Skip to main content
Log in

Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common neurological diseases, affecting approximately 50 million people. This illness can be diagnosed by electroencephalogram (EEG), whose analysis depends on human interpretation, which may lead to divergent results and be imprecise and error-prone. Moreover, one estimates more than 80% of the epilepsy examinations return no anomalies at all, wasting the effort of analysis. In this context, machine learning (ML) methods are used to aid in epilepsy detection. An essential task for classifier building is feature extraction, for which there are many measures that can be computed. However, part of these features can be irrelevant or hinder the performance of ML methods. This paper proposes an automatic way to classify EEG segments by using a reduced set of features. The proposed method combines multispectral analysis, feature selection, and classifier building approaches. As our main contribution, a methodology to minimize the number of features for classifier building is proposed. A total of 285 measures are extracted. Afterward, two attribute selection approaches are used: Pearson’s correlation coefficient filter and wrapper based on the genetic algorithm. Then, five well-known ML methods (k-nearest-neighbor, support vector machine, naive Bayes, artificial neural network, and random forest) were used to build 281 different classifiers. As a result, the proposed classifiers reached an accuracy between 87.2 and 90.99% and considerably reduced the number of features from 285 to 30, keeping competitive scores. Additionally, statistical hypothesis tests prove that our proposed approach is as efficient as using the complete feature dataset for classifier building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The dataset used in this work is available in http://bitly.ws/ooaQ.

Notes

  1. In this work, (predictive) models and classifiers are used as synonyms.

  2. http://bitly.ws/ooaQ.

  3. The example of EEG used to generate SG was collected in the city of Bonn, Germany, where the power grid is 50 Hz.

  4. https://ddsl.me/vZy7AYr.

  5. 102 models with feature selection by the filter method, 102 models with feature selection by the wrapper method, 60 models based on the RF algorithm, and 17 models without feature selection.

References

  1. Manolis TA, Manolis AA, Melita H, Manolis AS (2019) Sudden unexpected death in epilepsy: the neuro-cardio-respiratory connection. Seizure 64:65–73. https://doi.org/10.1016/j.seizure.2018.12.007

    Article  Google Scholar 

  2. World Health Organization (2019) Epilepsy: a public health imperative. World Health Organization

  3. World Health Organization (2014) Epilepsy fact and world health organization and others sheet. Planned Parenthood Federation of America

  4. Tatum WO (2014) Handbook of EEG interpretation, 2nd edn. Springer, New York, p 376

    Google Scholar 

  5. Shin HW, Jewells V, Hadar E, Fisher T, Hinn A (2014) Review of epilepsy-etiology, diagnostic evaluation and treatment. Int J Neurorehabilit 1(130):0281–2376

    Google Scholar 

  6. Fisher RS, Scharfman HE, deCurtis M (2014) How can we identify ictal and interictal abnormal activity? Springer, Dordrecht, pp 3–23

    Google Scholar 

  7. Hwang ST, Goodman T, Stevens SJ (2019) Painful seizures: a review of epileptic ictal pain. Curr Pain Headache Rep 23(11):1–7

    Google Scholar 

  8. Oliva JT, Rosa JLG (2019) Classification for EEG report generation and epilepsy detection. Neurocomputing 335:81–95

    Google Scholar 

  9. Li Y, Liu Y, Cui W-G, Guo Y-Z, Huang H, Hu Z-Y (2020) Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network. IEEE Trans Neural Syst Rehabil Eng 28(4):782–794

    Google Scholar 

  10. Vargas DLD, Oliva JT, Teixeira M (2021) Uma abordagem baseada em redes neurais artificiais sobre o espectro de potência de eletroencefalogramas para o auxílio médico na classificação de crises epiléticas. In: Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde. SBC, pp 141–152

  11. Ramakrishnan S, Murugavel ASM (2019) Epileptic seizure detection using fuzzy-rules-based sub-band specific features and layered multi-class svm. Pattern Anal Appl 22(3):1161–1176

    MathSciNet  Google Scholar 

  12. Türk Ö, Özerdem MS (2019) Epilepsy detection by using scalogram based convolutional neural network from EEG signals. Brain Sci 9(5):115

