Skip to main content

Advertisement

Log in

Predicting science achievement scores with machine learning algorithms: a case study of OECD PISA 2015–2018 data

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this study, the performance of machine learning methods was examined in terms of predicting the science education achievement scores of the students who took the exam for the next term, PISA 2018, and the science average scores of the countries, using PISA 2015 data. The research sample consists of a total of 67,329 students who took the PISA 2015 exam from 13 randomly selected countries (Brazil, Chinese Taipei, Dominican Republic, Estonia, Finland, Hungary, Italy, Japan, Lithuania, Luxembourg, Peru, Singapore, Türkiye). In this study, multiple linear regression, support vector regression, random forest, and extreme gradient boosting (XGBoost) machine learning algorithms were used. For the machine learning process, a randomly determined part from the PISA-2015 data of each country researched was divided as training data and the remaining part as testing data to evaluate model performance. As a result of the research, it was determined that the XGBoost algorithm showed the best performance in estimating both PISA-2015 test data and PISA-2018 science academic achievement scores in all researched countries. Furthermore, it was determined that the highest PISA-2018 science achievement scores of the students who participated in the exam, estimated by this algorithm, were in Luxembourg (r = 0.600, RMSE = 75.06, MAE = 59.97), while the lowest were in Finland (r = 0.467, RMSE = 79.38, MAE = 63.24). In addition, the average PISA-2018 science scores of the countries were estimated with the XGBoost algorithm, and the average science scores calculated for all the countries studied were estimated with very high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. Aydın A, Erdağ C, Taş N (2011) A comparative evaluation of pisa 2003–2006 results in reading literacy skills: an example of top-five OECD countries and Turkey. Educ Sci Theory Pract 11:665–673

    Google Scholar 

  2. PISA (2021) Programme for ınternational student assessment. https://www.oecd.org/pisa/. Accessed 25 Nov 2021

  3. Aksu G (2018) PISA başarısını tahmin etmede kullanılan veri madenciliği yöntemlerinin incelenmesi (in Turkish). Dissertation, Hacettepe University, Ankara, Türkiye.

  4. Hu J, Yu R (2021) The effects of ICT-based social media on adolescents’ digital reading performance: a longitudinal study of PISA 2009, PISA 2012, PISA 2015 and PISA 2018. Comput Educ 175:104342. https://doi.org/10.1016/J.COMPEDU.2021.104342

    Article  Google Scholar 

  5. Rolfe V (2021) Tailoring a measurement model of socioeconomic status: applying the alignment optimization method to 15 years of PISA. Int J Educ Res 106:101723. https://doi.org/10.1016/J.IJER.2020.101723

    Article  Google Scholar 

  6. Gomes M, Hirata G, e Oliveira JBA (2020) Student composition in the PISA assessments: evidence from Brazil. Int J Educ Dev 79:102299. https://doi.org/10.1016/J.IJEDUDEV.2020.102299

    Article  Google Scholar 

  7. Delprato M, Antequera G (2021) Public and private school efficiency and equity in Latin America: new evidence based on PISA for development. Int J Educ Dev 84:102404

    Article  Google Scholar 

  8. Kim HJ, Yi P, Hong JI (2021) Are schools digitally inclusive for all? Profiles of school digital inclusion using PISA 2018. Comput Educ 170:104226. https://doi.org/10.1016/J.COMPEDU.2021.104226

    Article  Google Scholar 

  9. Spruyt B, Van Droogenbroeck F, Van Den Borre L et al (2021) Teachers’ perceived societal appreciation: PISA outcomes predict whether teachers feel valued in society. Int J Educ Res 109:101833. https://doi.org/10.1016/J.IJER.2021.101833

    Article  Google Scholar 

  10. Odell B, Gierl M, Cutumisu M (2021) Testing measurement invariance of PISA 2015 mathematics, science, and ICT scales using the alignment method. Stud Educ Eval 68:100965. https://doi.org/10.1016/J.STUEDUC.2020.100965

    Article  Google Scholar 

  11. Stadler M, Herborn K, Mustafić M, Greiff S (2020) The assessment of collaborative problem solving in PISA 2015: an investigation of the validity of the PISA 2015 CPS tasks. Comput Educ 157:103964. https://doi.org/10.1016/J.COMPEDU.2020.103964

    Article  Google Scholar 

  12. Song X, Mitnitski A, Cox J, Rockwood K (2004) Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Stud Health Technol Inform 107:736–740. https://doi.org/10.3233/978-1-60750-949-3-736

    Article  Google Scholar 

  13. Bühlmann P (2012) Bagging, boosting and ensemble methods. In: Gentle J, Härdle W, Mori Y (eds) Handbook of computational statistics. Springer, Berlin, pp 985–1022

