Skip to main content
Log in

A survey on sentiment analysis and its applications

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Analyzing and understanding the sentiments of social media documents on Twitter, Facebook, and Instagram has become a very important task at present. Analyzing the sentiment of these documents gives meaningful knowledge about the user opinions, which will help understand the overall view on these platforms. The problem of sentiment analysis (SA) can be regarded as a classification problem in which the text is classified as positive, negative, or neutral. This paper aims to give an intensive, but not exhaustive, review of the main concepts of SA and the state-of-the-art techniques; other aims are to make a comparative study of their performances, the main applications of SA as well as the limitations and the future directions for SA. Based on our analysis, researchers have utilized three main approaches for SA, namely lexicon/rules, machine learning (ML), and deep learning (DL). The performance of lexicon/rules-based models typically falls within the range of 55–85%. ML models, on the other hand, generally exhibit performance ranging from 55% to 90%, while DL models tend to achieve higher performance, ranging from 70% to 95%. These ranges are estimated and may be higher or lower depending on various factors, including the quality of the datasets, the chosen model architecture, the preprocessing techniques employed, as well as the quality and coverage of the lexicon utilized. Moreover, to further enhance models’ performance, researchers have delved into the implementation of hybrid models and optimization techniques which have demonstrated an ability to enhance the overall performance of SA models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

This study involved the re-analysis of existing data, which is available at locations cited in the reference section. Furthermore, the data generated and analyzed during the current study are available in the Scopus database at https://scopus.com.

References

  1. Pang B, Lee L et al (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr 2(1–2):1–135

    Google Scholar 

  2. Das S, Chen M (2001) Yahoo! for amazon: Extracting market sentiment from stock message boards. In: proceedings of the Asia Pacific finance association annual conference (APFA), vol. 35, p 43. Bangkok, Thailand

  3. Tong RM (2001) An operational system for detecting and tracking opinions in on-line discussion. In: working notes of the ACM SIGIR 2001 workshop on operational text classification, vol. 1

  4. Turney PD (2002) Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. arXiv preprint arXiv:cs/0212032

  5. Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? sentiment classification using machine learning techniques. arXiv preprint arXiv:cs/0205070

  6. Xu G, Meng Y, Qiu X, Yu Z, Wu X (2019) Sentiment analysis of comment texts based on bilstm. Ieee Access 7:51522–51532

    Google Scholar 

  7. Luo Z, Xu H, Chen F (2019) Audio sentiment analysis by heterogeneous signal features learned from utterance-based parallel neural network. In: AffCon@ AAAI

  8. Poria S, Cambria E, Hazarika D, Majumder N, Zadeh A, Morency L-P (2017) Context-dependent sentiment analysis in user-generated videos. In: proceedings of the 55th annual meeting of the association for computational linguistics (vol. 1: Long Papers), pp 873–883

  9. Alharbi ASM, Doncker E (2019) Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cogn Syst Res 54:50–61

    Google Scholar 

  10. Wei J, Liao J, Yang Z, Wang S, Zhao Q (2020) Bilstm with multi-polarity orthogonal attention for implicit sentiment analysis. Neurocomputing 383:165–173

    Google Scholar 

  11. Bouazizi M, Ohtsuki T (2019) Multi-class sentiment analysis on twitter: classification performance and challenges. Big Data Mining Anal 2(3):181–194

    Google Scholar 

  12. Boon-Itt S, Skunkan Y (2020) Public perception of the covid-19 pandemic on twitter: sentiment analysis and topic modeling study. JMIR Public Health Surveill 6(4):21978

    Google Scholar 

  13. Champagne-Langabeer T, Swank MW, Manas S, Si Y, Roberts K (2021) Dramatic increases in telehealth-related tweets during the early covid-19 pandemic: a sentiment analysis. Healthcare, vol 9. Multidisciplinary Digital Publishing Institute, Basel, p 634

    Google Scholar 

  14. Biswas S, Ghosh A, Chakraborty S, Roy S, Bose R (2020) Scope of sentiment analysis on news articles regarding stock market and gdp in struggling economic condition. Int J 8(7):3594–609

    Google Scholar 

  15. Almurtadha Y, Ghaleb M (2021) Sentiment analysis to measure public response to online education during coronavirus pandemic. In: 2021 national computing colleges conference (NCCC), pp 1–5. IEEE

  16. Zhang L, Wang S, Liu B (2018) Deep learning for sentiment analysis: a survey. Wiley Interdiscip Rev Data Mining Knowl Discov 8(4):1253

    Google Scholar 

  17. Shirsat VS, Jagdale RS, Deshmukh S (2017) Document level sentiment analysis from news articles. In: 2017 international conference on computing, communication, control and automation (ICCUBEA), pp1–4. IEEE

  18. Pradhan VM, Vala J, Balani P (2016) A survey on sentiment analysis algorithms for opinion mining. Int J Comput Appl 133(9):7–11

    Google Scholar 

  19. Khoo CS, Johnkhan SB (2018) Lexicon-based sentiment analysis: comparative evaluation of six sentiment lexicons. J Inf Sci 44(4):491–511

    Google Scholar 

  20. Naresh A, Venkata Krishna P (2021) An efficient approach for sentiment analysis using machine learning algorithm. Evol Intel 14:725–731

    Google Scholar 

  21. Rani S, Kumar P (2019) Deep learning based sentiment analysis using convolution neural network. Arab J Sci Eng 44(4):3305–3314

    Google Scholar 

  22. Yang L, Li Y, Wang J, Sherratt RS (2020) Sentiment analysis for e-commerce product reviews in chinese based on sentiment lexicon and deep learning. IEEE Access 8:23522–23530

