Skip to main content

Advertisement

Log in

GLUE analysis of meteorological-based crop coefficient predictions to derive the explicit equation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The crop coefficient (Kc) is a scaling factor to calculate crop evapotranspiration (ETc). Accurate prediction of Kc affects planning to allocate water resources, especially in arid and semi-arid areas with limited water sources availability. The conventional FAO approach has some limited applications due to using plant characteristics. However, existing artificial intelligence approaches have high performances, but encounter some instability in prediction. In the present study, the generalized likelihood uncertainty estimation (GLUE) approach was applied to assess uncertainties arising from both model structure and input parameters. In addition, this study aims to derive the explicit predictive and usable equation for calculating the monthly Kc of maize. The equations were developed from the best hybrid MLP model using minimal meteorological data in four regions of Egypt. For this, the predictive utility of MLP-based models that hybridized with meta-heuristic optimization algorithms was examined. The rat swarm optimization (RSO), firefly algorithm (FFA), bat algorithm (BA), and genetic algorithm (GA) hybridized with MLP (MLP-RSO, MLP-FFA, MLP-BA, and MLP-GA) are used as equation derivation tools. The results showed that a unique hybrid Gamma Test-RSO is a powerful approach for determining the optimal combination (Tmax, Tmin, Rs) as the best input vector. The results showed that the hybrid MLP-RSO model decreased the average RMSE by 13.87, 39.95, 45.68, and 53.09% than MLP-BA, MLP-FFA, MLP-GA, and MLP models, respectively. In addition, the uncertainty results showed that the Kc predictions were more stable and confident in MLP-RSO, while the average of 95PPU covered 94.5 and 91.5% of actual Kc for input parameters and model structure uncertainties, respectively. In conclusion, the developed hybrid model and the techniques illustrated in the current study suggest substantial benefits for other researchers to derive mathematical equations from easily available meteorological variables in different regions and climates. Also, the findings provide a fundamental guideline for the local water users and agricultural development planners to achieve accurate and fast irrigation scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statements

The datasets generated during the current study are available for other researchers.

References

  1. Amin RA, Hossain MB, Yunus A (2022) Estimation of crop water requirement and irrigation scheduling of rice in southeastern region of Bangladesh using FAO-CROPWAT BT - advances in civil engineering. Springer

    Google Scholar 

  2. Shahrokhnia MH, Sepaskhah AR (2013) Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region. Theor Appl Climatol 114:495–510. https://doi.org/10.1007/s00704-013-0848-6

    Article  Google Scholar 

  3. Han X, Wei Z, Zhang B et al (2021) Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model. J Hydrol 596:126104. https://doi.org/10.1016/j.jhydrol.2021.126104

    Article  Google Scholar 

  4. Farg E, Arafat SM, Abd El-Wahed MS, EL-Gindy AM (2012) Estimation of evapotranspiration ETc and crop coefficient Kc of wheat, in south Nile Delta of Egypt Using integrated FAO-56 approach and remote sensing data. Egypt J Remote Sens Sp Sci 15:83–89. https://doi.org/10.1016/j.ejrs.2012.02.001

    Article  Google Scholar 

  5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300:D05109

    Google Scholar 

  6. Raphael OD, Ogedengbe K, Fasinmirin JT et al (2018) Growth-stage-specific crop coefficient and consumptive use of Capsicum Chinese using hydraulic weighing lysimeter. Agric Water Manag 203:179–185. https://doi.org/10.1016/j.agwat.2018.03.011

    Article  Google Scholar 

  7. Kumar R, Lone MA, Bhat OA (2021) Determination of water requirement and crop coefficients for green gram in temperate region using lysimeter water balance. Int J Hydrol Sci Technol 12:1. https://doi.org/10.1504/ijhst.2021.10038778

    Article  Google Scholar 

  8. Liu M, Shi H, Paredes P et al (2022) Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model. Agric Water Manag 261:107362. https://doi.org/10.1016/j.agwat.2021.107362