    Chapter  Google Scholar 

  14. Skurichina M, Duin RPW (2002) Bagging, boosting and the random subspace method for linear classifier. Pattern Anal Appl 5:121–135. https://doi.org/10.1007/s100440200011

    Article  MathSciNet  MATH  Google Scholar 

  15. Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 402(40):139–157. https://doi.org/10.1023/A:1007607513941

    Article  Google Scholar 

  16. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 143(14):199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  17. Masci C, Johnes G, Agasisti T (2018) Student and school performance across countries: a machine learning approach. Eur J Oper Res 269:1072–1085. https://doi.org/10.1016/j.ejor.2018.02.031

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen J, Zhang Y, Wei Y, Hu J (2021) Discrimination of the contextual features of top performers in scientific literacy using a machine learning approach. Res Sci Educ 51:129–158. https://doi.org/10.1007/s11165-019-9835-y

    Article  Google Scholar 

  19. Pejic A, Molcer PS, Gulaci K (2021) Math proficiency prediction in computer-based international large-scale assessments using a multi-class machine learning model. İn: SISY 2021–IEEE 19th ınternational symposium on ıntelligent informatics, proceedings, pp 49–54. https://doi.org/10.1109/SISY52375.2021.9582522

  20. Bozak A, Aybek EC (2020) Comparison of artificial neural networks and logistic regression analysis in PISA science literacy success prediction. Int J Contemp Educ Res 7:99–111. https://doi.org/10.33200/ijcer.693081

    Article  Google Scholar 

  21. Lezhnina O, Kismihók G (2021) Combining statistical and machine learning methods to explore German students’ attitudes towards ICT in PISA. Int J Res Method Educ 45(2):180–199. https://doi.org/10.1080/1743727X.2021.1963226

    Article  Google Scholar 

  22. Zeybekoglu Ş, Koğar H (2022) Investigation of variables explaining science literacy in PISA 2015 Turkey sample. J Meas Eval Educ Psychol 13:145–163. https://doi.org/10.21031/epod.798106

    Article  Google Scholar 

  23. Saarela M, Yener B, Zaki MJ, Kärkkäinen T (2016) Predicting math performance from raw large-scale educational assessments data: a machine learning approach. In: JMLR workshop and conference proceedings, vol 48, pp 1–8. http://medianetlab.ee.ucla.edu/papers/ICMLWS3.pdf

  24. Toprak E (2017) Yapay sinir ağı, karar ağaçları ve ayırma analizi yöntemleri ile PISA 2012 matematik başarılarının sınıflandırılma performanslarının karşılaştırılması (in Turkish). Dissertation, Hacettepe University, Ankara, Türkiye.

  25. Aksu G, Doğan N (2018) Veri Madenciliğinde Kullanılan Öğrenme Yöntemlerinin Farklı Koşullar Altında Karşılaştırılması (in Turkish). Ankara Univ J Fac Educ Sci (JFES) 51:71–100. https://doi.org/10.30964/auebfd.464262

    Article  Google Scholar 

  26. Hu X, Gong Y, Lai C, Leung FKS (2018) The relationship between ICT and student literacy in mathematics, reading, and science across 44 countries: a multilevel analysis. Comput Educ 125:1–13. https://doi.org/10.1016/j.compedu.2018.05.021

    Article  Google Scholar 

  27. Bezek-Güre Ö, Kayri M, Erdogan F (2020) Analysis of factors effecting PISA 2015 mathematics literacy via educational data mining. Educ Sci 45:393–415. https://doi.org/10.15390/EB.2020.8477

    Article  Google Scholar 

  28. Aksu N (2019) Farklı ülkelerden PISA sinavina katılan öğrencilerin matematik okur yazarlığını etkileyen faktörlerin tahmin edilmesi (in Turkish). Dissertation, Aydın Adnan Menderes University, Türkiye

  29. Puah S (2020) Predicting students’ academic performance: a comparison between traditional MLR and machine learning methods with PISA 2015. Dissertation, Ludwig-Maximilians-University, Munich,Germany. https://doi.org/10.31234/osf.io/2yshm

  30. Rebai S, Ben Yahia F, Essid H (2020) A graphically based machine learning approach to predict secondary schools performance in Tunisia. Socioecon Plann Sci 70:100724. https://doi.org/10.1016/j.seps.2019.06.009

    Article  Google Scholar 

  31. Kjærnsli M, Lie S (2004) PISA and scientific literacy: Similarities and differences between the nordic countries. Scand J Educ Res 48:271–286. https://doi.org/10.1080/00313830410001695736