    Google Scholar 

  13. Freeman W, Quiroga RQ (2012) Imaging brain function with EEG: advanced temporal and spatial analysis of electroencephalographic signals. Springer, New York, p 250

    Google Scholar 

  14. Heaton J (2016) An empirical analysis of feature engineering for predictive modeling. In: SoutheastCon 2016, pp 1–6. https://doi.org/10.1109/SECON.2016.7506650

  15. Acharya UR, Vinitha Sree S, Swapna G, Martis RJ, Suri JS (2013) Automated EEG analysis of epilepsy: a review. Knowl Based Syst 45:147–165. https://doi.org/10.1016/j.knosys.2013.02.014

    Article  Google Scholar 

  16. Cura OK, Akan A (2021) Analysis of epileptic EEG signals by using dynamic mode decomposition and spectrum. Biocybern Biomed Eng 41(1):28–44

    Google Scholar 

  17. Bellman R (1966) Dynamic programming. Science 153(3731):34–37. https://doi.org/10.1126/science.153.3731.34

    Article  MATH  Google Scholar 

  18. Khalid S, Khalil T, Nasreen S (2014) A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and information conference, pp 372–378. https://doi.org/10.1109/SAI.2014.6918213

  19. Wei G, Zhao J, Feng Y, He A, Yu J (2020) A novel hybrid feature selection method based on dynamic feature importance. Appl Soft Comput 93:106337. https://doi.org/10.1016/j.asoc.2020.106337

    Article  Google Scholar 

  20. Prasetiyowati MI, Maulidevi NU, Surendro K (2020) The speed and accuracy evaluation of random forest performance by selecting features in the transformation data. In: Proceedings of the 2020 The 9th international conference on informatics, environment, energy and applications. IEEA 2020. Association for Computing Machinery, New York, pp 125–130. https://doi.org/10.1145/3386762.3386768

  21. Al Ghayab HR, Li Y, Abdulla S, Diykh M, Wan X (2016) Classification of epileptic eeg signals based on simple random sampling and sequential feature selection. Brain inf 3(2):85–91

    Google Scholar 

  22. Li D, Xie Q, Jin Q, Hirasawa K (2016) A sequential method using multiplicative extreme learning machine for epileptic seizure detection. Neurocomputing 214:692–707. https://doi.org/10.1016/j.neucom.2016.06.056

    Article  Google Scholar 

  23. Mursalin M, Zhang Y, Chen Y, Chawla NV (2017) Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing 241:204–214

    Google Scholar 

  24. Mehla VK, Singhal A, Singh P, Pachori RB (2021) An efficient method for identification of epileptic seizures from EEG signals using Fourier analysis. Phys Eng Sci Med 44(2):443–456

    Google Scholar 

  25. Molla M, Islam K, Hassan KM, Islam M, Tanaka T et al (2020) Graph eigen decomposition-based feature-selection method for epileptic seizure detection using electroencephalography. Sensors 20(16):4639

    Google Scholar 

  26. Kohli N, Vatsa M, Singh R, Noore A, Majumdar A (2016) Hierarchical representation learning for kinship verification. IEEE Trans Image Process 26(1):289–302

    MathSciNet  MATH  Google Scholar 

  27. Marcus G (2020) The next decade in ai: four steps towards robust artificial intelligence. arXiv:2002.06177

  28. Riaz F, Hassan A, Rehman S, Niazi IK, Dremstrup K (2016) Emd-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans Neural Syst Rehabil Eng 24(1):28–35

    Google Scholar 

  29. Oliva JT, Rosa JLG (2017) Predictive models for differentiation between normal and abnormal EEG through cross-correlation and machine learning techniques. In: Holzinger A, Goebel R, Ferri M, Palade V (eds) Towards integrative machine learning and knowledge extraction. Springer, Cham, pp 134–145

    Google Scholar 

  30. Hernández DE, Trujillo L, Z-Flores E, Villanueva OM, Romo-Fewell O (2018) Detecting epilepsy in EEG signals using time, frequency and time-frequency domain features. In: Sanchez MA, Aguilar L, Castañón-Puga M, Rodríguez-Díaz A (eds) Computer science and engineering—theory and applications. Springer, Cham, pp 167–182. https://doi.org/10.1007/978-3-319-74060-7_9