    Google Scholar 

  23. Sravya G, Sreedevi M (2020) Genetic optimization in hybrid level sentiment analysis for opinion classification. Int J Adv Trends Comput Sci Eng 9:1440–1445

    Google Scholar 

  24. Tang D, Qin B, Liu T (2015) Deep learning for sentiment analysis: successful approaches and future challenges. Wiley Interdiscip Rev Data Mining Knowl Discov 5(6):292–303

    Google Scholar 

  25. Liu B (2012) Sentiment analysis and opinion mining. Synth Lect Human Lang Technol 5(1):1–167

    MathSciNet  Google Scholar 

  26. Tubishat M, Idris N, Abushariah MA (2018) Implicit aspect extraction in sentiment analysis: review, taxonomy, oppportunities, and open challenges. Inf Process Manage 54(4):545–563

    Google Scholar 

  27. Angiani G, Ferrari L, Fontanini T, Fornacciari P, Iotti E, Magliani F, Manicardi S (2016) A comparison between preprocessing techniques for sentiment analysis in twitter. In: KDWeb

  28. Alam S, Yao N (2019) The impact of preprocessing steps on the accuracy of machine learning algorithms in sentiment analysis. Comput Math Organ Theory 25(3):319–335

    Google Scholar 

  29. Pradha S, Halgamuge MN, Vinh NTQ (2019) Effective text data preprocessing technique for sentiment analysis in social media data. In: 2019 11th international conference on knowledge and systems engineering (KSE), pp 1–8. IEEE

  30. Oliveira DN, Merschmann LHC (2021) Joint evaluation of preprocessing tasks with classifiers for sentiment analysis in Brazilian portuguese language. Multimed Tools Appl 80:15391–15412

    Google Scholar 

  31. Cirqueira D, Pinheiro MF, Jacob A, Lobato F, Santana A (2018) A literature review in preprocessing for sentiment analysis for Brazilian Portuguese social media. In: 2018 IEEE/WIC/ACM international conference on web intelligence (WI), pp 746–749. IEEE

  32. Deniz A, Kiziloz HE (2017) Effects of various preprocessing techniques to Turkish text categorization using n-gram features. In: 2017 international conference on computer science and engineering (UBMK), pp 655–660. IEEE

  33. Ahuja R, Chug A, Kohli S, Gupta S, Ahuja P (2019) The impact of features extraction on the sentiment analysis. Procedia Comput Sci 152:341–348

    Google Scholar 

  34. Waykole RN, Thakare AD (2018) A review of feature extraction methods for text classification. Int J Adv Eng Res Dev 5(04):351–4

    Google Scholar 

  35. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Syst 26:3111–3119

    Google Scholar 

  36. Aoumeur NE, Li Z, Alshari EM (2023) Improving the polarity of text through word2vec embedding for primary classical Arabic sentiment analysis. Neural Process Lett 55:1–16

    Google Scholar 

  37. Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543

  38. Xiaoyan L, Raga RC, Xuemei S et al (2022) Glove-cnn-bilstm model for sentiment analysis on text reviews. J Sens 2022:12

    Google Scholar 

  39. Yanan Z, Dagang T (2018) Research on text classification based on glove and svm. Softw Guide 17(6):45–48

    Google Scholar 

  40. Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist 5:135–146

    Google Scholar 

  41. Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D (2019) Text classification algorithms: a survey. Information 10(4):150

    Google Scholar 

  42. Nguyen HN, Teerakanok S, Inomata A, Uehara T (2021) The comparison of word embedding techniques in rnns for vulnerability detection. In: ICISSP, pp 109–120

  43. Dang NC, Moreno-García MN, Prieta F (2020) Sentiment analysis based on deep learning: a comparative study. Electronics 9(3):483

    Google Scholar 

  44. Sasaki S, Heinzerling B, Suzuki J, Inui K (2023) Examining the effect of whitening on static and contextualized word embeddings. Inf Process Manage 60(3):103272

    Google Scholar 

  45. Radford A, Narasimhan K, Salimans T, Sutskever I et al (2018) Improving language understanding by generative pre-training. Preprint, 1–12

  46. Nath S, Marie A, Ellershaw S, Korot E, Keane PA (2022) New meaning for nlp: the trials and tribulations of natural language processing with gpt-3 in ophthalmology. Br J Ophthalmol 106(7):889–892

    Google Scholar 

  47. Lee J, Toutanova K (2018) Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805

  48. Barbouch M, Verberne S, Verhoef T (2021) Wn-bert: integrating wordnet and bert for lexical semantics in natural language understanding. Comput Linguist Neth J 11:105–124

    Google Scholar 

  49. Lee J-S, Hsiang J (2020) Patent claim generation by fine-tuning openai gpt-2. World Patent Inf 62:101983

    Google Scholar 

  50. Mars M (2022) From word embeddings to pre-trained language models: a state-of-the-art walkthrough. Appl Sci 12(17):8805

    Google Scholar 

  51. Wang J, Yu L-C, Lai KR, Zhang X (2019) Tree-structured regional cnn-lstm model for dimensional sentiment analysis. IEEE/ACM Trans Audio Speech Lang Process 28:581–591

    Google Scholar 

  52. Gao Z, Feng A, Song X, Wu X (2019) Target-dependent sentiment classification with bert. Ieee Access 7:154290–154299

    Google Scholar 

  53. Li X, Fu X, Xu G, Yang Y, Wang J, Jin L, Liu Q, Xiang T (2020) Enhancing bert representation with context-aware embedding for aspect-based sentiment analysis. IEEE Access 8:46868–46876

    Google Scholar 

  54. Nguyen TH, Shirai K, Velcin J (2015) Sentiment analysis on social media for stock movement prediction. Expert Syst Appl 42(24):9603–9611