    Article  Google Scholar 

  32. Erbaş KE (2005) Factors affecting scientific literacy of students in Turkey in Programme for International Student Assessment (PISA). Dissertation, Middle East Technical University, Ankara, Türkiye

  33. Anıl D (2009) Factors effecting science achievement of science students in programme for international students’ achievement (PISA) in Turkey. Educ Sci 34:87–100

    Google Scholar 

  34. Ho ESC (2010) Assessing the quality and equality of Hong Kong basic education results from PISA 2000+ to PISA 2006. Front Educ China 5:238–257. https://doi.org/10.1007/s11516-010-0016-z

    Article  Google Scholar 

  35. Anagün Ş (2011) The impact of teaching-learning process variables to the students’ scientific literacy levels based on PISA 2006 results. Educ Sci 36:84–102

    Google Scholar 

  36. Acar T, Öğretmen T (2012) Analysis of 2006 PISA science performance via multilevel statistical methods (in Turkish). Educ Sci 37:178–189

    Google Scholar 

  37. Sun L, Bradley KD, Akers K (2012) A multilevel modelling approach to investigating factors impacting science achievement for secondary school students: PISA Hong Kong sample. Int J Sci Educ 34:2107–2125. https://doi.org/10.1080/09500693.2012.708063

    Article  Google Scholar 

  38. Sälzer C, Heine JH (2016) Students’ skipping behavior on truancy items and (school) subjects and its relation to test performance in PISA 2012. Int J Educ Dev 46:103–113. https://doi.org/10.1016/j.ijedudev.2015.10.009

    Article  Google Scholar 

  39. Kahraman Ü, Çelik K (2017) Analysis of PISA 2012 results in terms of some variables. J Hum Sci 14:4797–4808. https://doi.org/10.14687/jhs.v14i4.5136

    Article  Google Scholar 

  40. Chen F, Cui Y (2020) Investigating the relation of perceived teacher unfairness to science achievement by hierarchical linear modeling in 52 countries and economies. Educ Psychol 40:273–295. https://doi.org/10.1080/01443410.2019.1652248

    Article  Google Scholar 

  41. Karakoç-Alatli B (2020) Investigation of factors associated with science literacy performance of students by hierarchical linear modeling: PISA 2015 comparison of Turkey and Singapore. Educ Sci 45:17–49. https://doi.org/10.15390/EB.2020.8188

    Article  Google Scholar 

  42. Rohatgi A, Scherer R (2020) Identifying profiles of students’ school climate perceptions using PISA 2015 data. Large Scale Assess Educ. https://doi.org/10.1186/s40536-020-00083-0

    Article  Google Scholar 

  43. Antonelli-Ponti M, Monticelli PF, Versuti FM et al (2021) Academic achievement and the effects of the student’s learning context: a study on PISA data. Psico-USF 26:13–25. https://doi.org/10.1590/1413-82712021260102

    Article  Google Scholar 

  44. Atasoy R, Çoban Ö, Yatağan M (2022) Effect of ıct use, parental support and student hindering on science achievement: evidence from Pisa 2018. J Learn Teach Digit Age 7:127–140. https://doi.org/10.53850/joltida.945869

    Article  Google Scholar 

  45. Karakus M, Courtney M, Aydin H (2022) Understanding the academic achievement of the first- and second-generation immigrant students: a multi-level analysis of PISA 2018 data. https://doi.org/10.1007/s11092-022-09395-x

  46. OECD (2015) OECD-PISA 2015 database. https://www.oecd.org/pisa/data/2015database/. Accessed 25 Nov 2021

  47. OECD (2018) OECD-PISA 2018 database. https://www.oecd.org/pisa/data/2018database/. Accessed 25 Nov 2021

  48. Vabalas A, Gowen E, Poliakoff E, Casson AJ (2019) Machine learning algorithm validation with a limited sample size. PLoS ONE 14:1–20. https://doi.org/10.1371/journal.pone.0224365

    Article  Google Scholar 

  49. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314. https://doi.org/10.1080/10618600.1996.10474713

    Article  Google Scholar 

  50. R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/. Accessed 10 Oct 2022

  51. Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab—an S4 package for kernel methods in R. J Stat Softw 11:1–20. https://doi.org/10.18637/jss.v011.i09

    Article  Google Scholar 

  52. Liaw A, Wiener M (2002) Classification and Regression by randomForest. R News 2/3:18–22. https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf

  53. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: 22nd ACM SIGKDD ınternational conference on knowledge discovery and data mining, pp 785–794. https://doi.org/10.1145/2939672.2939785

