Skip to main content
Log in

Parameter optimization of chaotic system using Pareto-based triple objective artificial bee colony algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Chaotic map is a kind of discrete chaotic system. The existing chaotic maps suffer from optimal parameters in terms of chaos measurements. In this study, a novel approach of optimization of parametric chaotic map (PCM) using triple objective optimization is presented for the first time. A PCM with six parameters is first conceived and then optimized using Pareto-based triple objective artificial bee colony (PT-ABC) algorithm. Pareto optimality is employed to catch the trade-off among the objectives: Lyapunov exponent (LE), sample entropy (SE), and Kolmogorov entropy (KE). A global optimal design including the six parameters is selected for minimizing the reciprocal of the three objectives independently. The chaotic performance of PCM is verified through an evaluation with bifurcation diagram, attractor, LE, SE, KE, and correlation dimension. The results are also validated by comparison with those of which reported elsewhere. Furthermore, the applicability of PCM is examined over image encryption and the results are compared with existing chaos-based IEs. Therefore, the PCM manifests the best ergodicity and complexity thanks to its PT-ABC algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Gao S, Wu R, Wang X et al (2023) Asynchronous updating Boolean network encryption algorithm. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2023.3237136

    Article  Google Scholar 

  2. Lin CM, Pham DH, Huynh TT (2021) Encryption and decryption of audio signal and image secure communications using chaotic system synchronization control by TSK fuzzy brain emotional learning controllers. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3134245

    Article  Google Scholar 

  3. Li Q, Wang X, Ma B et al (2021) Concealed attack for robust watermarking based on generative model and perceptual loss. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2021.3138795

    Article  Google Scholar 

  4. Itier V, Puteaux P, Puech W (2020) Recompression of JPEG crypto-compressed images without a key. IEEE Trans Circuits Syst Video Technol 30:646–660. https://doi.org/10.1109/TCSVT.2019.2894520

    Article  Google Scholar 

  5. Kaur R, Singh B (2021) A novel approach for data hiding based on combined application of discrete cosine transform and coupled chaotic map. Multimed Tools Appl 80:14665–14691. https://doi.org/10.1007/s11042-021-10528-5

    Article  Google Scholar 

  6. Xian Y, Wang X, Teng L (2021) Double parameters fractal sorting matrix and its application in image encryption. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2021.3108767

    Article  Google Scholar 

  7. Kang X, Ming A, Tao R (2019) Reality-preserving multiple parameter discrete fractional angular transform and its application to color image encryption. IEEE Trans Circuits Syst Video Technol 29:1595–1607. https://doi.org/10.1109/TCSVT.2018.2851983

    Article  Google Scholar 

  8. Gao S, Wu R, Wang X et al (2023) A 3D model encryption scheme based on a cascaded chaotic system. Signal Process 202:108745. https://doi.org/10.1016/j.sigpro.2022.108745

    Article  Google Scholar 

  9. Wu S, Jiang Y, Luo H et al (2022) An integrated data-driven scheme for the defense of typical cyber–physical attacks. Reliab Eng Syst Saf 220:108257. https://doi.org/10.1016/j.ress.2021.108257

    Article  Google Scholar 

  10. Jiang Y, Wu S, Yang H et al (2022) Secure data transmission and trustworthiness judgement approaches against cyber-physical attacks in an integrated data-driven framework. IEEE Trans Syst Man Cybern Syst 52:7799–7809. https://doi.org/10.1109/TSMC.2022.3164024

    Article  Google Scholar 

  11. Zhang Y, Hua Z, Bao H et al (2022) An n-dimensional chaotic system generation method using parametric pascal matrix. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2022.3151984

    Article  Google Scholar 

  12. Zheng W, Yan L, Gou C, Wang F-Y (2021) An ACP-based parallel approach for color image encryption using redundant blocks. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3105568

    Article  Google Scholar 

  13. Xu G, Li C, Wang Q (2019) Unified multi-scale method for fast leaf classification and retrieval using geometric information. IET Image Process 13:2328–2334. https://doi.org/10.1049/iet-ipr.2018.6551

    Article  Google Scholar 

  14. Gao S, Wu R, Wang X et al (2023) EFR-CSTP: encryption for face recognition based on the chaos and semi-tensor product theory. Inf Sci (Ny) 621:766–781. https://doi.org/10.1016/j.ins.2022.11.121