    Article  Google Scholar 

  9. Rosa RD, Ramos TB, Pereira LS (2016) The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model. Agric Water Manag 177:77–94. https://doi.org/10.1016/j.agwat.2016.06.028

    Article  Google Scholar 

  10. Paredes P, Rodrigues GJ, Petry MT, et al (2018) Evapotranspiration Partition and Crop Coefficients of Tifton 85 Bermudagrass as Affected by the Frequency of Cuttings. Application of the FAO56 Dual Kc Model. Water 10

  11. Üzen N, Çetin Ö, Yolcu R (2018) Possibilities of using dual Kc approach in predicting crop evapotranspiration of second-crop silage maize. Turkish J Agric For 42:272–280. https://doi.org/10.3906/tar-1712-10

    Article  Google Scholar 

  12. Pratibha G, Srinivas I, Rao KV et al (2016) Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India. Atmos Environ 145:239–250. https://doi.org/10.1016/j.atmosenv.2016.09.039

    Article  Google Scholar 

  13. Trout TJ, DeJonge KC (2018) Crop water use and crop coefficients of maize in the great plains. J Irrig Drain Eng 144:4018009. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001309

    Article  Google Scholar 

  14. Dingre SK, Gorantiwar SD (2020) Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region. Agric Water Manag 232:106042. https://doi.org/10.1016/j.agwat.2020.106042

    Article  Google Scholar 

  15. Da SWA, Santana JS, Da SCM, Nunes AA (2017) Crop coefficient regionalization for irrigated agriculture planning in Maranhão State-Brazil. Eng Agrícola 37:953–960. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n5p953-960/2017

    Article  Google Scholar 

  16. Anwer S, Almaraf D, Hikmat EF (2016) Predicting the crop coefficient values for maize in Iraq. Eng & TechJournal 34:284–294

    Google Scholar 

  17. López-Urrea R, Montoro A, Mañas F et al (2012) Evapotranspiration and crop coefficients from lysimeter measurements of mature ‘Tempranillo’ wine grapes. Agric Water Manag 112:13–20. https://doi.org/10.1016/j.agwat.2012.05.009

    Article  Google Scholar 

  18. Liu Y, Luo Y (2010) A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agric Water Manag 97:31–40. https://doi.org/10.1016/j.agwat.2009.07.003

    Article  Google Scholar 

  19. Mateos L, González-Dugo MP, Testi L, Villalobos FJ (2013) Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. I Method validation Agric Water Manag 125:81–91. https://doi.org/10.1016/j.agwat.2012.11.005

    Article  Google Scholar 

  20. Pôças I, Paço TA, Paredes P et al (2015) Estimation of actual crop coefficients using remotely sensed vegetation indices and soil water balance modelled data. Remote Sens 7:2373–2400

    Article  Google Scholar 

  21. Fan J, Zheng J, Wu L, Zhang F (2021) Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agric Water Manag 245:106547. https://doi.org/10.1016/j.agwat.2020.106547

    Article  Google Scholar 

  22. Granata F (2019) Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric Water Manag 217:303–315. https://doi.org/10.1016/j.agwat.2019.03.015

    Article  Google Scholar 

  23. Gocić M, Arab Amiri M (2021) Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resour Manag 35:1913–1926. https://doi.org/10.1007/s11269-021-02820-8

    Article  Google Scholar 

  24. Granata F, Di Nunno F (2021) Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agric Water Manag 255:107040. https://doi.org/10.1016/j.agwat.2021.107040

    Article  Google Scholar 

  25. Qasem SN, Samadianfard S, Kheshtgar S et al (2019) Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Eng Appl Comput Fluid Mech 13:177–187. https://doi.org/10.1080/19942060.2018.1564702

    Article  Google Scholar 

  26. Seifi A, Soroush F (2020) Pan evaporation estimation and derivation of explicit optimized equations by novel hybrid meta-heuristic ANN based methods in different climates of Iran. Comput Electron Agric 173:105418. https://doi.org/10.1016/j.compag.2020.105418

