Skip to main content
Log in

Boundary-guided context-aware network for camouflaged object detection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Camouflaged object detection (COD) aims to identify and segment items that are seamlessly assimilate into the surroundings. Compared with the traditional image segmentation, the indefinable boundaries of camouflaged objects and high intrinsic similarities between the targets and the surrounding background make COD more challenging. Although many models have been designed to settle this issue, these algorithms suffer from inaccurate contours. Besides, existing COD methods mainly strive to expand the receptive field and excavate rich contextual cues using convolutional layers with large dilation rates. However, the tiny detailed information may be degenerated in this process due to the large “holes” in these dilated convolutional layers. This paper develops a novel boundary-guided context-aware network (BCNet) to deal with these problems. Specifically, we design a high-resolution feature enhancement module to excavate multi-scale information and enlarge the receptive field without destroying the tiny details within the input feature maps. The proposed module is effective in enhancing the single-layer feature and boosting the COD performance. Besides, a boundary-guided feature interaction module is designed to aggregate multi-level features and investigate the complementary relationship between the targets and the corresponding contours. We evaluate BCNet on four benchmark datasets to verify the effectiveness of the key modules. The experimental results demonstrate that BCNet achieves a real-time inference speed (49 FPS) on a Titan XP GPU and surpasses 19 cutting-edge contenders. Source code will be available at https://github.com/clelouch/BCNet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available in the github repository, https://github.com/clelouch/BCNet.

References

  1. Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Philos Trans R Soc B Biol Sci 364(1516):423–427. https://doi.org/10.1098/rstb.2008.0217

    Article  Google Scholar 

  2. Fan D, Ji G, Sun G, Cheng M, Shen J, Shao L (2020) Camouflaged object detection. In: CVPR, pp 2774–2784. https://doi.org/10.1109/CVPR42600.2020.00285

  3. Fan D-P, Ji G-P, Cheng M-M, Shao L (2021) Concealed object detection. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2021.3085766

    Article  Google Scholar 

  4. Mei H, Ji G, Wei Z, Yang X, Wei X, Fan D (2021) Camouflaged object segmentation with distraction mining. In: CVPR, pp 8772–8781

  5. Sun Y,Chen G Zhou T Zhang Y Liu N (2021) Context-aware cross-level fusion network for camouflaged object detection. In: IJCAI, pp 1025–1031. https://doi.org/10.24963/ijcai.2021/142

  6. Fan D, Ji G, Zhou T, Chen G, Fu H, Shen J, Shao L (2021) Pranet: parallel reverse attention network for polyp segmentation. In: MICCAI, pp 263–273. https://doi.org/10.1007/978-3-030-59725-2_26

  7. Fan D, Zhou T, Ji G, Zhou Y, Chen G, Fu H, Shen J, Shao L (2020) Inf-net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging 39(8):2626–2637. https://doi.org/10.1109/TMI.2020.2996645

    Article  Google Scholar 

  8. Hall JR, Matthews O, Volonakis TN, Liggins E, Lymer KP, Baddeley R, Cuthill IC, Scott-Samuel NE (2021) A platform for initial testing of multiple camouflage patterns. Defence Technol 17(6):1833–1839. https://doi.org/10.1016/j.dt.2020.11.004

    Article  Google Scholar 

  9. Chu H, Hsu W, Mitra NJ, Cohen-Or D, Wong T, Lee T (2010) Camouflage images. ACM Trans Graph 29(4):51–1518. https://doi.org/10.1145/1778765.1778788

    Article  Google Scholar 

  10. Wendi Hou Jinping Li JYYH (2011) Detection of the mobile object with camouflage color under dynamic background based on optical flow. Procedia Eng 15:2201–2205. https://doi.org/10.1016/j.proeng.2011.08.412

    Article  Google Scholar 

  11. Sengottuvelan P, Wahi A, Shanmugam A (2008) Performance of decamouflaging through exploratory image analysis. In: ICETET, pp 6–10. https://doi.org/10.1109/ICETET.2008.232

