Skip to main content
Log in

Event-triggered finite-time attitude consensus control of multiple rigid-body systems based on distributed observers

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The problem of leader-following attitude consensus for multiple rigid-body systems is addressed for communication limitation in this paper. The leader and followers are described in unit quaternions forms. For each follower, a nonlinear finite-time distributed observer is proposed to estimate the states of the leader, and the event-triggered finite-time sliding mode controllers are constructed by using the estimation information to decrease the system’s communication and computation consumption. The result demonstrates that in a finite time, the attitude tracking error can converge to an invariant set, and the communication interaction is decreased by the proposed event-triggered-based controller. Moreover, Zeno behavior is rigorously proved to be excluded, and the lower bound of the triggered time interval is provided. Finally, a numerical simulation is provided to validate the efficiency of the proposed control protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Abdessameud A, Tayebi A, Polushin IG (2012) Attitude synchronization of multiple rigid bodies with communication delays. IEEE Trans Autom Control 57(9):2405–2411. https://doi.org/10.1109/TAC.2012.2188428

    Article  MathSciNet  MATH  Google Scholar 

  2. Tayebi A (2008) Unit quaternion-based output feedback for the attitude tracking problem. IEEE Trans Autom Control 53(6):1516–1520. https://doi.org/10.1109/TAC.2008.927789

    Article  MathSciNet  MATH  Google Scholar 

  3. Tian B, Liu L, Lu H, Zuo Z, Zong Q, Zhang Y (2018) Multivariable finite time attitude control for quadrotor UAV: theory and experimentation. IEEE Trans Ind Electron 65(3):2567–2577. https://doi.org/10.1109/TIE.2017.2739700

    Article  Google Scholar 

  4. Shen C, Shi Y (2020) Distributed implementation of nonlinear model predictive control for AUV trajectory tracking. Automatica 115:108863. https://doi.org/10.1016/j.automatica.2020.108863

    Article  MathSciNet  MATH  Google Scholar 

  5. Peng Z, Wang J, Wang D (2017) Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans Ind Electron 64(5):3831–3839. https://doi.org/10.1109/TIE.2017.2652346

    Article  Google Scholar 

  6. Su H, Xu Q (2022) Deployment of second-order networked mobile agents over a smooth curve. Automatica 146:110645. https://doi.org/10.1016/j.automatica.2022.110645

    Article  MathSciNet  MATH  Google Scholar 

  7. Su H, Miao S (2023) Consensus on directed matrix-weighted networks. IEEE Trans Autom Control 68(4):2529–2535. https://doi.org/10.1109/TAC.2022.3184630

    Article  MathSciNet  Google Scholar 

  8. Su H, Wang X, Gao Z (2023) Interval coordination of multiagent networks with antagonistic interactions. IEEE Trans Autom Control 68(4):2552–2559. https://doi.org/10.1109/TAC.2022.3184652

    Article  MathSciNet  Google Scholar 

  9. Thunberg J, Song W, Montijano E, Hong Y, Hu X (2014) Distributed attitude synchronization control of multi-agent systems with switching topologies. Automatica 50(3):832–840. https://doi.org/10.1016/j.automatica.2014.02.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu C, Wu B, Wang D, Zhang Y (2021) Decentralized event-triggered finite-time attitude consensus control of multiple spacecraft under directed graph. J Frankl Inst 358(18):9794–9817. https://doi.org/10.1016/j.jfranklin.2021.10.019

    Article  MathSciNet  MATH  Google Scholar 

  11. Dimarogonas DV, Tsiotras P, Kyriakopoulos KJ (2009) Leader–follower cooperative attitude control of multiple rigid bodies. Syst Control Lett 58(6):429–435. https://doi.org/10.1016/j.sysconle.2009.02.002

    Article  MathSciNet  MATH  Google Scholar 

  12. VanDyke MC, Hall CD (2006) Decentralized coordinated attitude control within a formation of spacecraft. J Guid Control Dyn 29(5):1101–1109. https://doi.org/10.2514/1.17857