  54. Kuhn M (2008) Building predictive models in R using the caret package. Stat Softw 28(5):1–26. https://doi.org/10.18637/jss.v028.i05

  55. Carslaw DC, Ropkins K (2012) Openair—an r package for air quality data analysis. Environ Model Softw 27–28:52–61. https://doi.org/10.1016/j.envsoft.2011.09.008

    Article  Google Scholar 

  56. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  MATH  Google Scholar 

  57. Pan S, Zheng Z, Guo Z, Luo H (2022) An optimized XGBoost method for predicting reservoir porosity using petrophysical logs. J Pet Sci Eng 208:109520. https://doi.org/10.1016/j.petrol.2021.109520

    Article  Google Scholar 

  58. Yeşilkanat CM, Kobya Y, Taşkın H, Çevik U (2017) Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods. J Environ Radioact 175–176:78–93. https://doi.org/10.1016/j.jenvrad.2017.04.015

    Article  Google Scholar 

  59. Fu T, Tang X, Cai Z et al (2020) Correlation research of phase angle variation and coating performance by means of Pearson’s correlation coefficient. Prog Org Coat 139:105459. https://doi.org/10.1016/j.porgcoat.2019.105459

    Article  Google Scholar 

  60. Taylor R (1990) Interpretation of the correlation coefficient: a basic review. J Diagn Med Sonogr 6:35–39. https://doi.org/10.1177/875647939000600106

    Article  Google Scholar 

  61. Kuhn M (2019) The caret Package. https://topepo.github.io/caret/index.html. Accessed 24 Mar 2023

  62. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1111/j.1747-0285.2009.00840.x

    Article  MATH  Google Scholar 

  63. Drucker H, Surges CJC, Kaufman L et al (1997) Support vector regression machines. Adv Neural Inf Process Syst 1:155–161

    Google Scholar 

  64. Ibrahem Ahmed Osman A, Najah Ahmed A, Chow MF et al (2021) Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng J 12:1545–1556. https://doi.org/10.1016/j.asej.2020.11.011

    Article  Google Scholar 

  65. Wu J, Liu H, Wei G et al (2019) Flash flood forecasting using support vector regression model in a small mountainous catchment. Water (Switzerland) 11(7):1327. https://doi.org/10.3390/w11071327

    Article  Google Scholar 

  66. Wu CL, Chau KW, Li YS (2008) River stage prediction based on a distributed support vector regression. J Hydrol 358:96–111. https://doi.org/10.1016/j.jhydrol.2008.05.028

    Article  Google Scholar 

  67. Yu PS, Chen ST, Chang IF (2006) Support vector regression for real-time flood stage forecasting. J Hydrol 328:704–716. https://doi.org/10.1016/j.jhydrol.2006.01.021

    Article  Google Scholar 

  68. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  69. Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. https://doi.org/10.1007/BF00058655

    Article  MATH  Google Scholar 

  70. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844. https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  71. Yesilkanat CM (2020) Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm. Chaos Solitons Fractals 140:110210. https://doi.org/10.1016/j.chaos.2020.110210

    Article  MathSciNet  Google Scholar 

  72. Wang H, Yilihamu Q, Yuan M et al (2020) Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: a comparison of regression and random forest. Ecol Indic. https://doi.org/10.1016/j.ecolind.2020.106801

    Article  Google Scholar 

  73. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199. https://doi.org/10.1007/s10021-005-0054-1

    Article  Google Scholar 

  74. Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recognit Lett 27:294–300. https://doi.org/10.1016/j.patrec.2005.08.011

    Article  Google Scholar 

  75. Zhang H, Yin S, Chen Y et al (2020) Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. J Clean Prod 273:122858. https://doi.org/10.1016/j.jclepro.2020.122858

    Article  Google Scholar 

  76. Zeng N, Ren X, He H et al (2019) Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecol Indic 102:479–487. https://doi.org/10.1016/j.ecolind.2019.02.023

    Article  Google Scholar 

  77. Friedman J (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  MathSciNet  MATH  Google Scholar 

  78. Zhu X, Chu J, Wang K et al (2021) Prediction of rockhead using a hybrid N-XGBoost machine learning framework. J Rock Mech Geotech Eng 13:1231–1245. https://doi.org/10.1016/j.jrmge.2021.06.012

    Article  Google Scholar 

  79. Ma M, Zhao G, He B et al (2021) XGBoost-based method for flash flood risk assessment. J Hydrol 598:126382. https://doi.org/10.1016/j.jhydrol.2021.126382