  31. Sharma M, Bhurane AA, Rajendra Acharya U (2018) Mmsfl-owfb: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl Based Syst 160:265–277. https://doi.org/10.1016/j.knosys.2018.07.019

    Article  Google Scholar 

  32. Tsipouras MG (2019) Spectral information of EEG signals with respect to epilepsy classification. EURASIP J Adv Signal Process 2019(1):1–17

    Google Scholar 

  33. Hassan KM, Islam MR, Tanaka T, Molla MKI (2019) Epileptic seizure detection from eeg signals using multiband features with feedforward neural network. In: 2019 International conference on cyberworlds (CW). IEEE, pp 231–238

  34. Raghu S, Sriraam N, Hegde AS, Kubben PL (2019) A novel approach for classification of epileptic seizures using matrix determinant. Expert Syst Appl 127:323–341

    Google Scholar 

  35. Qaisar SM, Hussain SF (2021) Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare. Comput Methods Progr Biomed 203:13

    Google Scholar 

  36. Mumtaz W, Xia L, Ali SSA, Yasin MAM, Hussain M, Malik AS (2017) Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (mdd). Biomed Signal Process Control 31:108–115

    Google Scholar 

  37. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP (2018) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113

    Google Scholar 

  38. Li X, Zhang X, Zhu J, Mao W, Sun S, Wang Z, Xia C, Hu B (2019) Depression recognition using machine learning methods with different feature generation strategies. Artif Intell Med 99:101696

    Google Scholar 

  39. Watts D, Pulice RF, Reilly J, Brunoni AR, Kapczinski F, Passos IC (2022) Predicting treatment response using EEG in major depressive disorder: a machine-learning meta-analysis. Transl Psychiatry 12(1):1–18

    Google Scholar 

  40. Simpraga S, Alvarez-Jimenez R, Mansvelder HD, Van Gerven J, Groeneveld GJ, Poil S-S, Linkenkaer-Hansen K (2017) Eeg machine learning for accurate detection of cholinergic intervention and Alzheimers disease. Sci Rep 7(1):1–11

    Google Scholar 

  41. Ahmedt-Aristizabal D, Fernando T, Denman S, Robinson JE, Sridharan S, Johnston PJ, Laurens KR, Fookes C (2020) Identification of children at risk of schizophrenia via deep learning and EEG responses. IEEE J Biomed Health Inform 25(1):69–76

    Google Scholar 

  42. Barros C, Silva CA, Pinheiro AP (2021) Advanced EEG-based learning approaches to predict schizophrenia: promises and pitfalls. Artif Intell Med 114:102039

    Google Scholar 

  43. de Miras JR, Ibáñez-Molina A, Soriano M, Iglesias-Parro S (2023) Schizophrenia classification using machine learning on resting state EEG signal. Biomed Signal Process Control 79:104233

    Google Scholar 

  44. Seo J, Laine TH, Oh G, Sohn K-A (2020) EEG-based emotion classification for Alzheimers disease patients using conventional machine learning and recurrent neural network models. Sensors 20(24):7212

    Google Scholar 

  45. Biagetti G, Crippa P, Falaschetti L, Luzzi S, Turchetti C (2021) Classification of Alzheimers disease from EEG signal using robust-pca feature extraction. Procedia Comput Sci 192:3114–3122

    Google Scholar 

  46. AlSharabi K, Salamah YB, Abdurraqeeb AM, Aljalal M, Alturki FA (2022) EEG signal processing for Alzheimers disorders using discrete wavelet transform and machine learning approaches. IEEE Access 10:89781–89797

    Google Scholar 

  47. Babadi B, Brown EN (2014) A review of multitaper spectral analysis. IEEE Trans Biomed Eng 61(5):1555–1564

    Google Scholar 

  48. Brigham EO (1988) The fast Fourier transform and its applications. Prentice-Hall signal processing series: advanced monographs. Prentice Hall, Taiwan, p 448