  12. Xue F, Yong C, Xu S, Dong H, Luo Y, Jia W (2016) Camouflage performance analysis and evaluation framework based on features fusion. Multim Tools Appl 75(7):4065–4082. https://doi.org/10.1007/s11042-015-2946-1

    Article  Google Scholar 

  13. Pan Y, Chen Y, Fu Q, Zhang P, Xu X (2011) Study on the camouflaged target detection method based on 3d convexity. Math Models Methods Appl Sci 5:152

  14. Le T, Nguyen TV, Nie Z, Tran M, Sugimoto A (2019) Anabranch network for camouflaged object segmentation. Comput Vis Image Underst 184:45–56. https://doi.org/10.1016/j.cviu.2019.04.006

    Article  Google Scholar 

  15. Xu X, Zhu M, Yu J, Chen S, Hu X, Yang Y (2021) Boundary guidance network for camouflage object detection. Image Vis Comput 114:104283

    Article  Google Scholar 

  16. Liu J, Hou Q, Cheng M, Feng J, Jiang J (2019) A simple pooling-based design for real-time salient object detection. In: CVPR, pp 3917–3926 . https://doi.org/10.1109/CVPR.2019.00404

  17. Ji G, Fu K, Wu Z, Fan D, Shen J, Shao L (2021) Full-duplex strategy for video object segmentation. In: ICCV, pp 4902–4913 . https://doi.org/10.1109/ICCV48922.2021.00488

  18. Pang Y, Zhao X, Zhang L, Lu H Multi-scale interactive network for salient object detection. In: CVPR, pp 9410–9419 (2020). https://doi.org/10.1109/CVPR42600.2020.00943

  19. Li S, Sui X, Luo X, Xu X, Liu Y, Goh RSM (2021) Medical image segmentation using squeeze-and-expansion transformers. In: Zhou Z. (ed.) IJCAI, pp 807–815. https://doi.org/10.24963/ijcai.2021/112

  20. Zhao J, Liu J, Fan D, Cao Y, Yang J, Cheng M (2019) Egnet: edge guidance network for salient object detection. In: ICCV, pp 8778–8787. https://doi.org/10.1109/ICCV.2019.00887

  21. Wu Z, Su L, Huang Q (2019) Stacked cross refinement network for edge-aware salient object detection. In: ICCV, pp 7263–7272 . https://doi.org/10.1109/ICCV.2019.00736

  22. Wu Z, Su L, Huang Q (2019) Cascaded partial decoder for fast and accurate salient object detection. In: CVPR, pp 3907–3916. https://doi.org/10.1109/CVPR.2019.00403

  23. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017, pp 6230–6239. https://doi.org/10.1109/CVPR.2017.660

  24. Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFS. IEEE Trans Pattern Anal Mach Intell 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  25. Siricharoen P, Aramvith S, Chalidabhongse TH, Siddhichai S (2010) Robust outdoor human segmentation based on color-based statistical approach and edge combination. In: The 2010 international conference on green circuits and systems, pp 463–468. https://doi.org/10.1109/ICGCS.2010.5543017

  26. Lv Y, Zhang J, Dai Y, Li A, Liu B, Barnes N, Fan D (2021) Simultaneously localize, segment and rank the camouflaged objects. In: CVPR, pp 11591–11601

  27. Yan J, Le T, Nguyen K, Tran M, Do T, Nguyen TV (2021) Mirrornet: bio-inspired camouflaged object segmentation. IEEE Access 9:43290–43300. https://doi.org/10.1109/ACCESS.2021.3064443

    Article  Google Scholar 

  28. Zhu J, Zhang X, Zhang S, Liu J (2021) Inferring camouflaged objects by texture-aware interactive guidance network. In: AAAI, pp 3599–3607

  29. Ji G-P, Zhu L, Zhuge M, Fu K (2022) Fast camouflaged object detection via edge-based reversible re-calibration network. Pattern Recogn 123:108414. https://doi.org/10.1016/j.patcog.2021.108414

    Article  Google Scholar 

  30. Ren J, Hu X, Zhu L, Xu X, Xu Y, Wang W, Deng Z, Heng P-A (2021) Deep texture-aware features for camouflaged object detection. IEEE Trans Circuits Syst Video Technol. https://doi.org/10.1109/TCSVT.2021.3126591

