Skip to main content
Log in

Multistep prediction for earthworks unloading duration: a fuzzy Att-Seq2Seq network with optimal partitioning and multi-time granularity modeling

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Unloading activities directly impact the progress of earthmoving and filling projects, and a reliable multistep-ahead unloading duration prediction could help optimize equipment scheduling and improve operational efficiency. However, unloading prediction is greatly challenging owing to the complex uncertainties and nonlinearities implied in the unloading process, as well as the difficulty of modeling long-term temporal dependencies. Thus, this study devises a new fuzzy sequence-to-sequence network for unloading time forecasting. First, a quantization error-improved information granulation method is exploited to establish the fuzzy partition function. The global and localized distribution characteristics of unloading time are utilized to adaptively optimize the number and distribution of nonuniform fuzzy intervals. Then, periodic and recent branches were developed to model the variation of unloading time in multiple temporal granularities. In each branch, based on the encoder–decoder structure, the underlying gated recurrent units learn the sequence features collaborating with the attention mechanism to capture implicit long-term dependencies, mitigating the effects of error accumulation in multistep forecasting. Finally, the temporal information of different granularities is fused to form the final prediction. We evaluate the proposed model using an unloading dataset from a heavy infrastructure project in southwest China. We conducted geo-fencing and unloading operation analysis to extract the unloading information of different construction areas. The experimental results show that our method can generate high-quality multistep predictions for unloading duration, and exhibits superior performance compared with baseline models. The novel approach has great potential to support earthwork management in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Jia Yu, yujia@tju.edu.cn, upon reasonable request.

References

  1. Seresht NG, Fayek AR (2022) Modeling earthmoving operations in real time using hybrid fuzzy simulation. Can J Civ Eng 49:627–635. https://doi.org/10.1139/cjce-2020-0790

    Article  Google Scholar 

  2. Ahn SJ, Han SU, Al-Hussein M (2020) Improvement of transportation cost estimation for prefabricated construction using geo-fence-based large-scale GPS data feature extraction and support vector regression. Adv Eng Inform 43:101012. https://doi.org/10.1016/j.aei.2019.101012

    Article  Google Scholar 

  3. Sadeghi N, Robinson Fayek A, Gerami Seresht N (2015) Queue performance measures in construction simulation models containing subjective uncertainty. Autom Constr 60:1–11. https://doi.org/10.1016/j.autcon.2015.07.023

    Article  Google Scholar 

  4. Louis J, Dunston PS (2017) Methodology for real-time monitoring of construction operations using finite state machines and discrete-event operation models. J Constr Eng Manag 143:1–10. https://doi.org/10.1061/(asce)co.1943-7862.0001243

    Article  Google Scholar 

  5. Frigura-Iliasa M, Frigura-Iliasa FM, Mirica M, et al (2019) Computer based algorithm for optimizing design and construction of large transport infrastructure objectives. In: 4th International conference on intelligent transportation engineering, ICITE 2019. Institute of Electrical and Electronics Engineers Inc., pp 271–275

  6. Hwang SI, Son JH, Lee SH (2014) Development of scheduling model for earth work using genetic algorithm. KSCE J Civ Eng 18:1618–1624. https://doi.org/10.1007/s12205-014-0398-1

    Article  Google Scholar 

  7. Akhavian R, Behzadan AH (2015) Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers. Adv Eng Inform 29:867–877. https://doi.org/10.1016/j.aei.2015.03.001

    Article  Google Scholar 

  8. Kim H, Ham Y, Kim W et al (2019) Vision-based nonintrusive context documentation for earthmoving productivity simulation. Autom Constr 102:135–147. https://doi.org/10.1016/J.AUTCON.2019.02.006

    Article  Google Scholar 

  9. Salem A, Moselhi O (2018) Automated monitoring and assessment of productivity in earthmoving projects. Can J Civ Eng 45:958–972. https://doi.org/10.1139/CJCE-2018-0183/ASSET/IMAGES/LARGE/CJCE-2018-0183F16.JPEG

    Article  Google Scholar 

  10. Rashid KM, Louis J (2019) Times-series data augmentation and deep learning for construction equipment activity recognition. Adv Eng Inform 42:100944. https://doi.org/10.1016/j.aei.2019.100944