    Google Scholar 

  55. Panthong R, Srivihok A (2015) Wrapper feature subset selection for dimension reduction based on ensemble learning algorithm. Procedia Comput Sci 72:162–169

    Google Scholar 

  56. Omuya EO, Okeyo GO, Kimwele MW (2021) Feature selection for classification using principal component analysis and information gain. Expert Syst Appl 174:114765

    Google Scholar 

  57. Sánchez-Maroño N, Alonso-Betanzos A, Calvo-Estévez RM (2009) A wrapper method for feature selection in multiple classes datasets. In: international work-conference on artificial neural networks, pp 456–463. Springer

  58. Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF (2020) A review of unsupervised feature selection methods. Artif Intell Rev 53(2):907–948

    Google Scholar 

  59. Birjali M, Beni-Hssane A, Erritali M (2017) Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Comput Sci 113:65–72

    Google Scholar 

  60. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28

    Google Scholar 

  61. Jiménez-Cordero A, Morales JM, Pineda S (2021) A novel embedded min-max approach for feature selection in nonlinear support vector machine classification. Eur J Oper Res 293(1):24–35

    MathSciNet  MATH  Google Scholar 

  62. Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med 112:103375

    Google Scholar 

  63. Shah S, Shabbir H, Rehman S, Waqas M (2020) A comparative study of feature selection approaches: 2016–2020. Int J Sci Eng Res 11(2):469

    Google Scholar 

  64. Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(4):491–502

    Google Scholar 

  65. Zhao H, Liu Z, Yao X, Yang Q (2021) A machine learning-based sentiment analysis of online product reviews with a novel term weighting and feature selection approach. Inf Process Manage 58(5):102656

    Google Scholar 

  66. Yusta SC (2009) Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn Lett 30(5):525–534

    Google Scholar 

  67. Al-Qablan TA, Noor MHM, Al-Betar MA, Khader AT (2023) Improved binary gray wolf optimizer based on adaptive \(\beta\)-hill climbing for feature selection. IEEE Access

  68. Tahir M, Tubaishat A, Al-Obeidat F, Shah B, Halim Z, Waqas M (2020) A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare. Neural Comput Appl, 1–22

  69. Ahmad SR, Rodzi MZM, Nurhafizeh N, Yusop M, Ismail S (2019) A review of feature selection and sentiment analysis technique in issues of propaganda. Int J Adv Comput Sci Appl 10(11):240–245

    Google Scholar 

  70. Addo-Tenkorang R, Helo PT (2016) Big data applications in operations/supply-chain management: a literature review. Comput Ind Eng 101:528–543

    Google Scholar 

  71. Zaslavsky A, Perera C, Georgakopoulos D (2013) Sensing as a service and big data. arXiv preprint arXiv:1301.0159

  72. Shayaa S, Jaafar NI, Bahri S, Sulaiman A, Wai PS, Chung YW, Piprani AZ, Al-Garadi MA (2018) Sentiment analysis of big data: methods, applications, and open challenges. IEEE Access 6:37807–37827

    Google Scholar 

  73. Mukhtar N, Khan MA, Chiragh N (2018) Lexicon-based approach outperforms supervised machine learning approach for urdu sentiment analysis in multiple domains. Telemat Inform 35(8):2173–2183

    Google Scholar 

  74. Catelli R, Pelosi S, Esposito M (2022) Lexicon-based vs. bert-based sentiment analysis: a comparative study in Italian. Electronics 11(3):374

    Google Scholar 

  75. Reddy Y, Viswanath P, Reddy BE (2018) Semi-supervised learning: a brief review. Int J Eng Technol 7(1.8):81

    Google Scholar 

  76. Jasmir J, Nurmaini S, Tutuko B (2021) Fine-grained algorithm for improving knn computational performance on clinical trials text classification. Big Data Cogn Comput 5(4):60

    Google Scholar 

  77. Didi Y, Walha A, Wali A (2022) Covid-19 tweets classification based on a hybrid word embedding method. Big Data Cogn Comput 6(2):58

    Google Scholar 

  78. Zaks G, Katz G (2022) Recom: a deep reinforcement learning approach for semi-supervised tabular data labeling. Inf Sci 589:321–340

    Google Scholar 

  79. Riyadh M, Shafiq MO (2021) Towards multi-class sentiment analysis with limited labeled data. In: 2021 IEEE international conference on big data (Big Data), pp 4955–4964. IEEE

  80. Ebrahimi P, Basirat M, Yousefi A, Nekmahmud M, Gholampour A, Fekete-Farkas M (2022) Social networks marketing and consumer purchase behavior: the combination of sem and unsupervised machine learning approaches. Big Data Cogn Comput 6(2):35

    Google Scholar 

  81. García-Pablos A, Cuadros M, Rigau G (2018) W2vlda: almost unsupervised system for aspect based sentiment analysis. Expert Syst Appl 91:127–137

    Google Scholar 

  82. Yadav A, Jha C, Sharan A, Vaish V (2020) Sentiment analysis of financial news using unsupervised approach. Procedia Comput Sci 167:589–598

    Google Scholar 

  83. Pandey AC, Rajpoot DS, Saraswat M (2017) Twitter sentiment analysis using hybrid cuckoo search method. Inf Process Manage 53(4):764–779

    Google Scholar 

  84. Kaur G, Kaushik A, Sharma S (2019) Cooking is creating emotion: a study on hinglish sentiments of youtube cookery channels using semi-supervised approach. Big Data Cogn Comput 3(3):37

    Google Scholar 

  85. Macrohon JJE, Villavicencio CN, Inbaraj XA, Jeng J-H (2022) A semi-supervised approach to sentiment analysis of tweets during the 2022 philippine presidential election. Information 13(10):484