    Article  Google Scholar 

  80. Hu L, Wang C, Ye Z, Wang S (2021) Estimating gaseous pollutants from bus emissions: a hybrid model based on GRU and XGBoost. Sci Total Environ 783:146870. https://doi.org/10.1016/j.scitotenv.2021.146870

    Article  Google Scholar 

  81. Wang J, He L, Lu X et al (2022) A full-coverage estimation of PM2.5 concentrations using a hybrid XGBoost-WD model and WRF-simulated meteorological fields in the Yangtze River Delta Urban Agglomeration, China. Environ Res. https://doi.org/10.1016/j.envres.2021.111799

    Article  Google Scholar 

  82. Razzak MI, Imran M, Xu G (2020) Big data analytics for preventive medicine. Springer, London

    Book  Google Scholar 

  83. Adi E, Anwar A, Baig Z, Zeadally S (2020) Machine learning and data analytics for the IoT. Neural Comput Appl 32:16205–16233. https://doi.org/10.1007/s00521-020-04874-y

    Article  Google Scholar 

  84. Chen M, Mao S, Liu Y (2014) Big data: A survey. Mob Networks Appl 19:171–209. https://doi.org/10.1007/S11036-013-0489-0

    Article  Google Scholar 

  85. Köhler O, Reiss K, Riecke-Baulecke T (2016) 15 Jahre PISA: Ergebnisse und Perspektiven (in German). Schulmanagemet-Handbuch, vol 157. Cornelsen Verlag, München

    Google Scholar 

  86. Çelen FK, Çelik A, Seferoğlu S (2011) Türk eğitim sistemi ve PISA sonuçları (in Turkish). In: XIII. Academic ınformatics conference, vol 765–773 https://yunus.hacettepe.edu.tr/~sadi/yayin/AB11_Celen-Celik_Seferoglu_PISA-Sonuclari.pdf

  87. Darling-Hammond L (2014) What can PISA tell us about US education policy? New Engl J Public Policy 26(1):1–14. https://scholarworks.umb.edu/nejpp/vol26/iss1/4/

    Google Scholar 

  88. Martens K, Niemann D (2013) When do numbers count? The differential impact of the PISA rating and ranking on education policy in Germany and the US. German Politics 22:314–332. https://doi.org/10.1080/09644008.2013.794455

    Article  Google Scholar 

  89. Aydın A, Selvitopu A, Kaya M (2019) Eğitime Yapılan Yatırımlar ve PISA 2015 Sonuçları: Karşılaştırmalı Bir İnceleme (in Turkish). Elem Educ Online 17:1283–1301. https://doi.org/10.17051/ILKONLINE.2018.466346

    Article  Google Scholar 

  90. Gürlen E, Demirkaya AS, Doğan N (2019) Uzmanların Pısa ve Tımms Sınavlarının Eğitim Politika ve Programlarına Etkisine İlişkin Görüşleri (in Turkish). Mehmet Akif Ersoy Univ J Educ Fac. https://doi.org/10.21764/MAEUEFD.599615

    Article  Google Scholar 

  91. Dobbins M, Martens K (2011) Towards an education approach à la finlandaise? French education policy after PISA. J Edu Policy 27:23–43. https://doi.org/10.1080/02680939.2011.622413

    Article  Google Scholar 

  92. Araujo L, Saltelli A, Schnepf S (2017) Do pisa data justify pisa-based education policy? Int J Comp Educ Dev 19:20–34. https://doi.org/10.1108/IJCED-12-2016-0023/FULL/PDF

    Article  Google Scholar 

  93. Steiner-Khamsi G, Waldow F (2018) PISA for scandalisation, PISA for projection: the use of international large-scale assessments in education policy making—an introduction. Glob Soc Edu 16:557–565. https://doi.org/10.1080/14767724.2018.1531234

    Article  Google Scholar 

  94. Lingard B, Sellar S (2013) Globalisation and sociology of education policy: the case of PISA. Contemp Debates Sociol Educ. https://doi.org/10.1057/9781137269881_2

    Article  Google Scholar 

  95. Figazzolo L (2009) Impact of PISA 2006 on the education policy debate. Education International. https://www.ei-ie.org/file/474

Download references

Acknowledgements

The authors would like to express sincere gratitude towards OECD for its generous publication of the data.

Funding

There is no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cafer Mert Yesilkanat.

Ethics declarations

Consent statement

Not applicable.

Conflict of interest

The authors declare that they have no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acıslı-Celik, S., Yesilkanat, C.M. Predicting science achievement scores with machine learning algorithms: a case study of OECD PISA 2015–2018 data. Neural Comput & Applic 35, 21201–21228 (2023). https://doi.org/10.1007/s00521-023-08901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08901-6

Keywords

Navigation