    Google Scholar 

  49. Percival DB, Walden AT (1993) Spectral analysis for physical applications. Cambridge University Press, London, p 583

    MATH  Google Scholar 

  50. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096

    Google Scholar 

  51. Oliva JT, Rosa JLG (2021) Binary and multiclass classifiers based on multitaper spectral features for epilepsy detection. Biomed Signal Process Control 66:102469. https://doi.org/10.1016/j.bspc.2021.102469

    Article  Google Scholar 

  52. Slepian D, Pollak HO (1961) Prolate spheroidal wave functions, Fourier analysis and uncertainty? I. Bell Syst Tech J 40(1):43–63

    MathSciNet  MATH  Google Scholar 

  53. Kramer C, Gerhardt HJ (2012) Advances in wind engineering, vol 1. Elsevier, New York, p 431

    Google Scholar 

  54. Martínez-Vargas DJ, Godino-Llorente IJ, Castellanos-Dominguez G (2012) Time-frequency based feature selection for discrimination of non-stationary biosignals. EURASIP J Adv Signal Process 1:1–18

    Google Scholar 

  55. Oliva JT, Lee HD, Spolaôr N, Coy CSR, Wu FC (2016) Prototype system for feature extraction, classification and study of medical images. Expert Syst Appl 63:267–283

    Google Scholar 

  56. Hlawatsch F, Auger F (2013) Time-frequency analysis. ISTE. Wiley, Germany

    Google Scholar 

  57. Poularikas AD (2018) Transforms and applications handbook. Electrical engineering handbook. CRC Press, New York, p 911

    MATH  Google Scholar 

  58. Oliva JT (2019) Geração automática de laudos médicos para o diagnóstico de epilepsia por meio do processamento de eletroencefalogramas utilizando aprendizado de máquina. Ph.D. thesis, Universidade de São Paulo

  59. Tales Oliva J, Luís Garcia Rosa J (2020) Binary and multiclass classifiers based on multitaper spectral features for epilepsy detection. arXiv e-prints, 2004

  60. Li LM, Fernandes PT, Noronha AL, Marques LH, Borges MA, Cendes F, Guerreiro CA, Zanetta DM, De Boer HM, Espíndola J et al (2007) Demonstration project on epilepsy in Brazil: situation assessment. Arq Neuropsiquiatr 65:5–13

    Google Scholar 

  61. Nikias CL, Mendel JM (1993) Signal processing with higher-order spectra. IEEE Signal Process Mag 10(3):10–37. https://doi.org/10.1109/79.221324

    Article  Google Scholar 

  62. Page A, Turner J, Mohsenin T, Oates T (2014) Comparing raw data and feature extraction for seizure detection with deep learning methods. In: The twenty-seventh international flairs conference, pp 284–287

  63. Freedman D, Pisani R, Purves R (1998) Statistics. W.W. Norton, London

    MATH  Google Scholar 

  64. Zhou S-M, Gan JQ, Sepulveda F (2008) Classifying mental tasks based on features of higher-order statistics from EEG signals in brain?computer interface. Inf Sci 178(6):1629–1640. https://doi.org/10.1016/j.ins.2007.11.012

    Article  Google Scholar 

  65. Keeton G (2015) What is crest factor and why is it important?. https://encr.pw/lDA1n

  66. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    MathSciNet  MATH  Google Scholar 

  67. Ramalingam A, Krishnan S (2005) Gaussian mixture modeling using short time Fourier transform features for audio fingerprinting. In: 2005 IEEE international conference on multimedia and expo. IEEE, pp 1146–1149

  68. Pincus SM, Gladstone IM, Ehrenkranz RA (1991) A regularity statistic for medical data analysis. J Clin Monit 7(4):335–345

    Google Scholar 

  69. Qian B, Rasheed K (2004) Hurst exponent and financial market predictability. In: IASTED conference on financial engineering and applications . Proceedings of the IASTED international conference. Cambridge, MA, pp 203–209

  70. Hjorth B (1970) Eeg analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29(3):306–310

    Google Scholar 

  71. Dubnov S (2004) Generalization of spectral flatness measure for non-gaussian linear processes. IEEE Signal Process Lett 11(8):698–701

    Google Scholar 

  72. Vakkuri A, Yli-Hankala A, Talja P, Mustola S, Tolvanen-Laakso H, Sampson T, Viertiö-Oja H (2004) Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand 48(2):145–153