    Google Scholar 

  86. Cruz Paulino JL, Antoja Almirol LC, Cruz Favila JM, Loria Aquino KAG, Hernandez De La Cruz A, Roxas RE (2021) Multilingual sentiment analysis on short text document using semi-supervised machine learning. In: 2021 5th international conference on E-society, E-education and E-technology, pp 164–170

  87. Gupta N, Agrawal R (2020) Application and techniques of opinion mining. Hybrid computational intelligence. Elsevier, Amsterdam, pp 1–23

    Google Scholar 

  88. Assiri A, Emam A, Al-Dossari H (2018) Towards enhancement of a lexicon-based approach for Saudi dialect sentiment analysis. J Inf Sci 44(2):184–202

    Google Scholar 

  89. Zabha NI, Ayop Z, Anawar S, Hamid E, Abidin ZZ (2019) Developing cross-lingual sentiment analysis of Malay twitter data using lexicon-based approach. Int J Adv Comput Sci Appl 10(1):346–351

    Google Scholar 

  90. YURTALAN G, Koyuncu M, TURHAN Ç (2019) A polarity calculation approach for lexicon-based turkish sentiment analysis. Turk J Electr Eng Comput Sci 27(2):1325–1339

    Google Scholar 

  91. Wunderlich F, Memmert D (2020) Innovative approaches in sports science-lexicon-based sentiment analysis as a tool to analyze sports-related twitter communication. Appl Sci 10(2):431

    Google Scholar 

  92. Mukhtar N, Khan MA (2020) Effective lexicon-based approach for Urdu sentiment analysis. Artif Intell Rev 53(4):2521–2548

    Google Scholar 

  93. Mehmood Y, Balakrishnan V (2020) An enhanced lexicon-based approach for sentiment analysis: a case study on illegal immigration. Online information review

  94. Aloqaily A, Alhassan M, Salah K, Elshqeirat B, Almashagbah M, Al Hussein Bin Abdullah P (2020) Sentiment analysis for arabic tweets datasets: lexicon-based and machine learning approaches. J Theor Appl Inf Technol 98(4):612–623

  95. Piryani R, Piryani B, Singh VK, Pinto D (2020) Sentiment analysis in nepali: exploring machine learning and lexicon-based approaches. J Intell Fuzzy Syst (Preprint), 1–12

  96. Chaovalit P, Zhou L (2005) Movie review mining: a comparison between supervised and unsupervised classification approaches. In: proceedings of the 38th annual hawaii international conference on system sciences, pp 112–112. IEEE

  97. Liu Z, Dong X, Guan Y, Yang J (2013) Reserved self-training: a semi-supervised sentiment classification method for chinese microblogs. In: proceedings of the sixth international joint conference on natural language processing, pp 455–462

  98. Singh J, Singh G, Singh R (2017) Optimization of sentiment analysis using machine learning classifiers. HCIS 7(1):1–12

    Google Scholar 

  99. Hew KF, Hu X, Qiao C, Tang Y (2020) What predicts student satisfaction with moocs: a gradient boosting trees supervised machine learning and sentiment analysis approach. Comput Edu 145:103724

    Google Scholar 

  100. Ghiassi M, Lee S (2018) A domain transferable lexicon set for twitter sentiment analysis using a supervised machine learning approach. Expert Syst Appl 106:197–216

    Google Scholar 

  101. Du J, Xu J, Song H, Liu X, Tao C (2017) Optimization on machine learning based approaches for sentiment analysis on hpv vaccines related tweets. J Biomed Semant 8(1):1–7

    Google Scholar 

  102. Mukhtar N, Khan MA (2018) Urdu sentiment analysis using supervised machine learning approach. Int J Pattern Recognit Artif Intell 32(02):1851001

    MathSciNet  Google Scholar 

  103. Basha CB, Somasundaram K (2019) A comparative study of twitter sentiment analysis using machine learning algorithms in big data. Int J Rec Technol Eng 8(1):591–599

    Google Scholar 

  104. Hausler J, Ruscheinsky J, Lang M (2018) News-based sentiment analysis in real estate: a machine learning approach. J Prop Res 35(4):344–371

    Google Scholar 

  105. Valencia F, Gómez-Espinosa A, Valdés-Aguirre B (2019) Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy 21(6):589

    Google Scholar 

  106. Ghosh M, Sanyal G (2018) An ensemble approach to stabilize the features for multi-domain sentiment analysis using supervised machine learning. J Big Data 5(1):1–25

    Google Scholar 

  107. Nandal N, Tanwar R, Pruthi J (2020) Machine learning based aspect level sentiment analysis for amazon products. Spat Inf Res 28(5):601–607

    Google Scholar 

  108. Baid P, Gupta A, Chaplot N (2017) Sentiment analysis of movie reviews using machine learning techniques. Int J Comput Appl 179(7):45–49

    Google Scholar 

  109. Soumya S, Pramod K (2020) Sentiment analysis of Malayalam tweets using machine learning techniques. ICT Express 6(4):300–305

    Google Scholar 

  110. Al-Moslmi T, Omar N, Albared M, Alshabi A (2017) Enhanced Malay sentiment analysis with an ensemble classification machine learning approach. J f Eng Appl Sci 12(20):5226–5232

    Google Scholar 

  111. Buladaco M, Buladaco J, Cantero L (2020) Sentiments analysis on public land transport infrastructure in Davao region using machine learning algorithms. Int J Adv Trends Comput Sci Eng 9(1):685–690

    Google Scholar 

  112. Raza H, Faizan M, Hamza A, Mushtaq A, Akhtar N (2019) Scientific text sentiment analysis using machine learning techniques. Int J Adv Comput Sci Appl 10(12):157–165

    Google Scholar 

  113. Bhargav PS, Reddy GN, Chand RR, Pujitha K, Mathur A (2019) Sentiment analysis for hotel rating using machine learning algorithms. Int J Innov Technol Explor Eng (IJITEE) 8(6):1225–1228

