Skip to main content
Log in

A lightweight relation network for few-shots classification of hyperspectral images

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Deep learning models are data-hungry and require numerous labelled data for their training; as a result, these approaches are difficult to apply in a domain where very less training data is available. Although few-shots learning has emerged as a promising solution in domains where limited data is available. However, due to model complexity, these models still suffer when deployed on low-end devices. In this work, we propose a lightweight relation network, meta-learning, to classify hyperspectral images in the few-shots and one-shot settings. In this network, a CNN is used to utilize the spatial-spectral information present in the data. The proposed meta-learning-based network is trained episodically in an end-to-end manner to regress a relation score and perform the instance-label assignment. Experiments are performed on four benchmark datasets, namely, Indian Pines, Salinas, Pavia Center and Pavia University. Empirical results show that the proposed network achieves state-of-the-art results on the Indian Pines dataset; for all other datasets, its performance remains competitive with the approaches reported in the literature, even with more than a hundred times lesser parameters. Consequently, the proposed lightweight relation network can be deployed and fine-tuned even on devices with limited computation capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated/analysed during the current study are not publicly available. However, they will be made available from the corresponding author upon reasonable request.

References

  1. Alajaji D, Alhichri HS, Ammour N, Alajlan N (2020) Few-shot learning for remote sensing scene classification. In: 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), pp. 81–84. IEEE

  2. Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ (2020) A systematic review on supervised and unsupervised machine learning algorithms for data science. Superv Unsuperv Learn Data Sci pp. 3–21

  3. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK (2019) A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3):292

    Article  Google Scholar 

  4. Awad M (2014) Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network. Ecol Inf 24:60–68

    Article  Google Scholar 

  5. Bai J, Huang S, Xiao Z, Li X, Zhu Y, Regan AC, Jiao L (2022) Few-shot hyperspectral image classification based on adaptive subspaces and feature transformation. IEEE Trans Geosci Remote Sens 60:1–17

    Google Scholar 

  6. Bau TC, Sarkar S, Healey G (2010) Hyperspectral region classification using a three-dimensional gabor filterbank. IEEE Trans Geosci Remote Sens 48(9):3457–3464. https://doi.org/10.1109/TGRS.2010.2046494

    Article  Google Scholar 

  7. Bing L, Xibing Z, Xiong T, Anzhu Y, Wenyue G (2020) A deep few-shot learning algorithm for hyperspectral image classification. Acta Geodaetica et Cartographica Sinica 49(10):1331

    Google Scholar 

  8. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Select Topics Appl Earth Observ Remote Sens 7:2094–2107. https://doi.org/10.1109/JSTARS.2014.2329330

    Article  Google Scholar 

  9. Chen Y, Zhao X, Jia X (2015) Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J Select Topics Appl Earth Observ Remote Sens 8(6):2381–2392. https://doi.org/10.1109/JSTARS.2015.2388577

    Article  Google Scholar 

  10. Cheng G, Cai L, Lang C, Yao X, Chen J, Guo L, Han J (2021) Spnet: Siamese-prototype network for few-shot remote sensing image scene classification. IEEE Trans Geosci Remote Sens 60:1–11

    Google Scholar 

  11. Deng B, Jia S, Shi D (2020) Deep metric learning-based feature embedding for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(2):1422–1435. https://doi.org/10.1109/TGRS.2019.2946318

    Article  Google Scholar 

  12. Dhawale AD, Kulkarni SB, Kumbhakarna VM (2020) A survey of distinctive prominence of automatic text summarization techniques using natural language processing. In: International Conference on Mobile Computing and Sustainable Informatics, pp. 543–549. Springer

  13. Dong S, Wang P, Abbas K (2021) A survey on deep learning and its applications. Comput Sci Rev 40:100379

    Article  MATH  MathSciNet  Google Scholar 

  14. Falco N, Bruzzone L, Benediktsson JA (2014) An ica based approach to hyperspectral image feature reduction. In: 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 3470–3473. https://doi.org/10.1109/IGARSS.2014.6947229

  15. Gao K, Liu B, Yu X, Qin J, Zhang P, Tan X (2020) Deep relation network for hyperspectral image few-shot classification. Remote Sens. https://doi.org/10.3390/rs12060923

    Article  Google Scholar 

  16. Gao K, Liu B, Yu X, Zhang P, Tan X, Sun Y (2021) Small sample classification of hyperspectral image using model-agnostic meta-learning algorithm and convolutional neural network. Int J Remote Sens 42(8):3090–3122

    Article  Google Scholar 

  17. Geng C, Huang Sj, Chen S (2020) Recent advances in open set recognition: a survey. IEEE Trans Pattern Anal Mach Intell 43(10):3614–3631

    Article  Google Scholar 

  18. Gong Z, Zhong P, Yu Y, Hu W, Li S (2019) A cnn with multiscale convolution and diversified metric for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(6):3599–3618. https://doi.org/10.1109/TGRS.2018.2886022