    Article  Google Scholar 

  11. Khallaf R, Khallaf M (2021) Classification and analysis of deep learning applications in construction: A systematic literature review. Autom Constr 129:103760. https://doi.org/10.1016/j.autcon.2021.103760

    Article  Google Scholar 

  12. Guo H, Zhou J, Koopialipoor M et al (2021) Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Eng Comput 37:173–186. https://doi.org/10.1007/S00366-019-00816-Y/TABLES/6

    Article  Google Scholar 

  13. Zhang H, Hu B, Wang X et al (2021) Self-organizing deep belief modular echo state network for time series prediction. Knowledge-Based Syst 222:107007. https://doi.org/10.1016/j.knosys.2021.107007

    Article  Google Scholar 

  14. Kim B, Yuvaraj N, Sri Preethaa KR, Arun Pandian R (2021) Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput Appl 33:9289–9305. https://doi.org/10.1007/s00521-021-05690-8

    Article  Google Scholar 

  15. Jiang S, Cheng Z, Yang L, Shen L (2022) An auto-tuned hybrid deep learning approach for predicting fracture evolution. Eng Comput. https://doi.org/10.1007/s00366-022-01756-w

    Article  Google Scholar 

  16. Cho K, Van Merriënboer B, Gulcehre C, et al (2014) Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: 2014 Conference on empirical methods in natural language processing. pp 1724–1734

  17. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  18. Nguyen PHD, Robinson Fayek A (2022) Applications of fuzzy hybrid techniques in construction engineering and management research. Autom Constr 134:104064. https://doi.org/10.1016/j.autcon.2021.104064

    Article  Google Scholar 

  19. Juang CF, Lin YY, Tu CC (2010) A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets Syst 161:2552–2568. https://doi.org/10.1016/j.fss.2010.04.006

    Article  MathSciNet  Google Scholar 

  20. Bencherif A, Chouireb F (2019) A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking. Appl Intell 49:3881–3893. https://doi.org/10.1007/s10489-019-01439-y

    Article  Google Scholar 

  21. Elavarasan D, Durai Raj Vincent PM (2021) Fuzzy deep learning-based crop yield prediction model for sustainable agronomical frameworks. Neural Comput Appl 33:13205–13224. https://doi.org/10.1007/s00521-021-05950-7

    Article  Google Scholar 

  22. Wen J, Yang J, Jiang B et al (2020) Big data driven marine environment information forecasting: a time series prediction network. IEEE Trans FUZZY Syst 29:4–18. https://doi.org/10.1109/TFUZZ.2020.3012393

    Article  Google Scholar 

  23. Kim KJ, Yun WG, Kim IK (2016) Estimating approximate construction duration of CFRD in the planning stage. KSCE J Civ Eng 20:2604–2613. https://doi.org/10.1007/s12205-016-0810-0

    Article  Google Scholar 

  24. Naik MG, Radhika VSB (2015) Time and cost analysis for highway road construction project using artificial neural networks. J Constr Eng Proj Manag 5:26–31. https://doi.org/10.6106/jcepm.2015.5.1.026

    Article  Google Scholar 

  25. Nguyen H, Bui XN, Tran QH et al (2021) Prediction of ground vibration intensity in mine blasting using the novel hybrid MARS–PSO–MLP model. Eng Comput 38:4007–4025. https://doi.org/10.1007/s00366-021-01332-8

    Article  Google Scholar 

  26. Petruseva S, Zileska-Pancovska V, Car-Pušić D (2019) Implementation of process-based and data-driven models for early prediction of construction time. Adv Civ Eng 2019:7405863. https://doi.org/10.1155/2019/7405863

    Article  Google Scholar 

  27. Marzouk M, Moselhi O (2004) Fuzzy clustering model for estimating haulers’ travel time. J Constr Eng Manag 130:878–886. https://doi.org/10.1061/(asce)0733-9364(2004)130:6(878)

    Article  Google Scholar 

  28. Golizadeh H, Sadeghifam AN, Aadal H, Majid MZA (2016) Automated tool for predicting duration of construction activities in tropical countries. KSCE J Civ Eng 20:12–22. https://doi.org/10.1007/s12205-015-0263-x

