Skip to main content
Log in

A novel parameter identification strategy based on COOT optimizer applied to a three-diode model of triple cation perovskite solar cells

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The remarkable optoelectronic characteristics of hybrid metal halide perovskite semiconductors, such as high defect tolerance, extended carrier lifetime and diffusion length, and adjustable optical bandgap, have garnered much interest in the last decade. Therefore, this paper considers the experimental and mathematical modeling of triple-cation perovskite solar cells (PSCs) with two different device structures. It is challenging to construct a reliable mathematical model of triple-cation perovskite solar cells based on the three-diode model due to its complex nature. This is related to the perovskite materials' dynamics, nonlinearity, and sensitivity. This paper proposes a novel method incorporating a recent metaheuristic algorithm named COOT optimizer to estimate the optimal parameters of the three-diode equivalent circuit of triple-cation perovskite solar cells. The key idea is to use the swarm intelligence-based COOT to optimally achieve the PV panel's optimal parameters. The identification method benefits from the exploration and exploitation abilities of the COOT algorithm to obtain its parameters effortlessly and precisely. Two experiments are conducted in this work; the first is measured IV datasets for a triple-cation perovskite (TC-per) solar cell at standard conditions. The second consists of the measured IV datasets for a triple-cation modified perovskite (TCM-per) perovskite solar cell. During the optimization process, the nine unknown parameters of the three-diode model (TDM) are used as decision variables. The objective function to be minimized is the root-mean-square error (RMSE) between the measured and estimated data. An extensive comparative study is presented with other optimizers of the whale optimization algorithm (WOA), seagull optimization algorithm (SOA), sine cosine algorithm (SCA), ant lion optimization (ALO), and dragonfly algorithm (DA). Furthermore, statistical analysis of ANOVA is performed. The obtained results confirm the superiority of the proposed method in constructing a reliable model of the three-diode model of PSCs as it provides the least RMSE between the measured and estimated characteristics of 1.61E−05 in the first dataset. In contrast, the poorest algorithm (SCA) provides 1.03E−04. Similarly, in the second dataset of experiments, COOT achieves the least RMSE of 1.82E−05; meanwhile, the largest RMSE of 1.03E−04 using ALO. Based on the strong correlation between experimental and theoretical results using the COOT algorithm, we proposed a theoretical way (close to reality) to get the photovoltaic parameters of ideality factor and parasitic resistances in perovskite solar cell devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Blaschke T, Biberacher M, Gadocha S, Schardinger I (2013) ‘Energy landscapes': meeting energy demands and human aspirations. Biomass Bioenergy 55:3–16. https://doi.org/10.1016/j.biombioe.2012.11.022.

  2. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim K-H (2018) Solar energy: potential and future prospects. Renew Sustain Energy Rev 82:894–900. https://doi.org/10.1016/j.rser.2017.09.094

    Article  Google Scholar 

  3. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  4. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. https://doi.org/10.1038/srep00591

    Article  Google Scholar 

  5. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(80):341–344. https://doi.org/10.1126/science.1243982.

  6. NREL. Best Research-Cell Efficiency Chart n.d. https://www.nrel.gov/pv/cell-efficiency.html.

  7. Wang R, Mujahid M, Duan Y, Wang Z, Xue J, Yang Y (2019) A review of perovskites solar cell stability. Adv Funct Mater 29:1808843. https://doi.org/10.1002/adfm.201808843

    Article  Google Scholar 

  8. Elsenety MM, Kaltzoglou A, Antoniadou M, Koutselas I, Kontos AG, Falaras P (2018) Synthesis, characterization and use of highly stable trimethyl sulfonium tin(IV) halide defect perovskites in dye sensitized solar cells. Polyhedron 150:83–91. https://doi.org/10.1016/j.poly.2018.05.001

    Article  Google Scholar 

  9. Elsenety MM, Antoniadou M, Kaltzoglou A, Kontos AG, Philippopoulos AI, Mitsopoulou CA, et al. Synthesis, characterization of ((CH3)3S)2SnI6-nCln and ((CH3)3S)2SnI6-nBrn (n=1, 2) perovskites and use in dye-sensitized solar cells. Mater Chem Phys 2020;239:122310. https://doi.org/10.1016/j.matchemphys.2019.122310.

