Skip to main content
Log in

Fuzzy min–max neural networks: a bibliometric and social network analysis

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The amount of digital data in the universe is growing at an exponential rate with the rapid development of digital information, and this reveals new machine learning methods. Learning algorithms using hyperboxes are a subsection of machine learning methods. Fuzzy min–max neural network (FMNN) are one of the most common and advanced methods using hyperboxes. FMNN is a special type of NeuroFuzzy system that combines the artificial neural network and fuzzy set into a common framework. This paper conducts an extensive bibliometric and network analysis of FMNN literature. Two hundred and sixty-two publications are analysed from the period of 1992–2022. Several analyses are realized in order to identify trends, challenges and key points in a more scientific and objective way that affect the development of knowledge in the FMNN domain. It can be seen from bibliometric analysis that there is rapid development in the last 10 years. Social network analysis results show that Chee Peng Lim is the most active author in the network. Besides, the modifications of FMNN are generally developed for classification. However, there are still potential future research opportunities for clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bumblauskas D, Nold H, Bumblauskas P, Igou A (2017) Big data analytics: transforming data to action. Bus Process Manag J 23(3):703–720. https://doi.org/10.1108/BPMJ-03-2016-0056

    Article  Google Scholar 

  2. Joseph SR, Hlomani H, Letsholo K (2016) Data mining algorithms: an overview. Int J Comput Technol 15(6):6806–6813. https://doi.org/10.24297/ijct.v15i6.1615

    Article  Google Scholar 

  3. Pattekari SA, Parveen A (2012) Prediction system for heart disease using Naive Bayes. Int J Adv Comput Math Sci 3(3):290–294

    Google Scholar 

  4. Bhargavi P, Tech M, Jyothi DS (2009) Applying Naive Bayes data mining technique for classification of agricultural land soils. Int J Comput Sci Netw Secur 9(8):117–122

    Google Scholar 

  5. Sebe N, Lew MS, Cohen I, et al (2002) Emotion recognition using a Cauchy Naive Bayes classifier. In: 2002 International conference on pattern recognition, vol 1, pp 17–20

  6. Khamis HS, Cheruiyot KW, Kimani S (2014) Application of K-Nearest neighbor classification in medical data mining. Int J Inf Commun Technol Res 4(4):121–128

    Google Scholar 

  7. Triguero I, García-Gil D, Maillo J et al (2019) Transforming big data into smart data: an insight on the use of the k-nearest neighbors algorithm to obtain quality data. WIREs Data Min Knowl Discov 9:1–24. https://doi.org/10.1002/widm.1289

    Article  Google Scholar 

  8. Bing G (2009) Pattern recognition and classification for tactile sensor based on fuzzy decision tree. In: Cao B, Zhang C, Li T (eds) Fuzzy information and engineering. Springer, Berlin, pp 471–478

    Chapter  MATH  Google Scholar 

  9. Agarwal S (2012) Data mining in education: data classification and decision tree approach. Int J e-Educ, e-Bus, e-Manag e-Learn 2(2):140–144. https://doi.org/10.7763/IJEEEE.2012.V2.97

    Article  Google Scholar 

  10. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  11. Wang H (2012) Pattern classification with random decision forest. In: 2012 International conference on ındustrial control and electronics engineering, pp 128–130

  12. Kim H-C, Pang S, Je H-M et al (2002) Pattern classification using support vector machine. Ensemble 2:160–163. https://doi.org/10.1109/ICPR.2002.1048262

    Article  Google Scholar 

  13. Bhavsar H, Panchal MH (2012) A review on support vector machine for data classification. Int J Adv Res Comput Eng Technol 1(10):185–189

    Google Scholar 

  14. Yang X, Ye Y, Li X et al (2018) Hyperspectral image classification with deep learning models. IEEE Trans Geosci Remote Sens 56:5408–5423. https://doi.org/10.1109/TGRS.2018.2815613

    Article  Google Scholar 

  15. Shrestha A, Mahmood A (2019) Review of deep learning algorithms and architectures. IEEE Access 7:53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200

    Article  Google Scholar 

  16. Gaur P (2012) Neural networks in data mining. Int J Electron Comput Sci Eng 1(3):1449–1453

    Google Scholar 

  17. Singh DY, Chauhan AS (2009) Neural networks in data mining. J Theor Appl Inf Technol 5(1):36–42

    Google Scholar 

  18. Madni HA, Anwar Z, Shah MA (2017) Data mining techniques and applications—a decade review. In: 2017 23rd ınternational conference on automation and computing (ICAC). IEEE, Huddersfield, United Kingdom, pp 1–7

  19. Jain B, Kolhe V (2015) Survey on fuzzy min-max neural network classification. Int J Adv Res Comput Commun Eng 4(12):30–34

    Google Scholar 

  20. Jambhulkar RK (2014) A review on pattern classification using multilevel and other fuzzy min max neural network classifier. International Journal of Science and Research 3(12):898–900

    Google Scholar 

  21. Al Sayaydeh ON, Mohammed MF, Lim CP (2019) Survey of fuzzy min–max neural network for pattern classification variants and applications. IEEE Trans Fuzzy Syst 27:635–645. https://doi.org/10.1109/TFUZZ.2018.2865950

    Article  Google Scholar 

  22. Santhos Kumar A, Kumar A, Bajaj V, Singh GK (2021) Class label altering fuzzy min-max network and its application to histopathology image database. Expert Syst Appl 176:114880. https://doi.org/10.1016/j.eswa.2021.114880

    Article  Google Scholar 

  23. McCloskey M, Cohen NJ (1989) Catastrophic ınterference in connectionist networks: the sequential learning problem. In: Bower GH (ed) Psychology of learning and motivation. Academic Press, pp 109–165