    Article  Google Scholar 

  29. Sabillon C, Rashidi A, Samanta B et al (2020) Audio-based Bayesian model for productivity estimation of cyclic construction activities. J Comput Civ Eng 34:1–14. https://doi.org/10.1061/(asce)cp.1943-5487.0000863

    Article  Google Scholar 

  30. Lv F, Wang J, Cui B et al (2020) An improved extreme gradient boosting approach to vehicle speed prediction for construction simulation of earthwork. Autom Constr 119:103351. https://doi.org/10.1016/j.autcon.2020.103351

    Article  Google Scholar 

  31. Vahdatikhaki F, Hammad A (2014) Framework for near real-time simulation of earthmoving projects using location tracking technologies. Autom Constr 42:50–67. https://doi.org/10.1016/j.autcon.2014.02.018

    Article  Google Scholar 

  32. Zhang J, Zhong D, Wu B et al (2018) Earth dam construction simulation considering stochastic rainfall impact. Comput Civ Infrastruct Eng 33:459–480. https://doi.org/10.1111/MICE.12337

    Article  Google Scholar 

  33. Ma Z, Mei G, Prezioso E et al (2021) A deep learning approach using graph convolutional networks for slope deformation prediction based on time-series displacement data. Neural Comput Appl 33:14441–14457. https://doi.org/10.1007/s00521-021-06084-6

    Article  Google Scholar 

  34. Louis J, Dunston PS (2018) Integrating IoT into operational workflows for real-time and automated decision-making in repetitive construction operations. Autom Constr 94:317–327. https://doi.org/10.1016/J.AUTCON.2018.07.005

    Article  Google Scholar 

  35. Wei M, Wang Z, Wang X et al (2021) Prediction of TBM penetration rate based on Monte Carlo-BP neural network. Neural Comput Appl 33:603–611. https://doi.org/10.1007/s00521-020-04993-6

    Article  Google Scholar 

  36. Nie Z, Shen F, Xu D, Li Q (2020) An EMD-SVR model for short-term prediction of ship motion using mirror symmetry and SVR algorithms to eliminate EMD boundary effect. Ocean Eng 217:107927. https://doi.org/10.1016/J.OCEANENG.2020.107927

    Article  Google Scholar 

  37. Pan Y, Chen L, Wang J et al (2021) Research on deformation prediction of tunnel surrounding rock using the model combining firefly algorithm and nonlinear auto-regressive dynamic neural network. Eng Comput 37:1443–1453. https://doi.org/10.1007/s00366-019-00894-y

    Article  Google Scholar 

  38. Sun C, Ma M, Zhao Z et al (2019) Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing. IEEE Trans Ind Informatics 15:2416–2425. https://doi.org/10.1109/TII.2018.2881543

    Article  Google Scholar 

  39. Tuna T, Beke A, Kumbasar T (2022) Deep learning frameworks to learn prediction and simulation focused control system models. Appl Intell 52:662–679. https://doi.org/10.1007/S10489-021-02416-0/TABLES/15

    Article  Google Scholar 

  40. Shu X, Bao T, Li Y et al (2022) VAE-TALSTM: a temporal attention and variational autoencoder-based long short-term memory framework for dam displacement prediction. Eng Comput 38:3497–3512. https://doi.org/10.1007/S00366-021-01362-2/FIGURES/15

    Article  Google Scholar 

  41. Luo H, Wang M, Wong PKY et al (2021) Construction machine pose prediction considering historical motions and activity attributes using gated recurrent unit (GRU). Autom Constr 121:103444. https://doi.org/10.1016/J.AUTCON.2020.103444

    Article  Google Scholar 

  42. Niu X, Ma J, Wang Y et al (2021) A novel decomposition-ensemble learning model based on ensemble empirical mode decomposition and recurrent neural network for landslide displacement prediction. Appl Sci 11:4684. https://doi.org/10.3390/app11104684

    Article  Google Scholar 

  43. Cai J, Zhang Y, Yang L et al (2020) A context-augmented deep learning approach for worker trajectory prediction on unstructured and dynamic construction sites. Adv Eng Informatics 46:101173. https://doi.org/10.1016/j.aei.2020.101173

    Article  Google Scholar 

  44. Song Q, Chissom BS (1993) Fuzzy time series and its models. Fuzzy Sets Syst 54:269–277. https://doi.org/10.1016/0165-0114(93)90372-O