  10. Zaky AA, Christopoulos E, Gkini K, Arfanis MK, Sygellou L, Kaltzoglou A et al (2021) Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer. Appl Catal B Environ 284:119714. https://doi.org/10.1016/j.apcatb.2020.119714.

  11. Sanad MMS, Elseman AM, Elsenety MM, Rashad MM, Elsayed BA (2019) Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. J Mater Sci Mater Electron 30:6868–6875. https://doi.org/10.1007/s10854-019-01001-z

    Article  Google Scholar 

  12. Kabanakis AN, Bidikoudi M, Elsenety MM, Vougioukalakis GC, Falaras P (2019) Synthesis of novel semi-squaraine derivatives and application in efficient dye-sensitized solar cells. Dye Pigment 165:308–318. https://doi.org/10.1016/j.dyepig.2019.02.028

    Article  Google Scholar 

  13. Elsenety MM, Antoniadou M, Balis N, Kaltzoglou A, Sygellou L, Stergiou A et al (2020) Stability improvement and performance reproducibility enhancement of perovskite solar cells following (FA/MA/Cs)PbI 3–x Br x /(CH 3) 3 SPbI 3 dimensionality engineering. ACS Appl Energy Mater 3:2465–2477. https://doi.org/10.1021/acsaem.9b02117

    Article  Google Scholar 

  14. Fan J, Ma Y, Zhang C, Liu C, Li W, Schropp REI et al (2018) Thermodynamically self-healing 1D–3D hybrid perovskite solar cells. Adv Energy Mater 8:1703421. https://doi.org/10.1002/aenm.201703421

    Article  Google Scholar 

  15. Gharibzadeh S, Abdollahi Nejand B, Jakoby M, Abzieher T, Hauschild D, Moghadamzadeh S et al (2019). Perovskite Solar Cells: Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure (Adv. Energy Mater. 21/2019). Adv Energy Mater 9:1970079. https://doi.org/10.1002/aenm.201970079.

  16. Kaltzoglou A, Manolis GK, Elsenety MM, Koutselas I, Psycharis V, Kontos AG et al (2019) Synthesis and characterization of lead-free (CH3)3SSnI3 1-D Perovskite. J Electron Mater 48:7533–7538. https://doi.org/10.1007/s11664-019-07591-y

    Article  Google Scholar 

  17. Kaltzoglou A, Elsenety MM, Koutselas I, Kontos AG, Papadopoulos K, Psycharis V et al (2018) Synthesis, characterization and optoelectronic properties of chemically stable (CH3)3SPbI3−xBrxand (CH3)3SPbI3−xClx (x = 0, 1, 2, 3) perovskites. Polyhedron 140:67–73. https://doi.org/10.1016/j.poly.2017.11.030

    Article  Google Scholar 

  18. Cho KT, Paek S, Grancini G, Roldán-Carmona C, Gao P, Lee Y et al (2017) Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ Sci 10:621–627. https://doi.org/10.1039/C6EE03182J

    Article  Google Scholar 

  19. Balis N, Zaky AA, Perganti D, Kaltzoglou A, Sygellou L, Katsaros F et al (2018) Dye sensitization of titania compact layer for efficient and stable perovskite solar cells. ACS Appl Energy Mater 1:6161–6171. https://doi.org/10.1021/acsaem.8b01221

    Article  Google Scholar 

  20. Said AA, Xie J, Wang Y, Wang Z, Zhou Y, Zhao K et al (2019) Efficient Inverted perovskite solar cells by employing NtType (D–A 1 –D–A 2) polymers as electron transporting layer. Small 15:1803339. https://doi.org/10.1002/smll.201803339

    Article  Google Scholar 

  21. Said AA, Xie J, Zhang Q (2019) Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 15:1900854. https://doi.org/10.1002/smll.201900854

    Article  Google Scholar 

  22. Wang N, Zhao K, Ding T, Liu W, Ahmed AS, Wang Z et al (2017) Improving interfacial charge recombination in planar heterojunction perovskite photovoltaics with small molecule as electron transport layer. Adv Energy Mater 7:1700522. https://doi.org/10.1002/aenm.201700522

    Article  Google Scholar 

  23. Gu P-Y, Wang N, Wang C, Zhou Y, Long G, Tian M, et al (2017) Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. J Mater Chem A 5:7339–7344. https://doi.org/10.1039/C7TA01764B.