    Google Scholar 

  24. Robins A (1993) Catastrophic forgetting in neural networks: the role of rehearsal mechanisms. In: Proceedings 1993 the first New Zealand ınternational two-stream conference on artificial neural networks and expert systems, pp 65–68

  25. Grossberg S (1976) Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectors. Biol Cybern 23:121–134. https://doi.org/10.1007/BF00344744

    Article  MathSciNet  MATH  Google Scholar 

  26. Simpson PK (1992) Fuzzy min-max neural networks—part 1: classification. IEEE Trans Neural Netw 3:776–786. https://doi.org/10.1109/72.159066

    Article  Google Scholar 

  27. Simpson PK (1993) Fuzzy min-max neural networks—part 2: clustering. IEEE Trans Fuzzy Syst 1:32–45. https://doi.org/10.1109/TFUZZ.1993.390282

    Article  Google Scholar 

  28. Gabrys B, Bargiela A (2000) General fuzzy min-max neural network for clustering and classification. IEEE Trans Neural Netw 11:769–783. https://doi.org/10.1109/72.846747

    Article  Google Scholar 

  29. Mohammed MF, Lim CP (2015) An enhanced fuzzy min–max neural network for pattern classification. IEEE Trans Neural Netw Learn Syst 26:417–429. https://doi.org/10.1109/TNNLS.2014.2315214

    Article  MathSciNet  Google Scholar 

  30. Wang Y, Huang W, Wang J (2021) Redefined fuzzy min-max neural network. In: 2021 International joint conference on neural networks (IJCNN), pp 1–8

  31. Boroumandzadeh M, Parvinnia E (2021) Automated classification of BI-RADS in textual mammography reports. Turk J Electr Eng Comput Sci 29:632–647

    Article  Google Scholar 

  32. Kulkarni S, Honwadkar K (2016) Review on classification and clustering using fuzzy neural networks. Int J Comput Appl 136:18–23. https://doi.org/10.5120/ijca2016908456

    Article  Google Scholar 

  33. Khuat TT, Ruta D, Gabrys B (2021) Hyperbox-based machine learning algorithms: a comprehensive survey. Soft Comput 25:1325–1363. https://doi.org/10.1007/s00500-020-05226-7

    Article  Google Scholar 

  34. Rizzi A, Panella M, Frattale Mascioli FM (2002) Adaptive resolution min-max classifiers. IEEE Trans Neural Netw 13(402):414. https://doi.org/10.1109/72.991426

    Article  Google Scholar 

  35. Kim HJ, Ryu TW, Nguyen TT et al (2004) A weighted fuzzy min-max neural network for pattern classification and feature extraction. In: Laganá A, Gavrilova ML, Kumar V et al (eds) computational science and its applications—ICCSA 2004. Springer, Berlin, pp 791–798

    Chapter  Google Scholar 

  36. Bargiela A, Pedrycz W, Tanaka M (2004) An inclusion/exclusion fuzzy hyperbox classifier. KES Journal 8:91–98. https://doi.org/10.3233/KES-2004-8204

    Article  Google Scholar 

  37. Nandedkar AV, Biswas PK (2007) A fuzzy min-max neural network classifier with compensatory neuron architecture. IEEE Trans Neural Netw 18:42–54. https://doi.org/10.1109/TNN.2006.882811

    Article  Google Scholar 

  38. Nandedkar AV, Biswas PK (2004) A fuzzy min-max neural network classifier with compensatory neuron architecture. In: Proceedings of the 17th ınternational conference on pattern recognition, 2004. ICPR 2004. pp 553–556 Vol 4

  39. Zhang H, Liu J, Ma D, Wang Z (2011) Data-core-based fuzzy min–max neural network for pattern classification. IEEE Trans Neural Netw 22:2339–2352. https://doi.org/10.1109/TNN.2011.2175748

    Article  Google Scholar 

  40. Davtalab R, Dezfoulian MH, Mansoorizadeh M (2014) Multi-level fuzzy min-max neural network classifier. IEEE Trans Neural Netw Learn Syst 25:470–482. https://doi.org/10.1109/TNNLS.2013.2275937

    Article  Google Scholar 

  41. Mirzamomen Z, Kangavari M (2016) Fuzzy min-max neural network based decision trees. Intell Data Anal 20(4):767–782. https://doi.org/10.3233/IDA-160831

    Article  Google Scholar 

  42. Porto A, Gomide F (2019) Granular evolving min-max fuzzy modeling. In: Proceedings of the 2019 conference of the ınternational fuzzy systems association and the European Society for fuzzy logic and technology (EUSFLAT 2019). Atlantis Press, Prague, Czech Republic, pp 14–21

  43. Liu J, Ma Y, Qu F, Zang D (2020) Semi-supervised fuzzy min–max neural network for data classification. Neural Process Lett 51:1445–1464. https://doi.org/10.1007/s11063-019-10142-5

    Article  Google Scholar 

  44. Alhroob E, Mohammed MF, Lim CP, Tao H (2019) A critical review on selected fuzzy min-max neural networks and their significance and challenges in pattern classification. IEEE Access 7:56129–56146. https://doi.org/10.1109/ACCESS.2019.2911955

    Article  Google Scholar 

  45. Meneganti M, Saviello FS, Tagliaferri R (1998) Fuzzy neural networks for classification and detection of anomalies. IEEE Trans Neural Netw 9:848–861. https://doi.org/10.1109/72.712157

    Article  Google Scholar 

  46. Quteishat A, Lim CP (2008) A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Appl Soft Comput J 8:985–995. https://doi.org/10.1016/j.asoc.2007.07.013

    Article  Google Scholar 

  47. Quteishat A, Lim CP, Tan KS (2010) A modified fuzzy min–max neural network with a genetic-algorithm-based rule extractor for pattern classification. IEEE Trans Syst Man Cybern Part A Syst Hum 40:641–650. https://doi.org/10.1109/TSMCA.2010.2043948