    Article  MathSciNet  MATH  Google Scholar 

  45. Luo C, Wang H (2020) Fuzzy forecasting for long-term time series based on time-variant fuzzy information granules. Appl Soft Comput 88:106046. https://doi.org/10.1016/j.asoc.2019.106046

    Article  Google Scholar 

  46. Li R, Hu Y, Liang Q (2020) T2F-LSTM method for long-term traffic volume prediction. IEEE Trans Fuzzy Syst 28:3256–3264. https://doi.org/10.1109/TFUZZ.2020.2986995

    Article  Google Scholar 

  47. El-Nagar AM (2018) Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network—a novel structure. ISA Trans 72:205–217. https://doi.org/10.1016/J.ISATRA.2017.10.012

    Article  Google Scholar 

  48. Wiktorowicz K, Krzeszowski T, Przednowek K (2021) Sparse regressions and particle swarm optimization in training high-order Takagi–Sugeno fuzzy systems. Neural Comput Appl 33:2705–2717. https://doi.org/10.1007/s00521-020-05133-w

    Article  Google Scholar 

  49. Querales M, Salas R, Morales Y et al (2022) A stacking neuro-fuzzy framework to forecast runoff from distributed meteorological stations. Appl Soft Comput 118:2705–2717. https://doi.org/10.1016/j.asoc.2022.108535

    Article  Google Scholar 

  50. Efendi R, Ismail Z, Deris MM (2015) A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand. Appl Soft Comput J 28:422–430. https://doi.org/10.1016/j.asoc.2014.11.043

    Article  Google Scholar 

  51. Bai X, Chen Z, Zhang Y, et al (2014) Spatial information based FCM for infrared ship target segmentation. In: 2014 IEEE international conference on image processing. IEEE, pp 5127–5131

  52. Kolesnikov A, Trichina E, Kauranne T (2015) Estimating the number of clusters in a numerical data set via quantization error modeling. Pattern Recogn 48:941–952. https://doi.org/10.1016/j.patcog.2014.09.017

    Article  Google Scholar 

  53. Zadeh LA (1976) A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. Int J Man Mach Stud 8:249–291. https://doi.org/10.1016/S0020-7373(76)80001-6

    Article  MathSciNet  MATH  Google Scholar 

  54. Cho K, van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: Encoder–decoder approaches. In: Proceedings of SSST 2014—8th workshop on syntax, semantics and structure in statistical translation, pp 103–111

  55. Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: Conference on empirical methods in natural language processing

  56. Saxe AM, McClelland JL, Ganguli S (2014) Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In: 2nd international conference on learning representations

  57. Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J Am Stat Assoc 65:1509–1526. https://doi.org/10.1080/01621459.1970.10481180

    Article  MathSciNet  MATH  Google Scholar 

  58. Taylor SJ, Letham B (2018) Forecasting at scale. Am Stat 72:37–45. https://doi.org/10.1080/00031305.2017.1380080

    Article  MathSciNet  MATH  Google Scholar 

  59. Mahmoodzadeh A, Mohammadi M, Daraei A et al (2021) Forecasting tunnel geology, construction time and costs using machine learning methods. Neural Comput Appl 33:321–348. https://doi.org/10.1007/s00521-020-05006-2

    Article  Google Scholar 

  60. Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. Adv Neural Inf Process Syst 30:5999–6009

    Google Scholar 

  61. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. https://arxiv.org/abs/1803.01271

  62. Panigrahi S, Behera HS (2020) A study on leading machine learning techniques for high order fuzzy time series forecasting. Eng Appl Artif Intell 87:103245. https://doi.org/10.1016/j.engappai.2019.103245

    Article  Google Scholar 

Download references

Funding

This research was funded by the Yalong River Joint Funds of the National Natural Science Foundation of China (Grant no. U1965207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Wang or Jia Yu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Yu, J. et al. Multistep prediction for earthworks unloading duration: a fuzzy Att-Seq2Seq network with optimal partitioning and multi-time granularity modeling. Neural Comput & Applic 35, 21023–21042 (2023). https://doi.org/10.1007/s00521-023-08883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08883-5

Keywords

Navigation