  24. Balis N, Zaky AA, Athanasekou C, Silva AM, Sakellis E, Vasilopoulou M et al (2020) Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells. J Photochem Photobiol A Chem 386:112141. https://doi.org/10.1016/j.jphotochem.2019.112141.

  25. Zaky AA, El SRA, Rashwan YI, Elhossieni MA, Gkini K, Kladas A et al (2019) Optimal performance emulation of pscs using the elephant herd algorithm associated with experimental validation. ECS J Solid State Sci Technol 8:Q249–Q255. https://doi.org/10.1149/2.0271912jss

    Article  Google Scholar 

  26. Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L et al (2015) Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater 5:1500477. https://doi.org/10.1002/aenm.201500477

    Article  Google Scholar 

  27. Christians JA, Miranda Herrera PA, Kamat PV (2015) Transformation of the excited state and photovoltaic efficiency of CH 3 NH 3 PbI 3 perovskite upon controlled exposure to humidified air. J Am Chem Soc 137:1530–1538. https://doi.org/10.1021/ja511132a

    Article  Google Scholar 

  28. Zaky AA, Balis N, Gkini K, Athanasekou C, Kaltzoglou A, Stergiopoulos T et al (2020) Dye engineered perovskite solar cells under accelerated thermal stress and prolonged light exposure. ChemistrySelect 5:4454–4462. https://doi.org/10.1002/slct.202000771

    Article  Google Scholar 

  29. Nadeem A, Sher HA, Murtaza AF, Ahmed N (2021) Online current-sensorless estimator for PV open circuit voltage and short circuit current. Sol Energy 213:198–210. https://doi.org/10.1016/j.solener.2020.11.004

    Article  Google Scholar 

  30. Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2020) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551. https://doi.org/10.1007/s10489-020-01893-z

    Article  MATH  Google Scholar 

  31. Ismaeel AAK, Houssein EH, Oliva D, Said M (2021) Gradient-based optimizer for parameter extraction in photovoltaic models. IEEE Access 9:13403–13416. https://doi.org/10.1109/ACCESS.2021.3052153

    Article  Google Scholar 

  32. Soliman MA, Hasanien HM, Alkuhayli A (2020) Marine predators algorithm for parameters identification of triple-diode photovoltaic models. IEEE Access 8:155832–155842. https://doi.org/10.1109/ACCESS.2020.3019244

    Article  Google Scholar 

  33. Piliougine M, Guejia-Burbano RA, Petrone G, Sánchez-Pacheco FJ, Mora-López L, Sidrach-de-Cardona M (2021) Parameters extraction of single diode model for degraded photovoltaic modules. Renew Energy 164:674–686. https://doi.org/10.1016/j.renene.2020.09.035

    Article  Google Scholar 

  34. Khanna V, Das BK, Bisht D, Vandana, Singh PK (2015) A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew Energy 78:105–113. https://doi.org/10.1016/j.renene.2014.12.072.

  35. Ibrahim IA, Hossain MJ, Duck BC, Nadarajah M (2020) An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model. Energy Convers Manag 213:112872. https://doi.org/10.1016/j.enconman.2020.112872.

  36. EI-Negamy MS, Galal A, EI-Bayoumin GM (2015) Extraction of The unknown Parameters of a Photovoltaic Module From Manufacture Data Sheet. Int J Innov Sci Mod Eng 3:6–13.