    Article  Google Scholar 

  15. Wang X, Zhang W, Guo W, Zhang J (2013) Secure chaotic system with application to chaotic ciphers. Inf Sci (Ny) 221:555–570. https://doi.org/10.1016/j.ins.2012.09.037

    Article  MathSciNet  MATH  Google Scholar 

  16. Babanli K, Ortaç Kabaoğlu R (2022) Fuzzy modeling of desired chaotic behavior in secure communication systems. Inf Sci (Ny) 594:217–232. https://doi.org/10.1016/j.ins.2022.02.020

    Article  Google Scholar 

  17. Wang Y, Liu Z, Zhang LY et al (2021) From chaos to pseudorandomness: a case study on the 2-D coupled map lattice. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3129808

    Article  Google Scholar 

  18. Márquez-Martínez LA, Cuesta-García JR, Pena Ramirez J (2022) Boosting synchronization in chaotic systems: combining past and present interactions. Chaos, Solitons Fractals 155:111691. https://doi.org/10.1016/j.chaos.2021.111691

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang X, Li Y (2021) Chaotic image encryption algorithm based on hybrid multi-objective particle swarm optimization and DNA sequence. Opt Lasers Eng 137:106393. https://doi.org/10.1016/j.optlaseng.2020.106393

    Article  Google Scholar 

  20. Wu Y, Zhou Y, Bao L (2014) Discrete wheel-switching chaotic system and applications. IEEE Trans Circuits Syst I Regul Pap 61:3469–3477. https://doi.org/10.1109/TCSI.2014.2336512

    Article  Google Scholar 

  21. Zhou Y, Hua Z, Pun C-M, Philip Chen CL (2015) Cascade chaotic system with applications. IEEE Trans Cybern 45:2001–2012. https://doi.org/10.1109/TCYB.2014.2363168

    Article  Google Scholar 

  22. Zheng J, Hu H (2022) A highly secure stream cipher based on analog–digital hybrid chaotic system. Inf Sci (Ny) 587:226–246. https://doi.org/10.1016/j.ins.2021.12.030

    Article  Google Scholar 

  23. Wang X, Guan N, Yang J (2021) Image encryption algorithm with random scrambling based on one-dimensional logistic self-embedding chaotic map. Chaos, Solitons Fractals 150:111117. https://doi.org/10.1016/J.CHAOS.2021.111117

    Article  MathSciNet  Google Scholar 

  24. Midoun MA, Wang X, Talhaoui MZ (2021) A sensitive dynamic mutual encryption system based on a new 1D chaotic map. Opt Lasers Eng 139:106485

    Article  Google Scholar 

  25. Mansouri A, Wang X (2021) A novel one-dimensional chaotic map generator and its application in a new index representation-based image encryption scheme. Inf Sci (Ny) 563:91–110. https://doi.org/10.1016/J.INS.2021.02.022

    Article  MathSciNet  Google Scholar 

  26. Talhaoui MZ, Wang X (2021) A new fractional one dimensional chaotic map and its application in high-speed image encryption. Inf Sci (Ny) 550:13–26. https://doi.org/10.1016/J.INS.2020.10.048

    Article  MathSciNet  MATH  Google Scholar 

  27. Yahi A, Bekkouche T, El Hossine DM, Diffellah N (2022) A color image encryption scheme based on 1D cubic map. Optik (Stuttg) 249:168290. https://doi.org/10.1016/J.IJLEO.2021.168290

    Article  Google Scholar 

  28. Zhou W, Wang X, Wang M, Li D (2022) A new combination chaotic system and its application in a new bit-level image encryption scheme. Opt Lasers Eng 149:106782. https://doi.org/10.1016/J.OPTLASENG.2021.106782

    Article  Google Scholar 

  29. Chan JCL, Lee TH, Tan CP (2022) Secure communication through a chaotic system and a sliding-mode observer. IEEE Trans Syst Man Cybern Syst 52:1869–1881. https://doi.org/10.1109/TSMC.2020.3034746

    Article  Google Scholar 

  30. Han M, Zhong K, Qiu T, Han B (2019) Interval type-2 fuzzy neural networks for chaotic time series prediction: a concise overview. IEEE Trans Cybern 49:2720–2731. https://doi.org/10.1109/TCYB.2018.2834356