    Google Scholar 

  73. Hosseinzadeh D, Krishnan S (2007) Combining vocal source and mfcc features for enhanced speaker recognition performance using gmms. In: 2007 IEEE 9th workshop on multimedia signal processing, pp 365–368 . https://doi.org/10.1109/MMSP.2007.4412892

  74. Liu Z, Wang Y, Chen T (1998) Audio feature extraction and analysis for scene segmentation and classification. J VLSI Signal Process Syst Signal Image Video Technol 20(1):61–79

    Google Scholar 

  75. Li X (2016) Signal processing in neuroscience. Springer, Singapore, p 288

    Google Scholar 

  76. Stuart S, Vitorio R, Morris R, Martini DN, Fino PC, Mancini M (2018) Cortical activity during walking and balance tasks in older adults and in people with Parkinson’s disease: a structured review. Maturitas 113:53–72. https://doi.org/10.1016/j.maturitas.2018.04.011

    Article  Google Scholar 

  77. Acharya UR, Sree SV, Suri JS (2011) Automatic detection of epileptic EEG signals using higher order cumulant features. Int J Neural Syst 21(05):403–414

    Google Scholar 

  78. Zurlini G, Petrosillo I, Jones KB, Zaccarelli N (2013) Highlighting order and disorder in social-ecological landscapes to foster adaptive capacity and sustainability. Landscape Ecol 28(6):1161–1173

    Google Scholar 

  79. Guyon I, Elisseeff A (2006) An introduction to feature extraction. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature extraction: foundations and applications. Springer, Berlin, Heidelberg, pp 1–25. https://doi.org/10.1007/978-3-540-35488-8_1

    Chapter  Google Scholar 

  80. Kuhn M, Johnson K et al (2013) Applied predictive modeling, vol 26. Springer, New York

    MATH  Google Scholar 

  81. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324. https://doi.org/10.1016/S0004-3702(97)00043-X. (Relevance)

    Article  MATH  Google Scholar 

  82. John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: Cohen WW, Hirsh H (eds) Machine learning proceedings 1994. Morgan Kaufmann, San Francisco, pp 121–129. https://doi.org/10.1016/B978-1-55860-335-6.50023-4

  83. Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: Icml, vol. 97, 35 Nashville

  84. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97(1):245–271. https://doi.org/10.1016/S0004-3702(97)00063-5. (Relevance)

    Article  MathSciNet  MATH  Google Scholar 

  85. Hall MA (2000) Correlation-based feature selection of discrete and numeric class machine learning. Computer science working papers

  86. Freitas AA (2002) Data mining and knowledge discovery with evolutionary algorithms. Springer, Berlin

    MATH  Google Scholar 

  87. Phuong TM, Lin Z, Altman RB (2005) Choosing snps using feature selection. In: 2005 IEEE computational systems bioinformatics conference (CSB’05). IEEE, pp 301–309

  88. Rostami M, Berahmand K, Forouzandeh S (2020) A novel community detection based genetic algorithm for feature selection. arXiv: Learning

  89. Babatunde O, Armstrong L, Leng J, Diepeveen D (2014) A genetic algorithm-based feature selection. Int J Electron Commun Comput Eng 5:889–905

    Google Scholar 

  90. Lal TN, Chapelle O, Weston J, Elisseeff A (2006) Embedded methods. In: Guyon I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature extraction: foundations and applications. Springer, Berlin, Heidelberg, pp 137–165. https://doi.org/10.1007/978-3-540-35488-8_6

    Chapter  Google Scholar 

  91. Mitchell TM (1997) Machine learning. McGraw-Hill series in computer science. McGraw-Hill Education Private Limited, New Delhi, p 414

    MATH  Google Scholar 

  92. Zhang H (2004) The optimality of Naive Bayes. Aa 1(2):3

    Google Scholar 

  93. Lorena AC, Gama J, Faceli K (2011) Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. Grupo Gen-LTC, Rio de Janeiro, p 394

    Google Scholar 

  94. Fix E, Hodges JL (1989) Discriminatory analysis. Nonparametric discrimination: consistency properties. Int Stat Rev 57(3):238–247