    Article  Google Scholar 

  13. Yu S, Yu X, Shirinzadeh B, Man Z (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964. https://doi.org/10.1016/j.automatica.2005.07.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao Y, Duan Z, Wen G, Zhang Y (2013) Distributed finite-time tracking control for multi-agent systems: an observer-based approach. Syst Control Lett 62(1):22–28. https://doi.org/10.1016/j.sysconle.2012.10.012

    Article  MathSciNet  MATH  Google Scholar 

  15. Zou AM (2014) Finite-time output feedback attitude tracking control for rigid spacecraft. IEEE Tran Control Syst Technol 22(1):338–345. https://doi.org/10.1109/TCST.2013.2246836

    Article  Google Scholar 

  16. Zou AM, de Ruiter AH, Kumar KD (2016) Distributed finite-time velocity-free attitude coordination control for spacecraft formations. Automatica 67:46–53. https://doi.org/10.1016/j.automatica.2015.12.029

    Article  MathSciNet  MATH  Google Scholar 

  17. Qi WN, Wu AG, Huang J, Dong RQ (2022) Finite-time attitude consensus control for multiple rigid spacecraft based on distributed observers. IET Control Theory Appl 53(3):1082–1092. https://doi.org/10.1049/cth2.12342

    Article  Google Scholar 

  18. Phat VN, Fernando T, Trinh H (2014) Observer-based control for time-varying delay neural networks with nonlinear observation. Neural Comput Appl 24(7–8):1639–1645. https://doi.org/10.1007/s00521-013-1388-9

    Article  Google Scholar 

  19. Zouari F, Boulkroune A, Ibeas A, Arefi MM (2017) Observer-based adaptive neural network control for a class of MIMO uncertain nonlinear time-delay non-integer-order systems with asymmetric actuator saturation. Neural Comput Appl 28(S1):993–1010. https://doi.org/10.1007/s00521-016-2369-6

    Article  Google Scholar 

  20. Cai H, Huang J (2014) The leader-following attitude control of multiple rigid spacecraft systems. Automatica 50(4):1109–1115. https://doi.org/10.1016/j.automatica.2014.01.003

    Article  MathSciNet  MATH  Google Scholar 

  21. Cai H, Huang J (2016) Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems. Sci China Inf Sci 59(1):1–13. https://doi.org/10.1007/s11432-015-5442-3

    Article  Google Scholar 

  22. Liu T, Huang J (2018) Leader-following attitude consensus of multiple rigid body systems subject to jointly connected switching networks. Automatica 92:63–71. https://doi.org/10.1016/j.automatica.2018.02.012

    Article  MathSciNet  MATH  Google Scholar 

  23. Cai H, Huang J (2016) Leader-following attitude consensus of multiple rigid body systems by attitude feedback control. Automatica 69:87–92. https://doi.org/10.1016/j.automatica.2016.02.010

    Article  MathSciNet  MATH  Google Scholar 

  24. Tabuada P (2007) Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control 52(9):1680–1685. https://doi.org/10.1109/TAC.2007.904277

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin X, Shi Y, Tang Y, Wu X (2020) Event-triggered attitude consensus with absolute and relative attitude measurements. Automatica 122:109245. https://doi.org/10.1016/j.automatica.2020.109245

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun M, Lyu D, Jia Q (2022) Event-triggered leader-following synchronization of delayed dynamical networks with intermittent coupling. Neural Comput Appl 34(8):6163–6170. https://doi.org/10.1007/s00521-021-06805-x

    Article  Google Scholar 

  27. Wang X, Quan Z, Li Y, Liu Y (2022) Event-triggered trajectory-tracking guidance for reusable launch vehicle based on neural adaptive dynamic programming. Neural Comput Appl 34(21):18725–18740. https://doi.org/10.1007/s00521-022-07468-y

    Article  Google Scholar 

  28. Li X, Tang Y, Karimi HR (2020) Consensus of multi-agent systems via fully distributed event-triggered control. Automatica 116:108898. https://doi.org/10.1016/j.automatica.2020.108898

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu Y, Jiang B, Lu J, Cao J, Lu G (2020) Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft. IEEE Trans Syst Man Cybern Syst 50(9):3290–3299. https://doi.org/10.1109/TSMC.2018.2867061