    Google Scholar 

  114. Hercig T, Brychcín T, Svoboda L, Konkol M, Steinberger J (2016) Unsupervised methods to improve aspect-based sentiment analysis in czech. Comput Sistemas 20(3):365–375

    Google Scholar 

  115. Azzouza N, Akli-Astouati K, Oussalah A, Bachir SA (2017) A real-time twitter sentiment analysis using an unsupervised method. In: proceedings of the 7th international conference on web intelligence, mining and semantics, pp 1–10

  116. Odbal Wang Z (2016) A semi-supervised method for phrase-level sentiment analysis. Moshi Shibie yu Rengong Zhineng/Pattern Recognit Artif Intell 29(4):289–297

    Google Scholar 

  117. Socher R, Pennington J, Huang EH, Ng AY, Manning CD (2011) Semi-supervised recursive autoencoders for predicting sentiment distributions. In: EMNLP 2011-conference on empirical methods in natural language processing, proceedings of the conference, pp 151–161

  118. Madhoushi Z, Hamdan AR, Zainudin S (2015) Sentiment analysis techniques in recent works. In: 2015 science and information conference (SAI), pp 288–291. IEEE

  119. Rehman AU, Malik AK, Raza B, Ali W (2019) A hybrid cnn-lstm model for improving accuracy of movie reviews sentiment analysis. Multimed Tools Appl 78(18):26597–26613

    Google Scholar 

  120. Joseph J, Vineetha S, Sobhana N (2022) A survey on deep learning based sentiment analysis. Mater Today Procee 58:456–60

    Google Scholar 

  121. Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst Appl 77:236–246

    Google Scholar 

  122. Devipriya K, Prabha D, Pirya V, Sudhakar S (2020) Deep learning sentiment analysis for recommendations in social applications. Int J Sci Technol Res 9(1):3812–3815

    Google Scholar 

  123. Yadav A, Vishwakarma DK (2020) A deep learning architecture of ra-dlnet for visual sentiment analysis. Multimed Syst 26:431–451

    Google Scholar 

  124. Park S, Woo J (2019) Gender classification using sentiment analysis and deep learning in a health web forum. Appl Sci 9(6):1249

    MathSciNet  Google Scholar 

  125. Rosa RL, Schwartz GM, Ruggiero WV, Rodríguez DZ (2018) A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Trans Industr Inf 15(4):2124–2135

    Google Scholar 

  126. Colón-Ruiz C, Segura-Bedmar I (2020) Comparing deep learning architectures for sentiment analysis on drug reviews. J Biomed Inform 110:103539

    Google Scholar 

  127. Sohangir S, Wang D, Pomeranets A, Khoshgoftaar TM (2018) Big data: deep learning for financial sentiment analysis. J Big Data 5(1):1–25

    Google Scholar 

  128. Feizollah A, Ainin S, Anuar NB, Abdullah NAB, Hazim M (2019) Halal products on twitter: data extraction and sentiment analysis using stack of deep learning algorithms. IEEE Access 7:83354–83362

    Google Scholar 

  129. Terra Vieira S, Lopes Rosa R, Zegarra Rodríguez D, Arjona Ramírez M, Saadi M, Wuttisittikulkij L (2021) Q-meter: quality monitoring system for telecommunication services based on sentiment analysis using deep learning. Sensors 21(5):1880

    Google Scholar 

  130. Li L, Goh T-T, Jin D (2020) How textual quality of online reviews affect classification performance: a case of deep learning sentiment analysis. Neural Comput Appl 32(9):4387–4415

    Google Scholar 

  131. Ghorbani M, Bahaghighat M, Xin Q, Özen F (2020) Convlstmconv network: a deep learning approach for sentiment analysis in cloud computing. J Cloud Comput 9(1):1–12

    Google Scholar 

  132. Garg A, Duhan N (2020) Sarcasm detection on twitter data using support vector machine. ICTACT J Soft Comput 10(4):2165–2170

    Google Scholar 

  133. Xu F, Zhang X, Xin Z, Yang A (2019) Investigation on the Chinese text sentiment analysis based on convolutional neural networks in deep learning. Comput Mater Contin 58(3):697–709

    Google Scholar 

  134. Paredes-Valverde MA, Colomo-Palacios R, Salas-Zárate MdP, Valencia-García R et al (2017) Sentiment analysis in Spanish for improvement of products and services: a deep learning approach. Sci Program 2017:1–6

  135. Kapočiūtė-Dzikienė J, Damaševičius R, Woźniak M (2019) Sentiment analysis of Lithuanian texts using traditional and deep learning approaches. Computers 8(1):4

    Google Scholar 

  136. Ombabi AH, Ouarda W, Alimi AM (2020) Deep learning cnn-lstm framework for Arabic sentiment analysis using textual information shared in social networks. Soc Netw Anal Min 10(1):1–13

    Google Scholar 

  137. Mohammed A, Kora R (2019) Deep learning approaches for Arabic sentiment analysis. Soc Netw Anal Min 9(1):1–12

    Google Scholar 

  138. Konate A, Du R (2018) Sentiment analysis of code-mixed Bambara-French social media text using deep learning techniques. Wuhan Univ J Nat Sci 23(3):237–243

    Google Scholar 

  139. Dastgheib MB, Koleini S, Rasti F (2020) The application of deep learning in Persian documents sentiment analysis. Int J Inf Sci Manage (IJISM) 18(1):1–15

    Google Scholar 

  140. Nezhad ZB, Deihimi MA (2019) A combined deep learning model for Persian sentiment analysis. IIUM Eng J 20(1):129–139