    Article  Google Scholar 

  27. Kumar M, Kumari A, Kumar D et al (2021) The superiority of data-driven techniques for estimation of daily pan evaporation. Atmosphere (Basel) 12:1–23. https://doi.org/10.3390/atmos12060701

    Article  Google Scholar 

  28. Kushwaha NL, Rajput J, Elbeltagi A et al (2021) Data intelligence model and meta-heuristic algorithms-based pan evaporation modelling in two different agro-climatic zones: a case study from Northern India. Atmosphere (Basel) 12:1654

    Article  Google Scholar 

  29. Khan MA, Islam Z, Hafeez M (2011) Irrigation water requirement prediction through various data mining techniques applied on a care-fully pre-processed dataset. J Res Pract Inf Technol 43:1–17

    Google Scholar 

  30. Elbeltagi A, Zhang L, Deng J et al (2020) Modeling monthly crop coefficients of maize based on limited meteorological data: a case study in Nile Delta. Egypt. Comput Electron Agric 173:105368. https://doi.org/10.1016/j.compag.2020.105368

    Article  Google Scholar 

  31. Zanetti SS, Sousa EF, Oliveira VP et al (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133:83–89. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:2(83)

    Article  Google Scholar 

  32. Abrishami N, Sepaskhah AR, Shahrokhnia MH (2019) Estimating wheat and maize daily evapotranspiration using artificial neural network. Theor Appl Climatol 135:945–958. https://doi.org/10.1007/s00704-018-2418-4

    Article  Google Scholar 

  33. Saggi MK, Jain S (2020) Application of fuzzy-genetic and regularization random forest (FG-RRF): Estimation of crop evapotranspiration (ETc) for maize and wheat crops. Agric Water Manag 229:105907. https://doi.org/10.1016/j.agwat.2019.105907

    Article  Google Scholar 

  34. Riahi Madvar H, Dehghani M, Memarzadeh R et al (2020) Derivation of optimized equations for estimation of dispersion coefficient in natural streams using hybridized ANN with PSO and CSO algorithms. IEEE Access 8:156582–156599. https://doi.org/10.1109/ACCESS.2020.3019362

    Article  Google Scholar 

  35. Pusat S, Akkaya AV (2020) Explicit equation derivation for predicting coal moisture content in convective drying process by GMDH-type neural network. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2020.1774563

    Article  Google Scholar 

  36. Seifi A, Ehteram M, Nayebloei F et al (2021) GLUE uncertainty analysis of hybrid models for predicting hourly soil temperature and application wavelet coherence analysis for correlation with meteorological variables. Soft Comput 25:10723–10748. https://doi.org/10.1007/s00500-021-06009-4

    Article  Google Scholar 

  37. Seifi A, Ehteram M, Dehghani M (2021) A robust integrated Bayesian multi-model uncertainty estimation framework (IBMUEF) for quantifying the uncertainty of hybrid meta-heuristic in global horizontal irradiation predictions. Energy Convers Manag 241:114292. https://doi.org/10.1016/j.enconman.2021.114292

    Article  Google Scholar 

  38. Shalaby A, Tateishi R (2007) Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr 27:28–41. https://doi.org/10.1016/j.apgeog.2006.09.004

    Article  Google Scholar 

  39. Shalaby A (2012) Assessment of urban sprawl impact on the agricultural land in the nile delta of Egypt using remote sensing and digital soil map. Int J Environ Sci 1:253–262

    Google Scholar 

  40. Worldweatheronline.com High and Low Temperature, Available at: https://www.worldweatheronline.com/cairo-weather/ad-daqahliyah/eg.aspx/Accessed 10 April. 2019

  41. wunderground.com weather underground, Available at: https://www.wunderground.com/weather/eg/, Accessed on 8 April 2019

  42. Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5:1–12. https://doi.org/10.1038/sdata.2017.191

    Article  Google Scholar 

  43. Kobayashi S, Ota Y, Harda Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan Ser II 93:5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  44. Odhiambo LO, Irmak S (2012) Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration. Agric Water Manag 104:221–234. https://doi.org/10.1016/j.agwat.2011.12.021