    Article  Google Scholar 

  31. Zhuge M, Lu X, Guo Y, Cai Z, Chen S (2022) Cubenet: X-shape connection for camouflaged object detection. Pattern Recogn 127:108644. https://doi.org/10.1016/j.patcog.2022.108644

    Article  Google Scholar 

  32. Li A, Zhang J, Lv Y, Liu B, Zhang T, Dai Y (2021) Uncertainty-aware joint salient object and camouflaged object detection. In: CVPR, pp 10071–10081

  33. Wang T, Borji A, Zhang L, Zhang P, Lu H (2017) A stagewise refinement model for detecting salient objects in images. In: ICCV, pp 4039–4048. https://doi.org/10.1109/ICCV.2017.433

  34. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MCCAI, pp 234–241. Springer

  35. Ma Y, Shuai H, Cheng W (2022) Spatiotemporal dilated convolution with uncertain matching for video-based crowd estimation. IEEE Trans Multim 24:261–273. https://doi.org/10.1109/TMM.2021.3050059

    Article  Google Scholar 

  36. Li J, Pan Z, Liu Q, Wang Z (2021) Stacked u-shape network with channel-wise attention for salient object detection. IEEE Trans Multim 23:1397–1409. https://doi.org/10.1109/TMM.2020.2997192

    Article  Google Scholar 

  37. Li H, Chen G, Li G, Yu Y (2019) Motion guided attention for video salient object detection. In: ICCV, pp 7273–7282. https://doi.org/10.1109/ICCV.2019.00737

  38. Zhang Z, Lin Z, Xu J, Jin W, Lu S, Fan D (2021) Bilateral attention network for RGB-D salient object detection. IEEE Trans Image Process 30:1949–1961. https://doi.org/10.1109/TIP.2021.3049959

    Article  Google Scholar 

  39. Zhang M, Liu J, Wang Y, Piao Y, Yao S, Ji W, Li J, Lu H, Luo Z(2021) Dynamic context-sensitive filtering network for video salient object detection. In: ICCV, pp 1533–1543. IEEE. https://doi.org/10.1109/ICCV48922.2021.00158

  40. Wei J, Wang S, Huang Q (2020) F\({^3}\)net: Fusion, feedback and focus for salient object detection. In: AAAI, pp 12321–12328. https://aaai.org/ojs/index.php/AAAI/article/view/6916

  41. Tu Z, Ma Y, Li C, Tang J, Luo B (2021) Edge-guided non-local fully convolutional network for salient object detection. IEEE Trans Circuits Syst Video Technol 31(2):582–593. https://doi.org/10.1109/TCSVT.2020.2980853

    Article  Google Scholar 

  42. Ji W, Li J, Zhang M, Piao Y, Lu H Accurate RGB-D salient object detection via collaborative learning. In: Vedaldi A, Bischof H, Brox T, Frahm J (2020) (eds) ECCV, vol 12363, pp 52–69. https://doi.org/10.1007/978-3-030-58523-5_4

  43. Zhou H, Xie X, Lai J, Chen Z, Yang L (2020) Interactive two-stream decoder for accurate and fast saliency detection. In: CVPR, pp 9138–9147. https://doi.org/10.1109/CVPR42600.2020.00916

  44. Chen T, Xiao J, Hu X, Zhang G, Wang S (2022) Boundary-guided network for camouflaged object detection. Knowl-Based Syst 248:108901. https://doi.org/10.1016/j.knosys.2022.108901

    Article  Google Scholar 

  45. Chen Q, Liu Z, Zhang Y, Fu K, Zhao Q, Du H (2021) RGB-D salient object detection via 3d convolutional neural networks. In: AAAI, pp 1063–1071. https://ojs.aaai.org/index.php/AAAI/article/view/16191

  46. Chen C, Wang G, Peng C, Fang Y, Zhang D, Qin H (2021) Exploring rich and efficient spatial temporal interactions for real-time video salient object detection. IEEE Trans Image Process 30:3995–4007. https://doi.org/10.1109/TIP.2021.3068644