    Article  Google Scholar 

  48. Rajakumar BR, George A (2013) On hybridizing fuzzy min max neural network and firefly algorithm for automated heart disease diagnosis. In: 2013 fourth ınternational conference on computing, communications and networking technologies (ICCCNT), pp 1–5

  49. Forghani Y, Sadoghi Yazdi H (2015) Fuzzy min–max neural network for learning a classifier with symmetric margin. Neural Process Lett 42:317–353. https://doi.org/10.1007/s11063-014-9359-4

    Article  MATH  Google Scholar 

  50. Azad C, Jha VK (2016) A novel fuzzy min-max neural network and genetic algorithm-based ıntrusion detection system. In: Satapathy SC, Raju KS, Mandal JK, Bhateja V (eds) Proceedings of the second ınternational conference on computer and communication technologies. Springer India, New Delhi, pp 429–439

  51. Azad C, Jha VK (2017) Fuzzy min–max neural network and particle swarm optimization based intrusion detection system. Microsyst Technol 23:907–918. https://doi.org/10.1007/s00542-016-2873-8

    Article  Google Scholar 

  52. Mirzamomen Z, Kangavari MR (2017) Evolving fuzzy min–max neural network based decision trees for data stream classification. Neural Process Lett 45:341–363. https://doi.org/10.1007/s11063-016-9528-8

    Article  Google Scholar 

  53. Mohammed MF, Lim CP (2017) Improving the fuzzy min-max neural network with a k-nearest hyperbox expansion rule for pattern classification. Appl Soft Comput 52:135–145. https://doi.org/10.1016/j.asoc.2016.12.001

    Article  Google Scholar 

  54. Mohammed MF, Lim CP (2017) A new hyperbox selection rule and a pruning strategy for the enhanced fuzzy min–max neural network. Neural Netw 86:69–79. https://doi.org/10.1016/j.neunet.2016.10.012

    Article  Google Scholar 

  55. Sonule PM, Shetty BS (2017) An enhanced fuzzy min–max neural network with ant colony optimization based-rule-extractor for decision making. Neurocomputing 239:204–213. https://doi.org/10.1016/j.neucom.2017.02.017

    Article  Google Scholar 

  56. Alhroob E, Ghani NA (2018) Fuzzy min-max classifier based on new membership function for pattern classification: a conceptual solution. In: 2018 8th IEEE ınternational conference on control system, computing and engineering (ICCSCE), pp 131–135

  57. Al Sayaydeha ON, Mohammad MF (2019) Diagnosis of the parkinson disease using enhanced fuzzy min-max neural network and oner attribute evaluation method. In: 2019 International conference on advanced science and engineering (ICOASE). IEEE, Zakho, Duhok, Iraq, pp 64–69

  58. Waghmare JM, Kulkarni UV (2019) Unbounded recurrent fuzzy min-max neural network for pattern classification. In: 2019 International Joint conference on neural networks (IJCNN). IEEE, Budapest, Hungary, pp 1–8

  59. Pourpanah F, Lim CP, Wang X et al (2019) A hybrid model of fuzzy min–max and brain storm optimization for feature selection and data classification. Neurocomputing 333:440–451. https://doi.org/10.1016/j.neucom.2019.01.011

    Article  Google Scholar 

  60. Upasani N, Om H (2019) A modified neuro-fuzzy classifier and its parallel implementation on modern GPUs for real time intrusion detection. Appl Soft Comput 82:105595. https://doi.org/10.1016/j.asoc.2019.105595

    Article  Google Scholar 

  61. Xue L, Huang W, Wang J (2020) Ranking-based fuzzy min-max classification neural network. In: Wang G, Lin X, Hendler J et al (eds) Web information systems and applications. Springer, Cham, pp 352–364

    Chapter  Google Scholar 

  62. Chavan TR, Nandedkar AV (2020) A convolutional fuzzy min-max neural network. Neurocomputing 405:62–71. https://doi.org/10.1016/j.neucom.2020.04.003

    Article  Google Scholar 

  63. Kumar SA, Kumar A, Bajaj V, Singh GK (2020) An ımproved fuzzy min–max neural network for data classification. IEEE Trans Fuzzy Syst 28:1910–1924. https://doi.org/10.1109/TFUZZ.2019.2924396

    Article  Google Scholar 

  64. Dehariya AK, Shukla P (2020) Medical data classification using fuzzy min max neural network preceded by feature selection through moth flame optimization. Int J Adv Comput Sci Appl 11(12):655–662

    Google Scholar 

  65. Sun M, Huang W, Wang J (2021) Density-sorting-based convolutional fuzzy min-max neural network for ımage classification. In: 2021 International joint conference on neural networks (IJCNN), pp 1–8

  66. Pourpanah F, Wang D, Wang R, Lim CP (2021) A semisupervised learning model based on fuzzy min–max neural networks for data classification. Appl Soft Comput 112:107856. https://doi.org/10.1016/j.asoc.2021.107856

    Article  Google Scholar 

  67. Ma Y, Liu J, Qu F, Zhu H (2022) Evolved fuzzy min-max neural network for new-labeled data classification. Appl Intell 52:305–320. https://doi.org/10.1007/s10489-021-02259-9

    Article  Google Scholar 

  68. Seera M, Lim CP, Loo CK, Singh H (2015) A modified fuzzy min–max neural network for data clustering and its application to power quality monitoring. Appl Soft Comput 28:19–29. https://doi.org/10.1016/j.asoc.2014.09.050

    Article  Google Scholar 

  69. Seera M, Lim CP, Loo CK, Singh H (2016) Power quality analysis using a hybrid model of the fuzzy min–max neural network and clustering tree. IEEE Trans Neural Netw Learn Syst 27:2760–2767. https://doi.org/10.1109/TNNLS.2015.2502955