    Article  Google Scholar 

  45. Seifi A, Ehteram M, Soroush F (2020) Uncertainties of instantaneous influent flow predictions by intelligence models hybridized with multi-objective shark smell optimization algorithm. J Hydrol 587:124977. https://doi.org/10.1016/j.jhydrol.2020.124977

    Article  Google Scholar 

  46. Heidari E, Sobati MA, Movahedirad S (2016) Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemom Intell Lab Syst 155:73–85. https://doi.org/10.1016/j.chemolab.2016.03.031

    Article  Google Scholar 

  47. Ghadge RR, Prakash S (2021) Investigation and prediction of hybrid composite leaf spring using deep neural network based rat swarm optimization. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2021.1972309

    Article  Google Scholar 

  48. Eslami M, Akbari E, Seyed Sadr ST, Ibrahim BF (2022) A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Sci Eng. https://doi.org/10.1002/ese3.1160

    Article  Google Scholar 

  49. Kaushal C, Kaushal K, Singla A (2021) Firefly optimization-based segmentation technique to analyse medical images of breast cancer International. J Comput Math 98(7):1293–1308. https://doi.org/10.1080/00207160.2020.1817411

    Article  MathSciNet  MATH  Google Scholar 

  50. Lu S, Wang SH, Zhang YD (2021) Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm. Neural Comput Appl 33(17):10799–10811. https://doi.org/10.1007/s00521-020-05082-4

    Article  Google Scholar 

  51. Dhiman G, Garg M, Nagar A et al (2021) A novel algorithm for global optimization: rat swarm optimizer. J Ambient Intell Humaniz Comput 12:8457–8482. https://doi.org/10.1007/s12652-020-02580-0

    Article  Google Scholar 

  52. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  53. Yang X-S (2010) A new metaheuristic bat-inspired algorithm BT - Nature Inspired Cooperative Strategies for Optimization (NICSO). In: González JR, Pelta DA, Cruz C et al (eds) Nature inspired cooperative strategies for optimization. Springer

    Google Scholar 

  54. Yang X, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29:464–483. https://doi.org/10.1108/02644401211235834

    Article  Google Scholar 

  55. Yang X-S (2009) Firefly algorithms for multimodal optimization BT - stochastic algorithms: foundations and applications. In: Watanabe O, Zeugmann T (eds) International symposium on stochastic algorithms. Springer

    Google Scholar 

  56. Yaseen ZM, Ebtehaj I, Bonakdari H et al (2017) Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. J Hydrol 554:263–276. https://doi.org/10.1016/j.jhydrol.2017.09.007

    Article  Google Scholar 

  57. Ghorbani MA, Deo RC, Yaseen ZM et al (2018) Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theor Appl Climatol 133:1119–1131. https://doi.org/10.1007/s00704-017-2244-0

    Article  Google Scholar 

  58. Ahmadi A, Han D, Karamouz M, Remesan R (2009) Input data selection for solar radiation estimation. Hydrol Process 23(19):2754–2764. https://doi.org/10.1002/hyp.7372

    Article  Google Scholar 

  59. Noori R, Karbassi A, Sabahi MS (2010) Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. J Environ Manage 91(3):767–771. https://doi.org/10.1016/j.jenvman.2009.10.007

    Article  Google Scholar 

  60. Seifi A, Riahi H (2020) Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. J WATER CLIM CHANGE 11(1):217–240. https://doi.org/10.2166/wcc.2018.003

    Article  Google Scholar 

  61. Salgotra R, Singh U (2019) The naked mole-rat algorithm. Neural Comput Appl 31(12):8837–8857. https://doi.org/10.1007/s00521-019-04464-7

    Article  Google Scholar 

  62. Milosevic S, Bezdan T, Zivkovic M, Bacanin N, Strumberger I, Tuba M (2020) Feed-forward neural network training by hybrid bat algorithm. In International Conference on Modelling and Development of Intelligent Systems (pp 52–66) Springer Cham

