of using the Koopman theory. Dynamic mode decomposition (DMD) is used to obtain eigenfunction for producing the Koopman operator. Then, a fractional order PID (FOPID) controller is applied to control the linearized dynamic model. A swarm intelligence bat optimization algorithm is utilized to tune the FOPID controller’s parameters. Simulation results on micro-electromechanical systems (MEMS) gyroscope under conventional PID controller, FOPID, Koopman-based FOPID controller (Koopman-FOPID), and Koopman-FOPID control optimized by bat algorithm (Koopman-BAFOPID) show that the proposed Koopman-BAFOPID controller has better performance in comparison with three other controllers in terms of high tracking performance, low tracking error, and low control efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Solouk MR, Shojaeefard MH, Dahmardeh M (2019) Parametric topology optimization of a MEMS gyroscope for automotive applications. Mech Syst Signal Process 128:389–404

    Article  Google Scholar 

  2. Classen, J., Frey, J., Kuhlmann, B., Ernst, P., & Bosch, R. (2007, August). MEMS gyroscopes for automotive applications. In Advanced Microsystems for Automotive Applications (pp. 291–306). Berlin, Germany: Springer.

  3. Zhang WJ, Lin Y (2010) On the principle of design of resilient systems–application to enterprise information systems. Enterprise Information Systems 4(2):99–110

    Article  Google Scholar 

  4. Gao S, Liu L, Wang H, Wang A (2022) Data-driven model-free resilient speed control of an Autonomous Surface Vehicle in the presence of actuator anomalies. ISA Transact 127:251

    Article  Google Scholar 

  5. Xian B, Gu X, Pan X (2022) Data driven adaptive robust attitude control for a small size unmanned helicopter. Mech Syst Signal Process 177:109205

    Article  Google Scholar 

  6. Liu H, Cheng Q, Xiao J, Hao L (2021) Data-driven adaptive integral terminal sliding mode control for uncertain SMA actuators with input saturation and prescribed performance. ISA Transact 128:624

    Article  Google Scholar 

  7. Sun C, Dominguez-Caballero J, Ward R, Ayvar-Soberanis S, Curtis D (2022) Machining cycle time prediction: Data-driven modelling of machine tool feedrate behavior with neural networks. Robotics and Computer-Integrated Manufacturing 75:102293

    Article  Google Scholar 

  8. Chen WH, You F (2021) Semiclosed greenhouse climate control under uncertainty via machine learning and data-driven robust model predictive control. IEEE Trans Control Syst Technol 30(3):1186–1197

    Article  Google Scholar 

  9. Hadian M, Ramezani A, Zhang W (2022) An interpolation-based model predictive controller for input–output linear parameter varying systems. Inter J Dyn Cont 10:1–14

    MathSciNet  Google Scholar 

  10. Hadian M, Ramezani A, Zhang W (2021) robust model predictive controller using recurrent neural networks for input-output linear parameter varying systems. Electronics 10(13):1557

    Article  Google Scholar 

  11. Goswami D., and Paley DA (2021). Bilinearization, reachability, and optimal control of control-affine nonlinear systems: A Koopman spectral approach. IEEE Transact Automatic Cont

  12. Bruder D, Fu X, Gillespie RB, Remy CD, Vasudevan R (2020) Data-driven control of soft robots using koopman operator theory. IEEE Trans Rob 37(3):948–961

    Article  Google Scholar 

  13. Zanini F, Chiuso A (2021) Estimating Koopman operators for nonlinear dynamical systems: a nonparametric approach. IFAC-PapersOnLine 54(7):691–696

    Article  Google Scholar 

  14. Jiang L, Liu N (2022) Correcting noisy dynamic mode decomposition with Kalman filters. J Comput Phys 461:111175

    Article  MathSciNet  MATH  Google Scholar 

  15. Ling E, Zheng, L, Ratliff LJ, & Coogan, S (2020). Koopman operator applications in signalized traffic systems. IEEE Transact Intell Transport Syst

  16. Wilches-Bernal F, Reno MJ, Hernandez-Alvidrez J (2021) A Dynamic Mode Decomposition Scheme to Analyze Power Quality Events. IEEE Access 9:70775–70788

    Article  Google Scholar 

  17. Mamakoukas G, Castano M, Tan X, & Murphey, T (2019). Local Koopman operators for data-driven control of robotic systems. In Robotics: Science and Systems.

  18. Ping Z, Yin Z, Li X, Liu Y, Yang T (2021) Deep Koopman model predictive control for enhancing transient stability in power grids. Int J Robust Nonlinear Control 31(6):1964–1978

    Article  Google Scholar 

  19. Rahmani M, Ghanbari A, Ettefagh MM (2016) Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst Appl 56:164–176

    Article  Google Scholar 

  20. Rahmani M, Komijani H, Ghanbari A, Ettefagh MM (2018) Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsyst Technol 24(6):2835–2846

    Article  Google Scholar 

  21. Fei, J., & Chu, Y. (2016, August). Dynamic global PID sliding mode control for MEMS gyroscope using adaptive neural controller. In: 2016 joint 8th international conference on soft computing and intelligent systems (SCIS) and 17th international symposium on advanced intelligent systems (ISIS) (pp. 16–21). IEEE.