    Article  Google Scholar 

  70. Liu J, Ma Y, Zhang H et al (2017) A modified fuzzy min–max neural network for data clustering and its application on pipeline internal inspection data. Neurocomputing 238:56–66. https://doi.org/10.1016/j.neucom.2017.01.036

    Article  Google Scholar 

  71. Seera M, Randhawa K, Lim CP (2018) Improving the fuzzy min–max neural network performance with an ensemble of clustering trees. Neurocomputing 275:1744–1751. https://doi.org/10.1016/j.neucom.2017.10.025

    Article  Google Scholar 

  72. Hou P, Yue J, Deng H et al (2018) Contribution-factor based fuzzy min-max neural network: order-dependent clustering for fuzzy system ıdentification. Int J Comput Intell Syst 11:737–756. https://doi.org/10.2991/ijcis.11.1.57

    Article  Google Scholar 

  73. Tu LA, Thai VD, Minh VD (2019) ıncorporating unsupervised and semi-supervised learning in min-max neuron network for clustering data. In: Fujita H, Nguyen DC, Vu NP et al (eds) Advances in engineering research and application. Springer, Cham, pp 357–363

    Chapter  Google Scholar 

  74. Gabrys B (2002) Agglomerative learning algorithms for general fuzzy min-max neural Network. J VLSI Signal Process Syst Signal Image Video Technol 32:67–82. https://doi.org/10.1023/A:1016315401940

    Article  MATH  Google Scholar 

  75. Nandedkar BPK (2007) A general reflex fuzzy min-max neural network. Eng Lett 14:195–205

    Google Scholar 

  76. Donglikar NV, Waghmare JM (2017) An enhanced general fuzzy min-max neural network for classification. In: 2017 ınternational conference on ıntelligent computing and control systems (ICICCS), pp 757–764

  77. Khuat TT, Chen F, Gabrys B (2020) An ımproved online learning algorithm for general fuzzy min-max neural network. In: 2020 International Joint conference on neural networks (IJCNN). IEEE, Glasgow, United Kingdom, pp 1–9

  78. Khuat TT, Gabrys B (2021) Accelerated learning algorithms of general fuzzy min-max neural network using a novel hyperbox selection rule. Inf Sci 547:887–909. https://doi.org/10.1016/j.ins.2020.08.046

    Article  MathSciNet  Google Scholar 

  79. Khuat TT, Chen F, Gabrys B (2021) An effective multiresolution hierarchical granular representation based classifier using general fuzzy min-max neural network. IEEE Trans Fuzzy Syst 29:427–441. https://doi.org/10.1109/TFUZZ.2019.2956917

    Article  Google Scholar 

  80. Moral-Muñoz JA, Herrera-Viedma E, Santisteban-Espejo A, Cobo MJ (2020) Software tools for conducting bibliometric analysis in science: An up-to-date review. El Profesional de la Información 29:1–20. https://doi.org/10.3145/epi.2020.ene.03

    Article  Google Scholar 

  81. Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  82. Borgatti S, Everett M, Freeman l (2005) UCINET 6 for windows software for social network analysis. Harvard, MA, Analytic Technologies

  83. Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: a review and bibliometric analysis. Int J Prod Econ 162:101–114. https://doi.org/10.1016/j.ijpe.2015.01.003

    Article  Google Scholar 

  84. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239

    Article  Google Scholar 

  85. Weng CS, Chen WY, Hsu HY, Chien SH (2010) To study the technological network by structural equivalence. J High Technol Manag Res 21:52–63

    Article  Google Scholar 

  86. Casanueva C, Gallego Á, García-Sánchez MR (2016) Social network analysis in tourism. Curr Issue Tour 19:1190–1209

    Article  Google Scholar 

  87. Wasserman S, Faust K (1994) Social network analysis: methods and applications, 1st edn. Cambridge University Press

    Book  MATH  Google Scholar 

  88. Luce RD, Perry AD (1949) A method of matrix analysis of group structure. Psychometrika 14:95–116

    Article  MathSciNet  Google Scholar 

  89. Kim JS, Jang W, Bien Z (1996) A dynamic gesture recognition system for the Korean sign language (KSL). IEEE Trans Syst Man Cybern Part B (Cybern) 26:354–359

    Article  Google Scholar 

  90. Lee CS, Bien Z, Park GT, et al (1997) Real-time recognition system of Korean sign language based on elementary components. In: 1997 IEEE ınternational conference on fuzzy systems, pp 1463–1468, vol 3

  91. Chiu HP, Tseng DC (1997) Invariant handwritten Chinese character recognition using fuzzy min-max neural networks. Pattern Recognit Lett 18:481–491

    Article  Google Scholar 

  92. Jawarkar NP (2007) Emotion recognition using prosody features and a fuzzy min-max neural classifier. IETE Tech Rev 24:369–373

    Google Scholar 

  93. Chaudhari BM, Barhate AA, Bhole AA (2009) Signature recognition using fuzzy min-max neural network. In: Communication and energy conservation 2009 ınternational conference on control, automation, pp 1–7

  94. Chaudhari BM, Patil RS, Rane KP, Shinde UB (2010) Online signature classification using modified fuzzy min-max neural network with compensatory neuron topology. In: Ranka S, Banerjee A, Biswas KK et al (eds) Contemporary computing. Springer, Berlin, pp 467–478

    Chapter  Google Scholar 

  95. Patil ME, Borole MV (2012) Signature recognition using Krawtchouk moments. In: 2012 Third ınternational conference on computing, communication and networking technologies (ICCCNT’12), pp 1–5

  96. Doye DD, Kulkarni UV, Sontakke TR (2002) Speech recognition using modified fuzzy hypersphere neural network. In: Proceedings of the 2002 ınternational joint conference on neural networks. IJCNN’02 (Cat. No.02CH37290). IEEE, Honolulu, HI, USA, pp 65–68