  63. Bui DK, Nguyen TN, Ngo TD, Nguyen-Xuan H (2020) An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings. Energy 190:116370. https://doi.org/10.1016/j.energy.2019.116370

    Article  Google Scholar 

  64. Tamilarasan A, Renugambal A, Vijayan D (2022) Parametric estimation for AWJ cutting of Ti-6Al-4V alloy using rat swarm optimization algorithm. Mater Manuf Process 45:1–11. https://doi.org/10.1080/10426914.2022.2065011

    Article  Google Scholar 

  65. Guo L, Meng Z, Sun Y, Wang L (2016) Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers Manag 108:520–528. https://doi.org/10.1016/j.enconman.2015.11.041

    Article  Google Scholar 

  66. Choubin B, Malekian A (2017) Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environ Earth Sci 76:538. https://doi.org/10.1007/s12665-017-6870-8

    Article  Google Scholar 

  67. Tak K, Choi J, Ryu J-H, Moon I (2020) Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process. Energy 206:118132. https://doi.org/10.1016/j.energy.2020.118132

    Article  Google Scholar 

  68. Allen RG, Pruitt WO, Raes D et al (2005) Estimating evaporation from bare soil and the crop coefficient for the initial period using common soils information. J Irrig Drain Eng 131:14–23. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(14)

    Article  Google Scholar 

  69. Humphrey GB, Gibbs MS, Dandy GC, Maier HR (2016) A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. J Hydrol 540:623–640. https://doi.org/10.1016/j.jhydrol.2016.06.026

    Article  Google Scholar 

  70. Pereira LS, Paredes P, Melton F et al (2020) Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric Water Manag 241:106197. https://doi.org/10.1016/j.agwat.2020.106197

    Article  Google Scholar 

  71. Pereira LS, Paredes P, Melton F et al (2021) Prediction of crop coefficients from fraction of ground cover and height: practical application to vegetable, field and fruit crops with focus on parameterization. Agric Water Manag 252:106663. https://doi.org/10.1016/j.agwat.2020.106663

    Article  Google Scholar 

  72. Allen RG, Pereira LS (2009) Estimating crop coefficients from fraction of ground cover and height. Irrig Sci 28:17–34. https://doi.org/10.1007/s00271-009-0182-z

    Article  Google Scholar 

  73. Mobe NT, Dzikiti S, Zirebwa SF, Midgley SJE, Von Loeper W, Mazvimavi D, Ntshidi Z, Jovanovic NZ (2020) Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province South Africa. Agric Water Manag 233:106103. https://doi.org/10.1016/j.agwat.2020.106103

    Article  Google Scholar 

  74. Shabani E, Hayati B, Pishbahar E et al (2021) A novel approach to predict CO2 emission in the agriculture sector of Iran based on inclusive multiple model. J Clean Prod 279:123708. https://doi.org/10.1016/j.jclepro.2020.123708

    Article  Google Scholar 

  75. Ayars JE, Johnson RS, Phene CJ, Trout TJ, Clark DA, Mead RM (2003) Water use by drip-irrigated late-season peaches. Irrig Sci 22(3):187–194. https://doi.org/10.1007/s00271-003-0084-4

    Article  Google Scholar 

  76. Girona J, Del Campo J, Mata M, Lopez G, Marsal J (2011) A comparative study of apple and pear tree water consumption measured with two weighing lysimeters. Irrig Sci 29(1):55–63. https://doi.org/10.1007/s00271-010-0217-5

    Article  Google Scholar 

  77. Marsal J, Girona J, Casadesus J, Lopez G, Stöckle CO (2013) Crop coefficient (Kc) for apple: comparison between measurements by a weighing lysimeter and prediction by CropSyst. Irrig Sci 31(3):455–463. https://doi.org/10.1007/s00271-012-0323-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Seifi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbeltagi, A., Seifi, A., Ehteram, M. et al. GLUE analysis of meteorological-based crop coefficient predictions to derive the explicit equation. Neural Comput & Applic 35, 14799–14824 (2023). https://doi.org/10.1007/s00521-023-08466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08466-4

Keywords

Navigation