    Article  Google Scholar 

  31. Carbas S, Toktas A, Ustun D (2021) Nature-inspired metaheuristic algorithms for engineering optimization applications. Springer, Singapore

  32. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  33. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57. https://doi.org/10.1007/s10462-012-9328-0

    Article  Google Scholar 

  34. Toktas A, Ustun D, Erdogan N (2020) Pioneer pareto artificial bee colony algorithm for three-dimensional objective space optimization of composite-based layered radar absorber. Appl Soft Comput 96:1–12. https://doi.org/10.1016/j.asoc.2020.106696

    Article  Google Scholar 

  35. Toktas A (2021) Multi-objective design of multilayer microwave dielectric filters using artificial bee colony algorithm. In: Carbas S, Toktas A, Ustun D (eds) Nature-inspired metaheuristic algorithms for engineering optimization applications. Springer, Singapore

  36. Toktas A, Ustun D (2020) Triple-objective optimization scheme using butterfly-integrated ABC algorithm for design of multilayer RAM. IEEE Trans Antennas Propag 68:5603–5612. https://doi.org/10.1109/TAP.2020.2981728

    Article  Google Scholar 

  37. Hua Z, Chen Y, Bao H, Zhou Y (2022) Two-dimensional parametric polynomial chaotic system. IEEE Trans Syst Man Cybern Syst 52:4402–4414. https://doi.org/10.1109/TSMC.2021.3096967

    Article  Google Scholar 

  38. Yuan CM, Feeny BF (1998) Parametric identification of chaotic systems. J Vib Control 4:405–426. https://doi.org/10.1177/107754639800400404

    Article  Google Scholar 

  39. Capeáns R, Sabuco J, Sanjuán MAF (2016) Parametric partial control of chaotic systems. Nonlinear Dyn 86:869–876. https://doi.org/10.1007/s11071-016-2929-4

    Article  MathSciNet  Google Scholar 

  40. Xiong Q, Shen J, Tong B, Xiong Y (2022) Parameter identification for memristive chaotic system using modified sparrow search algorithm. Front Phys. https://doi.org/10.3389/fphy.2022.912606

    Article  Google Scholar 

  41. Toktas A, Erkan U, Toktas F et al (2021) Chaotic map optimization for image encryption using triple objective differential evolution algorithm. IEEE Access 9:127814–127832. https://doi.org/10.1109/ACCESS.2021.3111691

    Article  Google Scholar 

  42. Toktas A, Erkan Ustun UD (2021) An image encryption scheme based on an optimal chaotic map derived by multi-objective optimization using ABC algorithm. Nonlinear Dyn 1052(105):1885–1909. https://doi.org/10.1007/S11071-021-06675-X

    Article  Google Scholar 

  43. Toktas A, Erkan U (2022) 2D fully chaotic map for image encryption constructed through a quadruple-objective optimization via artificial bee colony algorithm. Neural Comput Appl 34:4295–4319. https://doi.org/10.1007/s00521-021-06552-z

    Article  Google Scholar 

  44. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D Nonlinear Phenom 65:117–134. https://doi.org/10.1016/0167-2789(93)90009-P

    Article  MathSciNet  MATH  Google Scholar 

  45. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate and sample entropy. Am J Physiol—Hear Circ Physiol 278:2039–2049. https://doi.org/10.1152/ajpheart.2000.278.6.h2039

    Article  Google Scholar 

  46. Grassberger P, Procaccia I (1983) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593. https://doi.org/10.1103/PhysRevA.28.2591

    Article  Google Scholar 

  47. Gao L, Wang J, Chen L (2013) Event-related desynchronization and synchronization quantification in motor-related EEG by Kolmogorov entropy. J Neural Eng 10:36023. https://doi.org/10.1088/1741-2560/10/3/036023

    Article  Google Scholar 

  48. Hua Z, Zhou Y, Huang H (2019) Cosine-transform-based chaotic system for image encryption. Inf Sci (Ny) 480:403–419. https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  49. Theiler J (1987) Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys Rev A 36:4456–4462. https://doi.org/10.1103/PhysRevA.36.4456

    Article  MathSciNet  Google Scholar 

  50. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16:2129–2151. https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  51. Castro JCH, Sierra JM, Seznec A et al (2005) The strict avalanche criterion randomness test. Math Comput Simul 68:1–7. https://doi.org/10.1016/J.MATCOM.2004.09.001