  97. Jawarkar NP, Holambe RS, Basu TK (2011) Use of fuzzy min-max neural network for speaker identification. In: 2011 International conference on recent trends in ınformation technology (ICRTIT), pp 178–182

  98. Seera M, Lim CP (2014) A hybrid intelligent system for medical data classification. Expert Syst Appl 41:2239–2249. https://doi.org/10.1016/j.eswa.2013.09.022

    Article  Google Scholar 

  99. Seera M, Lim CP, Ishak D, Singh H (2012) Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM–CART model. IEEE Trans Neural Netw Learn Syst 23:97–108. https://doi.org/10.1109/TNNLS.2011.2178443

    Article  Google Scholar 

  100. Seera M, Lim CP, Nahavandi S, Loo CK (2014) Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models. Expert Syst Appl 41:4891–4903. https://doi.org/10.1016/j.eswa.2014.02.028

    Article  Google Scholar 

  101. Seera M, Lim CP, Ishak D, Singh H (2013) Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model. Appl Soft Comput 13:4493–4507. https://doi.org/10.1016/j.asoc.2013.08.002

    Article  Google Scholar 

  102. Nandedkar AV, Biswas PK (2009) A granular reflex fuzzy min–max neural network for classification. IEEE Trans Neural Netw 20:1117–1134. https://doi.org/10.1109/TNN.2009.2016419

    Article  Google Scholar 

  103. Arsene C, Al-Dabass D, Hartley J (2012) Decision support system for water distribution systems based on neural networks and graphs. In: 2012 UKSim 14th ınternational conference on computer modelling and simulation, pp 315–323

  104. Bouchachia A (2011) Fuzzy classification in dynamic environments. Soft Comput 15:1009–1022. https://doi.org/10.1007/s00500-010-0657-0

    Article  Google Scholar 

  105. Kim H-J, Lee JS, Yang H-S (2007) Human action recognition using a modified convolutional neural network. In: Liu D, Fei S, Hou Z et al (eds) Advances in neural networks—ISNN 2007. Springer, Berlin, pp 715–723

    Chapter  Google Scholar 

  106. Kim H-J, Lee JS, Park J-H (2008) Dynamic hand gesture recognition using a CNN model with 3D receptive fields. In: 2008 ınternational conference on neural networks and signal processing, pp 14–19

  107. Lorrain F, White HC (1971) Structural equivalence of individuals in social networks. J Math Sociol 1:49–80. https://doi.org/10.1080/0022250X.1971.9989788

    Article  Google Scholar 

  108. Burt R (1982) Toward a structural theory of action: network models of social structure, perception, and action. Academic Press, New York

    Book  Google Scholar 

  109. White HC, Boorman SA, Breiger RL (1976) Social structure from multiple networks. A blockmodels of roles and positions. Am J Sociol. https://doi.org/10.1086/226141

    Article  Google Scholar 

  110. Li G-Z, Yang J, Ye C-Z, Geng D-Y (2006) Degree prediction of malignancy in brain glioma using support vector machines. Comput Biol Med 36:313–325. https://doi.org/10.1016/j.compbiomed.2004.11.003

    Article  Google Scholar 

  111. Joshi A, Ramakrishman N, Houstis EN, Rice JR (1997) On neurobiological, neuro-fuzzy, machine learning, and statistical pattern recognition techniques. IEEE Trans Neural Netw 8:18–31. https://doi.org/10.1109/72.554188

    Article  Google Scholar 

  112. Panella M, Gallo AS (2005) An input-output clustering approach to the synthesis of ANFIS networks. IEEE Trans on Fuzzy Syst 13:69–81. https://doi.org/10.1109/TFUZZ.2004.839659

    Article  Google Scholar 

  113. Wang X, Yang J, Jensen R, Liu X (2006) Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Comput Methods Programs Biomed 83:147–156. https://doi.org/10.1016/j.cmpb.2006.06.007

    Article  Google Scholar 

  114. Gabrys B (2002) Neuro-fuzzy approach to processing inputs with missing values in pattern recognition problems. Int J Approx Reason 30:149–179. https://doi.org/10.1016/S0888-613X(02)00070-1

    Article  MathSciNet  MATH  Google Scholar 

  115. Ganapathy S, Sethukkarasi R, Yogesh P et al (2014) An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization. Sadhana 39:283–302. https://doi.org/10.1007/s12046-014-0236-7

    Article  MathSciNet  MATH  Google Scholar 

  116. Quteishat A, Peng Lim C, Tweedale J, Jain LC (2009) A neural network-based multi-agent classifier system. Neurocomputing 72:1639–1647. https://doi.org/10.1016/j.neucom.2008.08.012

    Article  Google Scholar 

  117. Chang FJ, Liang JM, Chen YC (2001) Flood forecasting using radial basis function neural networks. IEEE Trans Syst Man Cybern Part C (Appl Rev) 31:530–535. https://doi.org/10.1109/5326.983936

    Article  Google Scholar 

  118. Han JS, Zenn Bien Z, Kim DJ, et al (2003) Human-machine interface for wheelchair control with EMG and its evaluation. In: Proceedings of the 25th annual ınternational conference of the IEEE engineering in medicine and biology society (IEEE Cat. No.03CH37439), pp 1602–1605, Vol 2

  119. Chang FJ, Chen YC (2003) Estuary water-stage forecasting by using radial basis function neural network. J Hydrol 270:158–166. https://doi.org/10.1016/S0022-1694(02)00289-5

    Article  Google Scholar 

  120. Singh H, Abdullah MZ, Qutieshat A (2011) Detection and classification of electrical supply voltage quality to electrical motors using the Fuzzy-Min-Max neural network. In: 2011 IEEE ınternational electric machines drives conference (IEMDC), pp 961–965