    Article  Google Scholar 

  30. Mihankhah A, Doustmohammadi A (2022) Event-triggered adaptive fault-tolerant attitude synchronization and tracking control of multiple rigid bodies with finite-time convergence. J Vib Control 28(9–10):1095–1108. https://doi.org/10.1177/1077546320987734

    Article  MathSciNet  Google Scholar 

  31. Jin X, Mao S, Kocarev L, Liang C, Wang S, Tang Y (2022) Event-triggered optimal attitude consensus of multiple rigid body networks with unknown dynamics. IEEE Trans Netw Sci Eng 9(5):3701–3714. https://doi.org/10.1109/TNSE.2022.3178757

    Article  MathSciNet  Google Scholar 

  32. Tang Y, Jin X, Shi Y, Du W (2022) Event-triggered attitude synchronization of multiple rigid body systems with velocity-free measurements. Automatica 143:110460. https://doi.org/10.1016/j.automatica.2022.110460

    Article  MathSciNet  MATH  Google Scholar 

  33. Weng S, Yue D, Xie X, Xue Y (2016) Distributed event-triggered cooperative attitude control of multiple groups of rigid bodies on manifold SO(3). Inf Sci 370–371:636–649. https://doi.org/10.1016/j.ins.2016.03.017

    Article  MATH  Google Scholar 

  34. Chen T, Shan J (2021) Distributed spacecraft attitude tracking and synchronization under directed graphs. Aerosp Sci Technol 109:106432. https://doi.org/10.1016/j.ast.2020.106432

    Article  Google Scholar 

  35. Gui H, Vukovich G (2017) Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs: finite-time angular velocity observers. Int J Robust Nonlinear Control 27(1):15–38. https://doi.org/10.1002/rnc.3554

    Article  MATH  Google Scholar 

  36. Li P (2017) Global finite-time attitude consensus tracking control for a group of rigid spacecraft. Int J Syst Sci 48(13):2703–2712. https://doi.org/10.1080/00207721.2017.1363311

    Article  MathSciNet  MATH  Google Scholar 

  37. Bhat SP, Bernstein DS (2000) Finite-time stability of continuous autonomous systems. SIAM J Control Optim 38(3):751–766. https://doi.org/10.1137/S0363012997321358

    Article  MathSciNet  MATH  Google Scholar 

  38. Hong Y, Hu J, Gao L (2006) Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7):1177–1182. https://doi.org/10.1016/j.automatica.2006.02.013

    Article  MathSciNet  MATH  Google Scholar 

  39. Hardy GH, Littlewood JE, Pólya G, Pólya G et al (1952) Inequalities. Cambridge University Press, New York

    MATH  Google Scholar 

  40. Li S, Du H, Lin X (2011) Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8):1706–1712. https://doi.org/10.1016/j.automatica.2011.02.045

    Article  MathSciNet  MATH  Google Scholar 

  41. Sidi MJ (1997) Spacecraft dynamics and control: a practical engineering approach. Cambridge University Press, New York

    Book  Google Scholar 

  42. Abdessameud A, Tayebi A (2013) Motion coordination for VTOL unmanned aerial vehicles. Springer, London

    Book  MATH  Google Scholar 

  43. Yuan J (1988) Closed-loop manipulator control using quaternion feedback. IEEE J Robot Autom 4(4):434–440. https://doi.org/10.1109/56.809

    Article  Google Scholar 

  44. Wang S, Shu Z, Chen T (2021) Event-triggered attitude synchronization of multiple rigid-body systems. Syst Control Lett 149:104879. https://doi.org/10.1016/j.sysconle.2021.104879

    Article  MathSciNet  MATH  Google Scholar 

  45. Fu J, Liu M, Li H, Cao X (2019) Coordinated attitude control for synthetic aperture radar satellites with quantization and communication delay. Int J Control Autom Syst 17(7):1770–1780. https://doi.org/10.1007/s12555-018-0788-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 62273159 and the Program for HUST Academic Frontier Youth Team under Grant No. 2018QYTD07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Housheng Su.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Sun, K. & Su, H. Event-triggered finite-time attitude consensus control of multiple rigid-body systems based on distributed observers. Neural Comput & Applic 35, 20977–20988 (2023). https://doi.org/10.1007/s00521-023-08880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08880-8

Keywords

Navigation