  22. Marino R, Scalzi S, Netto M (2011) Nested PID steering control for lane keeping in autonomous vehicles. Control Eng Pract 19(12):1459–1467

    Article  Google Scholar 

  23. Yoon J, Doh J (2022) Optimal PID control for hovering stabilization of quadcopter using long short term memory. Adv Eng Inform 53:101679

    Article  Google Scholar 

  24. Li JW, Chen XB, Zhang WJ (2010) Axiomatic-design-theory-based approach to modeling linear high order system dynamics. IEEE/ASME Trans Mechatron 16(2):341–350

    Article  Google Scholar 

  25. Liu L, Zhang L, Pan G, Zhang S (2022) Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller. Ocean Eng 257:111493

    Article  Google Scholar 

  26. Erol H (2021) Stability analysis of pitch angle control of large wind turbines with fractional order PID controller. Sustainable Energy, Grids and Networks 26:100430

    Article  Google Scholar 

  27. Yang, XS (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg

  28. Perwaiz U, Younas I, Anwar AA (2020) Many-objective BAT algorithm. PLoS ONE 15(6):e0234625

    Article  Google Scholar 

  29. Lakshmanaprabu SK, Elhoseny M, Shankar K (2019) Optimal tuning of decentralized fractional order PID controllers for TITO process using equivalent transfer function. Cogn Syst Res 58:292–303

    Article  Google Scholar 

  30. Chaib L, Choucha A, Arif S (2017) Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm. Ain Shams Eng J 8(2):113–125

    Article  Google Scholar 

  31. Fang Y, Fu W, Ding H, Fei J (2022) Modeling and neural sliding mode control of mems triaxial gyroscope. Adv Mech Eng 14(3):16878132221085876

    Article  Google Scholar 

  32. Lu C, & Fei J (2016). Adaptive sliding mode control of MEMS gyroscope with prescribed performance. In: 2016 14th international workshop on variable structure systems (VSS) (pp. 65–70). IEEE.

  33. Guo Y, Xu B, Zhang R (2020) Terminal sliding mode control of mems gyroscopes with finite-time learning. IEEE Transact Neural Netw Learn Syst 32(10):4490–4498

    Article  MathSciNet  Google Scholar 

  34. Rahmani M, Rahman MH, Nosonovsky M (2020) A new hybrid robust control of MEMS gyroscope. Microsyst Technol 26(3):853–860

    Article  Google Scholar 

  35. Yan W, Hou S, Fang Y, Fei J (2017) Robust adaptive nonsingular terminal sliding mode control of MEMS gyroscope using fuzzy-neural-network compensator. Int J Mach Learn Cybern 8(4):1287–1299

    Article  Google Scholar 

  36. Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of Koopman eigenfunctions for control. Mach Learn: Sci Technol 2(3):035023

    Google Scholar 

  37. Snyder G, & Song Z (2021) Koopman operator theory for nonlinear dynamic modeling using dynamic mode decomposition. arXiv preprint arXiv:2110.08442.

  38. Malarvili S, Mageshwari S (2022) Nonlinear PID (N-PID) controller for SSSP grid connected inverter control of photovoltaic systems. Electric Power Syst Res 211:108175

    Article  Google Scholar 

  39. Guo TY, Lu LS, Lin SY, Hwang C (2022) Design of maximum-stability PID controllers for LTI systems based on a stabilizing-set construction method. J Taiwan Inst Chem Eng 135:104366

    Article  Google Scholar 

  40. Yan L, Webber JL, Mehbodniya A, Moorthy B, Sivamani S, Nazir S, Shabaz M (2022) Distributed optimization of heterogeneous UAV cluster PID controller based on machine learning. Comput Electr Eng 101:108059

    Article  Google Scholar 

  41. Abdelouahab MS, Hamri NE (2016) The Grünwald-Letnikov fractional-order derivative with fixed memory length. Mediterr J Math 13(2):557–572

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang XS (2012). Bat algorithm for multi-objective optimisation. arXiv preprint arXiv:1203.6571.

  43. Sathya MR, Ansari MMT (2015) Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system. Int J Electr Power Energy Syst 64:365–374

    Article  Google Scholar 

  44. Mitić M, Miljković Z (2015) Bio-inspired approach to learning robot motion trajectories and visual control commands. Expert Syst Appl 42(5):2624–2637

    Article  Google Scholar 

Download references

Funding

Funding was provide by Directorate for Engineering, National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangram Redkar.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Redkar, S. Data-driven Koopman fractional order PID control of a MEMS gyroscope using bat algorithm. Neural Comput & Applic 35, 9831–9840 (2023). https://doi.org/10.1007/s00521-023-08220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08220-w

Keywords

Navigation