    Google Scholar 

  141. Ong JY, Mun’im Ahmad Zabidi M, Ramli N, Sheikh UU (2020) Sentiment analysis of informal Malay tweets with deep learning. IAES Int J Artif Intell 9(2):212

    Google Scholar 

  142. Tam S, Said RB, Tanriöver ÖÖ (2021) A convbilstm deep learning model-based approach for twitter sentiment classification. IEEE Access 9:41283–41293

    Google Scholar 

  143. Lin Y, Li J, Yang L, Xu K, Lin H (2020) Sentiment analysis with comparison enhanced deep neural network. IEEE Access 8:78378–78384

    Google Scholar 

  144. Mohammadi A, Shaverizade A (2021) Ensemble deep learning for aspect-based sentiment analysis. Int J Nonlinear Anal Appl 12:29–38

    Google Scholar 

  145. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805

  146. Mathew L, Bindu V (2022) Efficient classification techniques in sentiment analysis using transformers. In: international conference on innovative computing and communications, pp 849–862. Springer

  147. Mishev K, Gjorgjevikj A, Vodenska I, Chitkushev LT, Trajanov D (2020) Evaluation of sentiment analysis in finance: from lexicons to transformers. IEEE Access 8:131662–131682

    Google Scholar 

  148. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692

  149. Zeng B, Yang H, Xu R, Zhou W, Han X (2019) Lcf: a local context focus mechanism for aspect-based sentiment classification. Appl Sci 9(16):3389

    Google Scholar 

  150. Durairaj AK, Chinnalagu A (2021) Transformer based contextual model for sentiment analysis of customer reviews: a fine-tuned bert a sequence learning bert model for sentiment analysis. Int J Adv Comput Sci Appl 12(11):474–480

    Google Scholar 

  151. Iqbal F, Hashmi JM, Fung BC, Batool R, Khattak AM, Aleem S, Hung PC (2019) A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access 7:14637–14652

    Google Scholar 

  152. Alqahtani AS, Saravanan P, Maheswari M, Alshmrany S, Alsarrayrih H (2021) Hybrid grass bee optimization-multikernal extreme learning classifier: multimodular fusion strategy and optimal feature selection for multimodal sentiment analysis in social media videos. Concurr Comput Pract Exp 33(16):e6259

    Google Scholar 

  153. Raviya K, Mary Vennila S (2020) A hybrid deep learning approach for sentiment analysis using cnn and improved svm with multi objective swarm optimization for domain independent datasets. Int J Adv Trends Comput Sci Eng 9:3200–3206

    Google Scholar 

  154. Shekhawat SS, Shringi S, Sharma H (2021) Twitter sentiment analysis using hybrid spider monkey optimization method. Evolut Intell 14:1307–1316

  155. Madani Y, Erritali M, Bengourram J, Sailhan F (2020) A hybrid multilingual fuzzy-based approach to the sentiment analysis problem using sentiwordnet. Internat J Uncertain Fuzziness Knowl Based Syst 28(03):361–390

    Google Scholar 

  156. Kumar A, Khorwal R (2017) Firefly algorithm for feature selection in sentiment analysis. Computational intelligence in data mining. Springer, Berlin, pp 693–703

    Google Scholar 

  157. Tubishat M, Abushariah MA, Idris N, Aljarah I (2019) Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl Intell 49(5):1688–1707

    Google Scholar 

  158. Rahab H, Haouassi H, Souidi MEH, Bakhouche A, Mahdaoui R, Bekhouche M (2022) A modified binary rat swarm optimization algorithm for feature selection in Arabic sentiment analysis. Arab J Sci Eng, 1–28

  159. Mehbodniya A, Rao MV, David LG, Nigel KGJ, Vennam P (2022) Online product sentiment analysis using random evolutionary whale optimization algorithm and deep belief network. Pattern Recogn Lett 159:1–8

    Google Scholar 

  160. Shaddeli A, Soleimanian Gharehchopogh F, Masdari M, Solouk V (2022) An improved African vulture optimization algorithm for feature selection problems and its application of sentiment analysis on movie reviews. Big Data Cogn Comput 6(4):104

    Google Scholar 

  161. Elshakankery K, Ahmed MF (2019) Hilatsa: a hybrid incremental learning approach for Arabic tweets sentiment analysis. Egypt Inf J 20(3):163–171

    Google Scholar 

  162. Erşahİn B, Aktaş Ö, Kilinc D, Erşahİn M (2019) A hybrid sentiment analysis method for Turkish. Turk J Electr Eng Comput Sci 27(3):1780–1793

    Google Scholar 

  163. Sinha S, Saxena K, Joshi N (2019) Sentiment analysis of facebook posts using hybrid method. Int J Recent Technol Eng 8:2421–2428

    Google Scholar 

  164. Mendon S, Dutta P, Behl A, Lessmann S (2021) A hybrid approach of machine learning and lexicons to sentiment analysis: enhanced insights from twitter data of natural disasters. Inf Syst Front. https://doi.org/10.1007/s10796-021-10107-x

    Article  Google Scholar 

  165. Learning SM (2020) Hybrid model for twitter data sentiment analysis based on ensemble of dictionary based classifier and stacked machine learning classifiers-svm, knn and c50. J Theor Appl Inf Technol 98(04):624–635

    Google Scholar 

  166. Dashtipour K, Gogate M, Li J, Jiang F, Kong B, Hussain A (2020) A hybrid Persian sentiment analysis framework: integrating dependency grammar based rules and deep neural networks. Neurocomputing 380:1–10

    Google Scholar 

  167. Wu C, Wu F, Wu S, Yuan Z, Huang Y (2018) A hybrid unsupervised method for aspect term and opinion target extraction. Knowl-Based Syst 148:66–73