  121. Seera M, Lim CP, Ishak D, Singh H (2013) Application of the fuzzy min–max neural network to fault detection and diagnosis of induction motors. Neural Comput Appl 23:191–200. https://doi.org/10.1007/s00521-012-1310-x

    Article  Google Scholar 

  122. Singh H, Seera M, Abdullah MZ (2013) Detection and diagnosis of broken rotor bars and eccentricity faults in induction motors using the fuzzy min-max neural network. In: The 2013 ınternational joint conference on neural networks (IJCNN), pp 1–5

  123. Seera M, Lim CP (2014) Online motor fault detection and diagnosis using a hybrid FMM-CART model. IEEE Trans Neural Netw Learn Syst 25:806–812. https://doi.org/10.1109/TNNLS.2013.2280280

    Article  Google Scholar 

  124. Chen KY, Lim CP, Lai WK (2005) Application of a neural fuzzy system with rule extraction to fault detection and diagnosis. J Intell Manuf 16:679–691. https://doi.org/10.1007/s10845-005-4371-1

    Article  Google Scholar 

  125. Gabrys B, Bargiela A (1999) Neural networks based decision support in presence of uncertainties. J Water Resour Plan Manag 125:272–280. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(272)

    Article  Google Scholar 

  126. Ma Y, Liu J, Zeng-guo W (2016) Modified fuzzy min-max neural network for clustering and its application on the pipeline internal inspection data. In: 2016 35th Chinese control conference (CCC), pp 3509–3513

  127. Ma Y, Liu J, Zhao Y (2021) Evolved fuzzy min-max neural network for unknown labeled data and its application on defect recognition in depth. Neural Process Lett 53:85–105. https://doi.org/10.1007/s11063-020-10377-7

    Article  Google Scholar 

  128. Kim HJ, Lee J, Yang HS (2006) Robust real-time face detection using hybrid neural networks. In: Huang D-S, Li K, Irwin GW (eds) Computational intelligence and bioinformatics. Springer, Berlin, pp 721–730

    Chapter  Google Scholar 

  129. Kim HJ, Ryu TW, Lee J, Yang HS (2006) Face detection using an adaptive skin-color filter and fmm neural networks. In: Yang Q, Webb G (eds) PRICAI 2006: trends in artificial intelligence. Springer, Berlin, pp 1171–1175

    Chapter  Google Scholar 

  130. Kim HJ, Lee J, Yang HS (2006) A weighted FMM neural network and its application to face detection. In: King I, Wang J, Chan L-W, Wang D (eds) Neural information processing. Springer, Berlin, pp 177–186

    Chapter  Google Scholar 

  131. Wachs J, Stern H, Last M (2002) Color face segmentatıon usıng a fuzzy mın-max neural network. Int J Image Graph 2(4):587–601. https://doi.org/10.1142/S021946780200086X

    Article  Google Scholar 

  132. Estevez PA, Flores RJ, Perez CA (2005) Color image segmentation using fuzzy min-max neural networks. In: Proceedings. 2005 IEEE ınternational joint conference on neural networks, 2005, pp 3052–3057 vol. 5

  133. Nandedkar AV, Venishetti K, Rathod AK (2004) Fuzzy min-max neural network based translation, rotation and scale invariant character recognition using RTSI features. In: The Fourth ınternational conference oncomputer and ınformation technology, 2004. CIT ’04, pp 159–164

  134. Boveiri HR (2010) Persian printed numerals classification using extended moment invariants. World Acad Sci Eng Technol 8:167–174

    Google Scholar 

  135. Boveiri HR (2010) Persian printed numeral characters recognition using geometrical central moments and fuzzy min-max neural network. Int J Signal Process 6(2):76–82

    Google Scholar 

  136. Jawarkar NP, Holambe RS, Basu TK (2014) On the use of classifiers for text-independent speaker identification. In: 2014 first ınternational conference on automation, control, energy and systems (ACES), pp 1–6

  137. Futane PR, Dharaskar RV (2012) Video gestures identification and recognition using Fourier descriptor and general fuzzy minmax neural network for subset of Indian sign language. In: 2012 12th ınternational conference on hybrid ıntelligent systems (HIS), pp 525–530

  138. Deshmukh S, Shinde S (2016) Diagnosis of lung cancer using pruned fuzzy min-max neural network. In: 2016 International Conference on automatic control and dynamic optimization techniques (ICACDOT), pp 398–402

  139. Quteishat AM (2013) Optimized fuzzy min-max artificial neural network got cervical cancer application. Int Rev Comput Softw IRECOS 8:2967–2973. https://doi.org/10.15866/irecos.v8i12.3642

  140. Quteishat A, Al-Batah M, Al-Mofleh A, Alnabelsi SH (2013) Cervical cancer diagnostic system using adaptive fuzzy moving k-means algorithm and fuzzy min-max neural network. J Theor Appl Inf Technol 57(1):48–53

    Google Scholar 

  141. Kalaiselvi C, Asokan R (2017) A classification of chronic leukaemia using new extension of k-means clustering and EFMM based on digital microscopic blood images. Int J Biomed Eng Technol 23:232–241

    Article  Google Scholar 

  142. Tran TN, Vu DM, Tran MT, Le BD (2019) The combination of fuzzy min–max neural network and semi-supervised learning in solving liver disease diagnosis support problem. Arab J Sci Eng 44:2933–2944. https://doi.org/10.1007/s13369-018-3351-7

    Article  Google Scholar 

  143. Minh VD, Ngan TT, Tuan TM et al (2020) Fuzzy min–max neural network and genetic algorithm in diagnosing liver-related diseases. In: Satapathy SC, Bhateja V, Nguyen BL et al (eds) Frontiers in intelligent computing: theory and applications. Springer, Singapore, pp 21–30