    Article  Google Scholar 

  19. Handa A, Sharma A, Shukla SK (2019) Machine learning in cybersecurity: a review. Wiley Interdiscip Rev Data Mining Knowl Discov 9(4):e1306

    Article  Google Scholar 

  20. He L, Chen X (2016) A three-dimensional filtering method for spectral-spatial hyperspectral image classification. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2746–2748. https://doi.org/10.1109/IGARSS.2016.7729709

  21. Hu L, Luo X, Wei Y (2020) Hyperspectral image classification of convolutional neural network combined with valuable samples. J Phys Conf Ser 1549(5):052011. https://doi.org/10.1088/1742-6596/1549/5/052011

    Article  Google Scholar 

  22. Hu Y, Huang Y, Wei G, Zhu K (2022) Heterogeneous few-shot learning with knowledge distillation for hyperspectral image classification. In: 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 601–604. IEEE

  23. Huang W, Yuan Z, Yang A, Tang C, Luo X (2021) Tae-net: task-adaptive embedding network for few-shot remote sensing scene classification. Remote Sens 14(1):111

    Article  Google Scholar 

  24. Jia S, Hu J, Zhu J, Jia X, Li Q (2017) Three-dimensional local binary patterns for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 55(4):2399–2413. https://doi.org/10.1109/TGRS.2016.2642951

    Article  Google Scholar 

  25. Jia S, Jiang S, Lin Z, Li N, Xu M, Yu S (2021) A survey: deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 448:179–204

    Article  Google Scholar 

  26. Jiao L, Liang M, Chen H, Yang S, Liu H, Cao X (2017) Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55:5585–5599

    Article  Google Scholar 

  27. Kadam S, Vaidya V (2018) Review and analysis of zero, one and few shot learning approaches. In: International Conference on Intelligent Systems Design and Applications, pp. 100–112. Springer

  28. Kadhim AI (2019) Survey on supervised machine learning techniques for automatic text classification. Artif Intell Rev 52(1):273–292

    Article  MathSciNet  Google Scholar 

  29. Khan AA, Laghari AA, Awan SA (2021) Machine learning in computer vision: a review. EAI Trans Scalable Inf Syst 8:4

    Google Scholar 

  30. Li X, Cao Z, Zhao L, Jiang J (2021) Alpn: Active-learning-based prototypical network for few-shot hyperspectral imagery classification. IEEE Geosci Remote Sens Let 19:1–5

    Google Scholar 

  31. Li Z, Liu M, Chen Y, Xu Y, Li W, Du Q (2021) Deep cross-domain few-shot learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–18

    Google Scholar 

  32. Liao W, Pizurica A, Philips W, Pi Y (2010) A fast iterative kernel pca feature extraction for hyperspectral images. In: 2010 IEEE International Conference on Image Processing, pp. 1317–1320. https://doi.org/10.1109/ICIP.2010.5651670

  33. Licciardi G, Marpu PR, Chanussot J, Benediktsson JA (2012) Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett 9(3):447–451. https://doi.org/10.1109/LGRS.2011.2172185

    Article  Google Scholar 

  34. Liu B, Yu X, Yu A, Zhang P, Wan G, Wang R (2019) Deep few-shot learning for hyperspectral image classification. In: IEEE Transactions on Geo science and remote sensing, vol. 57

  35. Ma C, Mu X, Zhao P, Yan X (2021) Meta-learning based on parameter transfer for few-shot classification of remote sensing scenes. Remote Sens Lett 12(6):531–541

    Article  Google Scholar 

  36. Malik M, Malik MK, Mehmood K, Makhdoom I (2021) Automatic speech recognition: a survey. Multimed Tools Appl 80(6):9411–9457

    Article  Google Scholar 

  37. Mankolli E, Guliashki V (2020) Machine learning and natural language processing: Review of models and optimization problems. In: International Conference on ICT Innovations, pp. 71–86. Springer

  38. Mei S, Ji J, Geng Y, Zhang Z, Li X, Du Q (2019) Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans Geosci Remote Sens 57:9

    Article  Google Scholar 

  39. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790. https://doi.org/10.1109/TGRS.2004.831865

    Article  Google Scholar 

  40. Mughees A, Tao L (2019) Multiple deep-belief-network-based spectral-spatial classification of hyperspectral images. Tsinghua Sci Technol 24(2):183–194. https://doi.org/10.26599/TST.2018.9010043

    Article  Google Scholar 

  41. Pal D, Bundele V, Banerjee B, Jeppu Y (2021) Spn: stable prototypical network for few-shot learning-based hyperspectral image classification. IEEE Geosci Remote Sens Lett 19:1–5

    Article  Google Scholar 

  42. Pandey SK, Shekhawat HS, Prasanna SM (2019) Deep learning techniques for speech emotion recognition: A review. In: 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), pp. 1–6. IEEE

  43. Quesada-Barriuso P, Argüello F, Heras DB (2014) Spectral-spatial classification of hyperspectral images using wavelets and extended morphological profiles. IEEE J Select Topics Appl Earth Observ Remote Sens 7(4):1177–1185. https://doi.org/10.1109/JSTARS.2014.2308425