  37. Jiang F, Dong L, Dai Q (2022) Designing a mixed multilayer wavelet neural network for solving ERI inversion problem with massive amounts of data: a hybrid STGWO-GD learning approach. IEEE Trans Cybern 52:925–936. https://doi.org/10.1109/TCYB.2020.2990319

    Article  Google Scholar 

  38. Jiang F, Wang K, Dong L, Pan C, Xu W, Yang K (2020) Deep-learning-based joint resource scheduling algorithms for hybrid MEC networks. IEEE Internet Things J 7:6252–6265. https://doi.org/10.1109/JIOT.2019.2954503

    Article  Google Scholar 

  39. Jiang F, Dong L, Wang K, Yang K, Pan C (2021) Distributed resource scheduling for large-scale MEC systems: a multi-agent ensemble deep reinforcement learning with imitation acceleration. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3113872

    Article  Google Scholar 

  40. Houssein EH, Younan M, Hassanien AE (2019) Nature-inspired algorithms: a comprehensive review. Hybrid Comput Intell, pp 1–25. https://doi.org/10.1201/9780429453427-1.

  41. Cubas J, Pindado S, de Manuel C (2014) Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert W-function. Energies 7:4098–4115. https://doi.org/10.3390/en7074098

    Article  Google Scholar 

  42. Cuce E, Cuce PM, Karakas IH, Bali T (2017) An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters. Energy Convers Manag 146:205–216. https://doi.org/10.1016/j.enconman.2017.05.022

    Article  Google Scholar 

  43. Ayang A, Wamkeue R, Ouhrouche M, Djongyang N, Essiane Salomé N, Pombe JK et al (2019) Maximum likelihood parameters estimation of single-diode model of photovoltaic generator. Renew Energy 130:111–121. https://doi.org/10.1016/j.renene.2018.06.039

    Article  Google Scholar 

  44. Blaifi S, Moulahoum S, Taghezouit B, Saim A (2019) An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm. Renew Energy 135:745–760. https://doi.org/10.1016/j.renene.2018.12.054

    Article  Google Scholar 

  45. Kukacka M (2003) Bayesian methods in artificial intelligence, pp 25–30.

  46. Russell S, Norvig P (2003) Artificial intelligence: a modern approach. Prentice Hall Series in Artificial Intelligence, New Jersey.

  47. Fister I, Yang XS, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestnik/Electrotechnical Rev 80:116–122

    Google Scholar 

  48. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864. https://doi.org/10.1016/j.eswa.2021.114864.

  49. Ibrahim MN, Rezk H, Al-Dhaifallah M, Sergeant P (2019) Solar array fed synchronous reluctance motor driven water pump: an improved performance under partial shading conditions. IEEE Access 7:77100–77115. https://doi.org/10.1109/ACCESS.2019.2922358

    Article  Google Scholar 

  50. Naruei I, Keynia F (2021) A new optimization method based on Coot bird natural life model. Expert Syst Appl. p 115352. https://doi.org/10.1016/j.eswa.2021.115352.

  51. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  52. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  53. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowledge-Based Syst 165:169–196. https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  54. Mirjalili S (2016) SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  55. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  56. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  57. Elsenety MM, Stergiou A, Sygellou L, Tagmatarchis N, Balis N, Falaras P (2020) Boosting perovskite nanomorphology and charge transport properties via a functional D–π-A organic layer at the absorber/hole transporter interface. Nanoscale 12:15137–15149. https://doi.org/10.1039/D0NR02562C

    Article  Google Scholar 

  58. Heiberger RM, Neuwirth E (2009) One-way ANOVA. R Through Excel. Springer, New York, pp 165–91. https://doi.org/10.1007/978-1-4419-0052-4_7.

  59. Iantovics LB (2021) Black-box-based mathematical modelling of machine intelligence measuring. Mathematics 9:681. https://doi.org/10.3390/math9060681

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union's Horizon 2020 Marie Curie Innovative Training Network 764787 "MAESTRO" project. M. Elsenety is thankful to the Greek Ministry of Foreign Affairs and the Egyptian Government for his PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hegazy Rezk.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. Non-financial competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezk, H., Elsenety, M.M., Ferahtia, S. et al. A novel parameter identification strategy based on COOT optimizer applied to a three-diode model of triple cation perovskite solar cells. Neural Comput & Applic 35, 10197–10219 (2023). https://doi.org/10.1007/s00521-023-08230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08230-8

Keywords

Navigation