    MATH  Google Scholar 

  95. Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66

    Google Scholar 

  96. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics. Springer, New York, p 745

    MATH  Google Scholar 

  97. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  98. Haykin SS (2009) Neural networks and learning machines, vol 10. Prentice Hall, New Delhi, p 906

    Google Scholar 

  99. Hearst MA (1998) Trends and controversies: support vector machines. IEEE Intell Syst 13:18–28

    Google Scholar 

  100. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. Adaptive computation and machine learning series. MIT Press, London

    MATH  Google Scholar 

  101. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    MATH  Google Scholar 

  102. Ho TK (1995) Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, vol 1. IEEE, pp 278–282

  103. Dietterich TG (2000) Ensemble methods in machine learning. In: International workshop on multiple classifier systems. Springer, pp 1–15

  104. Tharwat A (2020) Classification assessment methods. Appl Comput Inf 17(1):168–192

    Google Scholar 

  105. Grandini M, Bagli E, Visani G (2020) Metrics for multi-class classification: an overview. arXiv:2008.05756

  106. Hossin M, Sulaiman MN (2015) A review on evaluation metrics for data classification evaluations. Int J Data Min Knowl Manag Process 5(2):1

    Google Scholar 

  107. Opitz J, Burst S (2019) Macro f1 and macro f1. arXiv:1911.03347

  108. Kohavi R et al (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 14:1137–1145 (Montreal, Canada)

    Google Scholar 

  109. Anguita D, Ghelardoni L, Ghio A, Oneto L, Ridella S (2012) The ‘k’ in k-fold cross validation. In: 20th European symposium on artificial neural networks, computational intelligence and machine learning (ESANN). i6doc. com publ, pp 441–446

  110. Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. Encycl Database Syst 5:532–538

    Google Scholar 

  111. Markatou M, Tian H, Biswas S, Hripcsak GM (2005) Analysis of variance of cross-validation estimators of the generalization error. J Mach Learn Res 6:1127–1168

    MathSciNet  MATH  Google Scholar 

  112. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  113. Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10(7):1895–1923

    Google Scholar 

  114. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611

    MathSciNet  MATH  Google Scholar 

  115. Miot HA (2017) Avaliação da normalidade dos dados em estudos clínicos e experimentais. SciELO Brasil . https://www.t.ly/D4ip

  116. Kim TK (2015) T test as a parametric statistic. Korean J Anesthesiol 68(6):540

    MathSciNet  Google Scholar 

  117. Ziliak S (2017) P values and the search for significance. Nat Methods 14(1):3–4

    Google Scholar 

  118. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Google Scholar 

  119. Shoeibi A, Ghassemi N, Alizadehsani R, Rouhani M, Hosseini-Nejad H, Khosravi A, Panahiazar M, Nahavandi S (2021) A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals. Expert Syst Appl 163:113788

    Google Scholar 

  120. Rennie J, Shih L, Teevan J, Karger D (2003) Tackling the poor assumptions of Naive Bayes classifiers (pdf). In: ICML

  121. Chang C-C, Lin C-J (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol TIST 2(3):1–27

    Google Scholar 

  122. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Systems 2(4):303–314

    MathSciNet  MATH  Google Scholar 

  123. Heaton J (2008) Introduction to neural networks with java. Heaton Research, New York

    Google Scholar 

  124. Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    Google Scholar 

  125. Liang S-F, Wang H-C, Chang W-L (2010) Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP J Adv Signal Process 2010:1–15

    Google Scholar 

  126. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 39(1):202–209

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001, of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), from Fundação Araucária (FA) and from Financiadora de Estudos e Projetos (FINEP). The authors also thank the Federal University of Technology-ParanÃ!‘ (UTFPR), Campus Pato Branco, and the Federal Institute of Santa Catarina (IFC)-Campus Luzerna, for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Tales Oliva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vargas, D.L., Oliva, J.T., Teixeira, M. et al. Feature extraction and selection from electroencephalogram signals for epileptic seizure diagnosis. Neural Comput & Applic 35, 12195–12219 (2023). https://doi.org/10.1007/s00521-023-08350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08350-1

Keywords