    Article  Google Scholar 

  44. Rao M, Tang P, Zhang Z (2019) Spatial-spectral relation network for hyperspectral image classification with limited training samples. IEEE J Select Topics Appl Earth Observ Remote Sens 12(12):5086–5100

    Article  Google Scholar 

  45. Rashed BM, Popescu N (2021) Machine learning techniques for medical image processing. In: 2021 International Conference on e-Health and Bioengineering (EHB), pp. 1–4. IEEE

  46. Ren Y, Zhang Y, wei W, Li L (2014) A spectral-spatial hyperspectral data classification approach using random forest with label constraints. In: 2014 IEEE Workshop on Electronics, Computer and Applications, pp. 344–347. https://doi.org/10.1109/IWECA.2014.6845627

  47. Sagar R, Jhaveri R, Borrego C (2020) Applications in security and evasions in machine learning: a survey. Electronics 9(1):97

    Article  Google Scholar 

  48. Sanghvi K, Aralkar A, Sanghvi S, Saha I (2020) A survey on image classification techniques. Available at SSRN 3754116

  49. Song Y, Wang T, Mondal SK, Sahoo JP (2022) A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities. arXiv preprint arXiv:2205.06743

  50. Strachan IB, Pattey E, Boisvert JB (2002) Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sens Environ 80(2):213–224. https://doi.org/10.1016/S0034-4257(01)00299-1

    Article  Google Scholar 

  51. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: International conference on artificial neural networks, pp. 270–279. Springer

  52. Tang H, Li Y, Han X, Huang Q, Xie W (2019) A spatial-spectral prototypical network for hyperspectral remote sensing image. IEEE Geosci Remote Sens Lett 17(1):167–171

    Article  Google Scholar 

  53. Tong X, Yin J, Han B, Qv H (2020) Few-shot learning with attention-weighted graph convolutional networks for hyperspectral image classification. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1686–1690. IEEE

  54. Torrey L, Shavlik J (2010) Transfer learning. In: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, pp. 242–264. IGI global

  55. Vangara RVB, Vangara SP, Thirupathur V (2020) A survey on natural language processing in context with machine learning. Int J Anal Exp Modal Anal. https://doi.org/10.1186/s13634-016-0355-x

    Article  Google Scholar 

  56. Wang G, Zheng X, Cheng L, Wan X, Guo Z (2021) Hyperspectral image classification based on improved few shot learning. In: 2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI), pp. 673–676. IEEE

  57. Wang S (2020) hyperspectral dataset. IEEE Dataport. https://doi.org/10.21227/eqk7-wa46. https://dx.doi.org/10.21227/eqk7-wa46

  58. Wang S, Du B, Zhang D, Wan F (2021) Adversarial prototype learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–8

    Google Scholar 

  59. Wang Y, Liu M, Yang Y, Li Z, Du Q, Chen Y, Li F, Yang H (2021) Heterogeneous few-shot learning for hyperspectral image classification. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  60. Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3(1):1–40

    Article  Google Scholar 

  61. Yu S, Jia S, Xu C (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98. https://doi.org/10.1016/j.neucom.2016.09.010

    Article  Google Scholar 

  62. Zhang C, Yue J, Qin Q (2020) Deep quadruplet network for hyperspectral image classification with a small number of samples. Remote Sens 12(4):647

    Article  Google Scholar 

  63. Zhang C, Yue J, Qin Q (2020) Global prototypical network for few-shot hyperspectral image classification. IEEE J Select Topics Appl Earth Observ Remote Sens 13:4748–4759

    Article  Google Scholar 

  64. Zhang P, Bai Y, Wang D, Bai B, Li Y (2021) Few-shot classification of aerial scene images via meta-learning. Remote Sens 13(1):108

    Article  Google Scholar 

  65. Zhang Y, Li W, Zhang M, Tao R (2022) Dual graph cross-domain few-shot learning for hyperspectral image classification. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3573–3577. IEEE

  66. Zheng C, Zheng Y (2014) Hyperspectral remote sensing image classification based on combined svm and lda. SPIE Asia Pac. Remote Sens

  67. Zhong Z, Li J, Luo Z, Chapman M (2017) Spectral-spatial residual network for hyperspectral image classification: a 3-d deep learning framework. IEEE Trans Geosci Remote Sens 56:847–858. https://doi.org/10.1109/TGRS.2017.2755542

    Article  Google Scholar 

  68. Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q (2020) A comprehensive survey on transfer learning. Proc IEEE 109(1):43–76

    Article  Google Scholar 

Download references

Funding

We acknowledge the financial support extended by the Ministry of Education, Government of India (GoI) for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Pratap Singh.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest in the research findings presented in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Singh, U.P. & Singh, K.P. A lightweight relation network for few-shots classification of hyperspectral images. Neural Comput & Applic 35, 11417–11430 (2023). https://doi.org/10.1007/s00521-023-08306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08306-5

Keywords

Navigation