    Google Scholar 

  168. Ray P, Chakrabarti A (2020) A mixed approach of deep learning method and rule-based method to improve aspect level sentiment analysis. Appl Comput Inf. https://doi.org/10.1016/J.ACI.2019.02.002

    Article  Google Scholar 

  169. Srinidhi H, Siddesh G, Srinivasa K (2020) A hybrid model using Malstm based on recurrent neural networks with support vector machines for sentiment analysis. Eng Appl Sci Res 47(3):232–240

    Google Scholar 

  170. Kumar A, Srinivasan K, Cheng W-H, Zomaya AY (2020) Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Inf Process Manage 57(1):102141

    Google Scholar 

  171. Raviya K, Mary Vennila S (2021) An implementation of hybrid enhanced sentiment analysis system using spark ml pipeline: a big data analytics framework. Int J Adv Comput Sci Appl 12:323–329

    Google Scholar 

  172. Hassonah MA, Al-Sayyed R, Rodan A, Ala’M A-Z, Aljarah I, Faris H (2020) An efficient hybrid filter and evolutionary wrapper approach for sentiment analysis of various topics on twitter. Knowl Based Syst 192:105353

    Google Scholar 

  173. Omar A, Hamouda WI (2021) A sentiment analysis of Egypt’s new real estate registration law on facebook. Int J Adv Comput Sci Appl 12(4):656–663

    Google Scholar 

  174. Bashir S, Bano S, Shueb S, Gul S, Mir AA, Ashraf R, Noor N et al (2021) Twitter chirps for syrian people: sentiment analysis of tweets related to syria chemical attack. Int J Disaster Risk Red 62:102397

    Google Scholar 

  175. Villavicencio C, Macrohon JJ, Inbaraj XA, Jeng J-H, Hsieh J-G (2021) Twitter sentiment analysis towards covid-19 vaccines in the Philippines using naïve bayes. Information 12(5):204

    Google Scholar 

  176. Sailunaz K, Alhajj R (2019) Emotion and sentiment analysis from twitter text. J Comput Sci 36:101003

    Google Scholar 

  177. Wang L, Niu J, Yu S (2019) Sentidiff: combining textual information and sentiment diffusion patterns for twitter sentiment analysis. IEEE Trans Knowl Data Eng 32(10):2026–2039

    Google Scholar 

  178. Gabarron E, Dorronzoro E, Rivera-Romero O, Wynn R (2019) Diabetes on twitter: a sentiment analysis. J Diabetes Sci Technol 13(3):439–444

    Google Scholar 

  179. Öztürk N, Ayvaz S (2018) Sentiment analysis on twitter: a text mining approach to the Syrian refugee crisis. Telematics Inform 35(1):136–147

    Google Scholar 

  180. Bouazizi M, Ohtsuki T (2017) A pattern-based approach for multi-class sentiment analysis in twitter. IEEE Access 5:20617–20639

    Google Scholar 

  181. Daniel M, Neves RF, Horta N (2017) Company event popularity for financial markets using twitter and sentiment analysis. Expert Syst Appl 71:111–124

    Google Scholar 

  182. Zafra SMJ, Valdivia MTM, Camara EM, Lopez LAU (2017) Studying the scope of negation for Spanish sentiment analysis on twitter. IEEE Trans Affect Comput 10(1):129–141

    Google Scholar 

  183. Prabha VD, Rathipriya R (2022) Competitive capsule network based sentiment analysis on twitter covid’19 vaccines. J Web Eng 21:1583–1602

    Google Scholar 

  184. Musleh DA, Alkhales TA, Almakki RA, Alnajim SE, Almarshad SK, Alhasaniah RS, Aljameel SS, Almuqhim AA (2022) Twitter Arabic sentiment analysis to detect depression using machine learning. Comput Mater Contin 71:3463–3477

    Google Scholar 

  185. Nezhad ZB, Deihimi MA (2022) Twitter sentiment analysis from Iran about covid 19 vaccine. Diabetes Metab Syndr Clin Res Rev 16(1):102367

    Google Scholar 

  186. Hassan MK, Hudaefi FA, Caraka RE (2022) Mining netizen’s opinion on cryptocurrency: sentiment analysis of twitter data. Stud Econ Financ 39(3):365–385

    Google Scholar 

  187. Ribeiro LA, Cinalli D, Garcia ACB (2021) Discovering adverse drug reactions from twitter: A sentiment analysis perspective. In: 2021 IEEE 24th international conference on computer supported cooperative work in design (CSCWD), pp 1172–1177. IEEE

  188. Drus Z, Khalid H (2019) Sentiment analysis in social media and its application: systematic literature review. Procedia Comput Sci 161:707–714

    Google Scholar 

  189. Roccetti M, Marfia G, Salomoni P, Prandi C, Zagari RM, Kengni FLG, Bazzoli F, Montagnani M (2017) Attitudes of crohn’s disease patients: infodemiology case study and sentiment analysis of facebook and twitter posts. JMIR Public Health Surveill 3(3):7004

    Google Scholar 

  190. Rouby I, Badawy M, Nour M, Hegazi N (2018) Performance evaluation of an adopted sentiment analysis model for Arabic comments from the facebook. J Theor Appl Inf Technol 96(21):7098–7112

    Google Scholar 

  191. Klimiuk K, Czoska A, Biernacka K, Balwicki Ł (2021) Vaccine misinformation on social media-topic-based content and sentiment analysis of polish vaccine-deniers’ comments on facebook. Hum Vaccines Immunother 17(7):2026–2035

    Google Scholar 

  192. Alvarez G, Choi J, Strover S (2020) Good news, bad news: a sentiment analysis of the 2016 election Russian facebook ads. Good Syst Pub Res 14:3027–3053

  193. Alnawas A, Arici N (2019) Sentiment analysis of Iraqi Arabic dialect on facebook based on distributed representations of documents. ACM Trans Asian Low Resour Lang Inf Process (TALLIP) 18(3):1–17