    Chapter  Google Scholar 

  144. Quteishat A, Lim CP (2008) Application of the fuzzy min-max neural networks to medical diagnosis. In: Lovrek I, Howlett RJ, Jain LC (eds) Knowledge-based intelligent information and engineering systems. Springer, Berlin, pp 548–555

    Chapter  Google Scholar 

  145. Mohammed MF, Lim CP, bt Ngah UK (2014) Applying a multi-agent classifier system with a novel trust measurement method to classifying medical data. In: Mat Sakim HA, Mustaffa MT (eds) The 8th international conference on robotic, vision, signal processing & power applications. Springer, Singapore, pp 355–362

    Chapter  Google Scholar 

  146. Ye CZ, Yang J, Geng DY et al (2002) Fuzzy rules to predict degree of malignancy in brain glioma. Med Biol Eng Comput 40:145–152. https://doi.org/10.1007/BF02348118

    Article  Google Scholar 

  147. Xi X, Tang M, Miran SM, Luo Z (2017) Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 17:1–20. https://doi.org/10.3390/s17061229

    Article  Google Scholar 

  148. Jahanjoo A, Tahan MN, Rashti MJ (2017) Accurate fall detection using 3-axis accelerometer sensor and MLF algorithm. In: 2017 3rd ınternational conference on pattern recognition and ımage analysis (IPRIA), pp 90–95

  149. Song JH, Jung JW, Lee SW, Bien Z (2009) Robust EMG pattern recognition to muscular fatigue effect for powered wheelchair control. J Intell Fuzzy Syst 20:3–12. https://doi.org/10.3233/IFS-2009-0411

    Article  Google Scholar 

  150. Nandedkar AV (2011) An interactive colour video segmentation using granular reflex fuzzy neural network. In: Proceedings of the world congress on engineering 2011. Lecture notes in engineering and computer science. WCE 2011, London, UK, 6–8 July 2011, pp 1688–1693

  151. Nandedkar A (2013) An interactive colour video segmentation: a granular computing approach. Lect Notes Electr Eng 130:135–146. https://doi.org/10.1007/978-1-4614-2317-1_11

    Article  Google Scholar 

  152. Nandedkar AV (2012) An interactive shadow detection and removal tool using granular reflex fuzzy min-max neural network. In: Proceedings of the world congress on engineering 2012 Vol II WCE 2012, July 4–6, 2012, London, UK, p 4

  153. Nandedkar AV (2013) An interactive shadow removing tool: a granular computing approach. In: Yang G-C, Ao S, Gelman L (eds) IAENG transactions on engineering technologies: special, vol of. the World Congress on Engineering 2012. Springer, Dordrecht, pp 421–430

    Chapter  Google Scholar 

  154. Kshirsagar DB, Kulkarni UV (2016) A generalized neuro-fuzzy based ımage retrieval system with modified colour coherence vector and texture element patterns. In: 2016 IEEE ınternational conference on advances in electronics, communication and computer technology (ICAECCT). IEEE, Pune, India, pp 68–75

  155. Ahmed AA, Mohammed MF (2018) SAIRF: a similarity approach for attack intention recognition using fuzzy min-max neural network. J Comput Sci 25:467–473. https://doi.org/10.1016/j.jocs.2017.09.007

    Article  Google Scholar 

  156. Duan Y, Cui B, Xu X (2007) State space partition for reinforcement learning based on fuzzy min-max neural network. In: Liu D, Fei S, Hou Z et al (eds) Advances in neural networks—ISNN 2007. Springer, Berlin, pp 160–169

    Chapter  Google Scholar 

  157. Kim YM, Kwon D-S (2010) A fuzzy intimacy space model to develop human-robot affective relationship. In: 2010 World automation congress, pp 1–6

  158. Yun SS, Choi M-T, Kim M, Song J-B (2012) Intention reading from a fuzzy-based human engagement model and behavioural features. Int J Adv Robot Syst 9:1–10. https://doi.org/10.5772/50648

    Article  Google Scholar 

  159. Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process 22:5097–5106. https://doi.org/10.1002/hyp.7136

    Article  Google Scholar 

  160. Meng X, Liu M, Wang M et al (2020) Fuzzy min-max neural network with fuzzy lattice inclusion measure for agricultural circular economy region division in heilongjiang province in China. IEEE Access 8:36120–36130. https://doi.org/10.1109/ACCESS.2020.2975561

    Article  Google Scholar 

  161. Dutt S, Ahuja NJ, Kumar M (2021) An intelligent tutoring system architecture based on fuzzy neural network (FNN) for special education of learning disabled learners. Educ Inf Technol 27:2613–2633. https://doi.org/10.1007/s10639-021-10713-x

    Article  Google Scholar 

  162. Chang FJ, Chen YC, Liang JM (2002) Fuzzy clustering neural network as flood forecasting model. Hydrol Res 33:275–290. https://doi.org/10.2166/nh.2002.00088

    Article  Google Scholar 

  163. Goswami B, Bhandari G, Goswami S (2012) Fuzzy min-max neural network for satellite infrared image clustering. In: 2012 Third ınternational conference on emerging applications of ınformation technology, pp 239–242

  164. Sadeghian P, Wilson C, Goeddel S, Olmsted A (2017) Classification of music by composer using fuzzy min-max neural networks. In: 2017 12th International conference for ınternet technology and secured transactions (ICITST), pp 189–192

  165. Likas A, Blekas K (1996) A reinforcement learning approach based on the fuzzy min-max neural network. Neural Process Lett 4:167–172. https://doi.org/10.1007/BF00426025

    Article  Google Scholar 

  166. Lv Y, Wei X, Guo S (2015) Research on fault isolation of rail vehicle suspension system. In: The 27th Chinese control and decision conference (2015 CCDC), pp 929–934

  167. Rey-del-Castillo P, Cardeñosa J (2012) Fuzzy min–max neural networks for categorical data: application to missing data imputation. Neural Comput Appl 21:1349–1362. https://doi.org/10.1007/s00521-011-0574-x