    Article  MathSciNet  MATH  Google Scholar 

  52. de NetoO JR, Lima JB, Panario D (2020) The design of a novel multiple-parameter fractional number-theoretic transform and its application to image encryption. IEEE Trans Circuits Syst Video Technol 30:2489–2502. https://doi.org/10.1109/TCSVT.2019.2925522

    Article  Google Scholar 

  53. Zhang X, Zhao Z, Wang J (2014) Chaotic image encryption based on circular substitution box and key stream buffer. Signal Process Image Commun 29:902–913. https://doi.org/10.1016/j.image.2014.06.012

    Article  Google Scholar 

  54. Zhu L, Jiang D, Ni J et al (2022) A stable meaningful image encryption scheme using the newly-designed 2D discrete fractional-order chaotic map and Bayesian compressive sensing. Signal Process 195:108489. https://doi.org/10.1016/j.sigpro.2022.108489

    Article  Google Scholar 

  55. Preishuber M, Hütter T, Katzenbeisser S, Uhl A (2018) Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans Inf Forensics Secur 13:2137–2150. https://doi.org/10.1109/TIFS.2018.2812080

    Article  Google Scholar 

  56. Erkan U, Toktas A, Toktas F, Alenezi F (2022) 2D eπ-map for image encryption. Inf Sci (Ny) 589:770–789. https://doi.org/10.1016/j.ins.2021.12.126

    Article  Google Scholar 

  57. Wu Y, Noonan JP, Agaian S (2011) NPCR and UACI randomness tests for image encryption. Cyber J Multidiscip J Sci Technol J Sel Areas Telecommun 1:31–38

    Google Scholar 

  58. Liang Q, Zhu C (2023) A new one-dimensional chaotic map for image encryption scheme based on random DNA coding. Opt Laser Technol 160:109033. https://doi.org/10.1016/j.optlastec.2022.109033

    Article  Google Scholar 

  59. Wang X, Li Y, Jin J (2020) A new one-dimensional chaotic system with applications in image encryption. Chaos, Solitons Fractals 139:110102. https://doi.org/10.1016/j.chaos.2020.110102

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang X, Du X (2021) Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices. Chaos, Solitons Fractals. https://doi.org/10.1016/j.chaos.2021.111629

    Article  Google Scholar 

  61. Khalil N, Sarhan A, Alshewimy MAM (2021) An efficient color/grayscale image encryption scheme based on hybrid chaotic maps. Opt Laser Technol 143:107326. https://doi.org/10.1016/J.OPTLASTEC.2021.107326

    Article  Google Scholar 

  62. Wang X, Zhang M (2021) High-sensitivity synchronous image encryption based on improved one-dimensional compound sine map. IET Image Process 15:2247–2265. https://doi.org/10.1049/ipr2.12193

    Article  Google Scholar 

  63. Wu W, Wang Q (2022) Cryptanalysis and improvement of an image encryption algorithm based on chaotic and latin square. Nonlinear Dyn. https://doi.org/10.1007/s11071-022-07990-7

    Article  Google Scholar 

  64. Talhaoui MZ, Wang X, Talhaoui A (2021) A new one-dimensional chaotic map and its application in a novel permutation-less image encryption scheme. Vis Comput 37:1757–1768. https://doi.org/10.1007/s00371-020-01936-z

    Article  MATH  Google Scholar 

  65. Lai Q, Zhang H, Kuate PDK et al (2022) Analysis and implementation of no-equilibrium chaotic system with application in image encryption. Appl Intell 52:11448–11471. https://doi.org/10.1007/s10489-021-03071-1

    Article  Google Scholar 

  66. Folifack Signing VR, Gakam Tegue GA, Kountchou M et al (2022) A cryptosystem based on a chameleon chaotic system and dynamic DNA coding. Chaos, Solitons Fractals 155:111777. https://doi.org/10.1016/j.chaos.2021.111777

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Erkan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toktas, A., Erkan, U., Ustun, D. et al. Parameter optimization of chaotic system using Pareto-based triple objective artificial bee colony algorithm. Neural Comput & Applic 35, 13207–13223 (2023). https://doi.org/10.1007/s00521-023-08434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08434-y

Keywords

Navigation