    Article  Google Scholar 

  47. He K, Zhang X, Ren S, Sun J (2021) Deep residual learning for image recognition. In: CVPR, pp 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  48. Chen T, Hu X, Xiao J, Zhang G, Wang S (2021) Binet: bidirectional interactive network for salient object detection. Neurocomputing 465:490–502. https://doi.org/10.1016/j.neucom.2021.09.020

    Article  Google Scholar 

  49. Krähenbühl P, Koltun V (2011) Efficient inference in fully connected crfs with gaussian edge potentials. In: NIPS, pp 109–117

  50. Qiu Z, Yao T, Mei T (2017) Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV, pp 5534–5542. https://doi.org/10.1109/ICCV.2017.590

  51. Skurowski P, Abdulameer H, Błaszczyk J, Depta T, Kornacki A, Kozieł P Animal Camouflage Analysis. Chameleon Database

  52. Chen T, Xiao J, Hu X, Zhang G, Wang S (2022) Spatiotemporal context-aware network for video salient object detection. Neural Comput Appl. https://doi.org/10.1007/s00521-022-07330-1

    Article  Google Scholar 

  53. Fan D, Cheng M, Liu Y, Li T, Borji A (2017) Structure-measure: a new way to evaluate foreground maps. In: ICCV, pp 4558–4567. https://doi.org/10.1109/ICCV.2017.487

  54. Chen T, Hu X, Xiao J, Zhang G, Wang S (2022) Cfidnet: cascaded feature interaction decoder for rgb-d salient object detection. Neural Comput Appl 34:7547–7563. https://doi.org/10.1007/s00521-021-06845-3

    Article  Google Scholar 

  55. Margolin R, Zelnik-Manor L, Tal A (2014) How to evaluate foreground maps. In: CVPR, pp 248–255. https://doi.org/10.1109/CVPR.2014.39

  56. Fan D, Ji G, Qin X, Cheng M (2021) Cognitive vision inspired object segmentation metric and loss function. SCIENTIA SINICA Informationis

  57. Zhai Y, Fan D-P, Yang J, Borji A, Shao L, Han J, Wang L (2021) Bifurcated backbone strategy for rgb-d salient object detection. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2021.3116793

    Article  Google Scholar 

  58. Kingma D.P, Ba J (2015) Adam: a method for stochastic optimization. In: ICLR

  59. Qin X, Zhang Z.V, Huang C, Gao C, Dehghan M, Jägersand M (2019) Basnet: boundary-aware salient object detection. In: CVPR, pp 7479–7489 . https://doi.org/10.1109/CVPR.2019.00766

  60. Liu N, Han J, Yang M (2018) Picanet: learning pixel-wise contextual attention for saliency detection. In: CVPR, pp 3089–3098. https://doi.org/10.1109/CVPR.2018.00326

  61. Gao S, Tan Y, Cheng M, Lu C, Chen Y, Yan S (2020) Highly efficient salient object detection with 100k parameters. ECCV 12351:702–721. https://doi.org/10.1007/978-3-030-58539-6_42

    Article  Google Scholar 

  62. Zhang J, Fan D, Dai Y, Anwar S, Saleh F.S, Zhang T, Barnes N (2020) Uc-net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In: CVPR, pp 8579–8588. https://doi.org/10.1109/CVPR42600.2020.00861

  63. Luo Z, Mishra A.K, Achkar A, Eichel J.A, Li S, Jodoin P (2017) Non-local deep features for salient object detection. In: CVPR, pp 6593–6601. https://doi.org/10.1109/CVPR.2017.698

  64. Gao S, Cheng M, Zhao K, Zhang X, Yang M, Torr PHS (2021) Res2net: a new multi-scale backbone architecture. IEEE Trans Pattern Anal Mach Intell 43(2):652–662. https://doi.org/10.1109/TPAMI.2019.2938758

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (under Grant 51807003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyou Chen.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Chen, T., Hu, X. et al. Boundary-guided context-aware network for camouflaged object detection. Neural Comput & Applic 35, 15075–15093 (2023). https://doi.org/10.1007/s00521-023-08502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08502-3

Keywords

Navigation