    Article  Google Scholar 

  168. Kanchan D, Shinde G (2006) Adaptive color image segmentation using fuzzy min-max clustering. Eng Lett 13

  169. Nandedkar AV, Biswas PK (2006) Object recognition using reflex fuzzy min-max neural network with floating neurons. In: Kalra PK, Peleg S (eds) Computer vision, graphics and image processing. Springer, Berlin, pp 597–609

    Chapter  Google Scholar 

  170. Ruz GA, Estévez PA, Ramírez PA (2009) Automated visual inspection system for wood defect classification using computational intelligence techniques. Int J Syst Sci 40:163–172. https://doi.org/10.1080/00207720802630685

    Article  MATH  Google Scholar 

  171. Quteishat AM, Lim CP (2007) A modified fuzzy min-max neural network and ıts application to fault classification. In: Saad A, Dahal K, Sarfraz M, Roy R (eds) Soft computing in industrial applications. Springer, Berlin, pp 179–188

    Chapter  Google Scholar 

  172. Arsene CTC, Gabrys B, Al-Dabass D (2012) Decision support system for water distribution systems based on neural networks and graphs theory for leakage detection. Expert Syst Appl 39:13214–13224. https://doi.org/10.1016/j.eswa.2012.05.080

    Article  Google Scholar 

  173. Seera M, Wong MLD, Nandi AK (2017) Classification of ball bearing faults using a hybrid intelligent model. Appl Soft Comput 57:427–435. https://doi.org/10.1016/j.asoc.2017.04.034

    Article  Google Scholar 

  174. Seera M, Lim CP, Loo CK (2014) Condition monitoring of broken rotor bars using a hybrid FMM-GA model. In: Loo CK, Yap KS, Wong KW et al (eds) Neural information processing. Springer, Cham, pp 381–389

    Chapter  Google Scholar 

  175. Seera M, Lim CP, Loo CK (2016) Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning. J Intell Manuf 27:1273–1285. https://doi.org/10.1007/s10845-014-0950-3

    Article  Google Scholar 

  176. Seera M, Lim C, Ishak D (2011) A hybrid FMM-CART model for fault detection and diagnosis of induction motors. In: Lu B-L, Zhang L, Kwok J (eds) Neural information processing. Springer, Berlin, pp 730–736

    Chapter  Google Scholar 

  177. Chen KY, Lim CP, Lai WK (2004) Fault detection and diagnosis using the fuzzy min-max neural network with rule extraction. In: Negoita MGh, Howlett RJ, Jain LC (eds) Knowledge-based intelligent information and engineering systems. Springer, Berlin, pp 357–364

    Chapter  Google Scholar 

  178. Zhai Z, Shi D, Cheng Y, Guo H (2014) Computer-aided detection of lung nodules with fuzzy min-max neural network for false positive reduction. In: 2014 Sixth ınternational conference on ıntelligent human-machine systems and cybernetics, pp 66–69

  179. Blekas K, Stafylopatis A, Kontoravdis D et al (1998) Cytological diagnosis based on fuzzy neural networks. J Intell Syst 8:55–76. https://doi.org/10.1515/JISYS.1998.8.1-2.55

    Article  Google Scholar 

  180. Wang J, Lim CP, Creighton D et al (2015) Patient admission prediction using a pruned fuzzy min–max neural network with rule extraction. Neural Comput Appl 26:277–289. https://doi.org/10.1007/s00521-014-1631-z

    Article  Google Scholar 

  181. Bonde SV, Nandedkar AV (2009) Recognition of visual evoked potential responses containing cognitive component (P300) using Reflex Fuzzy min-max neural network. J Intell Syst 18:247–264. https://doi.org/10.1515/JISYS.2009.18.3.247

    Article  Google Scholar 

  182. Granger E, Savaria Y, Lavoie P, Cantin M-A (1998) A comparison of self-organizing neural networks for fast clustering of radar pulses. Signal Process 64:249–269. https://doi.org/10.1016/S0165-1684(97)00194-1

    Article  MATH  Google Scholar 

  183. Gabrys B (2000) Agglomerative learning for general fuzzy min-max neural network. In: Neural networks for signal processing X. Proceedings of the 2000 IEEE signal processing society workshop (Cat. No.00TH8501), pp 692–701, vol.2

  184. Nandedkar AV, Biswas PK (2008) A reflex fuzzy min max neural network for semi-supervised learning. J Intell Syst 17:5–17. https://doi.org/10.1515/JISYS.2008.17.1-3.5

    Article  Google Scholar 

  185. Rizzi A, Panella M, Frattale Mascioli FM, Martinelli G (2000) A recursive algorithm for fuzzy min-max networks. In: Proceedings of the IEEE-INNS-enns ınternational joint conference on neural networks. IJCNN 2000. Neural computing: new challenges and perspectives for the New Millennium, pp 541–546, vol.6

  186. Alhroob E, Mohammed MF, Sayaydeh ONA et al (2020) Analysis on misclassification in existing contraction of fuzzy min-max models. In: Saeed F, Mohammed F, Gazem N (eds) Emerging trends in intelligent computing and informatics. Springer, Cham, pp 270–278

    Chapter  Google Scholar 

  187. Khuat TT, Gabrys B (2020) A comparative study of general fuzzy min-max neural networks for pattern classification problems. Neurocomputing 386:110–125. https://doi.org/10.1016/j.neucom.2019.12.090

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to the referees for their valuable comments. We also thank Higher Education Council of Turkey for 100/2000 Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eren Özceylan.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenger, Ö.N., Özceylan, E. Fuzzy min–max neural networks: a bibliometric and social network analysis. Neural Comput & Applic 35, 5081–5111 (2023). https://doi.org/10.1007/s00521-023-08267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08267-9

Keywords

Navigation