    Google Scholar 

  194. Poecze F, Ebster C, Strauss C (2019) Let’s play on facebook: using sentiment analysis and social media metrics to measure the success of youtube gamers’ post types. Pers Ubiquitous Comput 1–10

  195. Hajhmida MB, Oueslati O (2021) Predicting mobile application breakout using sentiment analysis of facebook posts. J Inf Sci 47(4):502–516

    Google Scholar 

  196. Nahar KM, Jaradat A, Atoum MS, Ibrahim F (2020) Sentiment analysis and classification of Arab Jordanian facebook comments for Jordanian telecom companies using lexicon-based approach and machine learning. Jordanian J Comput Inf Technol (JJCIT) 6(3):247–262

  197. Hand LC, Ching BD (2020) Maintaining neutrality: a sentiment analysis of police agency facebook pages before and after a fatal officer-involved shooting of a citizen. Gov Inf Q 37(1):101420

    Google Scholar 

  198. Mishra MS, Sharma RW (2019) Brand crisis-sentiment analysis of user-generated comments about@ maggi on facebook. Corp Reput Rev 22(2):48–60

    Google Scholar 

  199. Rodriguez A, Chen Y-L, Argueta C (2022) Fadohs: framework for detection and integration of unstructured data of hate speech on facebook using sentiment and emotion analysis. IEEE Access 10:22400–22419

    Google Scholar 

  200. Kewsuwun N, Kajornkasirat S (2022) A sentiment analysis model of agritech startup on facebook comments using naive bayes classifier. Int J Electr Comput Eng (2088-8708) 12(3):2829–2838

  201. Boulesnane A, Meshoul S, Aouissi K (2022) Influenza-like illness detection from Arabic facebook posts based on sentiment analysis and 1d convolutional neural network. Mathematics 10(21):4089

    Google Scholar 

  202. Li Z, Li R, Jin G (2020) Sentiment analysis of danmaku videos based on naïve bayes and sentiment dictionary. IEEE Access 8:75073–75084

    Google Scholar 

  203. Arunkumar P, Chandramathi S, Kannimuthu S (2019) Sentiment analysis-based framework for assessing internet telemedicine videos. Int J Data Anal Tech Strateg 11(4):328–336

    Google Scholar 

  204. Thompson JJ, Leung BH, Blair MR, Taboada M (2017) Sentiment analysis of player chat messaging in the video game starcraft 2: extending a lexicon-based model. Knowl Based Syst 137:149–162

    Google Scholar 

  205. Bozkurt AP, Aras I (2021) Cleft lip and palate youtube videos: content usefulness and sentiment analysis. Cleft Palate Craniofac J 58(3):362–368

    Google Scholar 

  206. Porreca A, Scozzari F, Di Nicola M (2020) Using text mining and sentim https://www.overleaf.com/project/60bcb05421a73355c933f099ent analysis to analyse youtube Italian videos concerning vaccination. BMC Public Health 20(1):1–9

  207. Mi C, Li M, Wulandari AF (2022) Predicting video views of web series based on comment sentiment analysis and improved stacking ensemble model. Electron Commer Res, 1–28

  208. Pan Z, Li X, Cui L, Zhang Z (2020) Video clip recommendation model by sentiment analysis of time-sync comments. Multimed Tools Appl 79(45):33449–33466

    Google Scholar 

  209. Soleymani M, Garcia D, Jou B, Schuller B, Chang S-F, Pantic M (2017) A survey of multimodal sentiment analysis. Image Vis Comput 65:3–14

    Google Scholar 

  210. Akhtar MS, Chauhan DS, Ghosal D, Poria S, Ekbal A, Bhattacharyya P (2019) Multi-task learning for multi-modal emotion recognition and sentiment analysis. arXiv preprint arXiv:1905.05812

  211. Li Q, Gkoumas D, Lioma C, Melucci M (2021) Quantum-inspired multimodal fusion for video sentiment analysis. Inf Fusion 65:58–71

    Google Scholar 

  212. Tzirakis P, Chen J, Zafeiriou S, Schuller B (2021) End-to-end multimodal affect recognition in real-world environments. Inf Fusion 68:46–53

    Google Scholar 

  213. Al-Azani S, El-Alfy E-SM (2020) Enhanced video analytics for sentiment analysis based on fusing textual, auditory and visual information. IEEE Access 8:136843–136857

    Google Scholar 

  214. Chaturvedi I, Satapathy R, Cavallari S, Cambria E (2019) Fuzzy commonsense reasoning for multimodal sentiment analysis. Pattern Recogn Lett 125:264–270

    Google Scholar 

  215. Zadeh A, Chen M, Poria S, Cambria E, Morency L-P (2017) Tensor fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250

  216. Ermatita E, Abdiansah A, Rini DP, Febry F (2022) Sentiment analysis of covid-19 using multimodal fusion neural networks. TEM J 11(3):1316–1321

    Google Scholar 

  217. Zhu T, Li L, Yang J, Zhao S, Liu H, Qian J (2022) Multimodal sentiment analysis with image-text interaction network. IEEE Trans Multimed, 1–12

  218. Mai S, Zeng Y, Zheng S, Hu H (2022) Hybrid contrastive learning of tri-modal representation for multimodal sentiment analysis. IEEE Trans Affect Comput, 1–12

  219. Ghorbanali A, Sohrabi MK, Yaghmaee F (2022) Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks. Inf Process Manage 59(3):102929

    Google Scholar 

  220. Stappen L, Baird A, Cambria E, Schuller BW (2021) Sentiment analysis and topic recognition in video transcriptions. IEEE Intell Syst 36(2):88–95

    Google Scholar 

  221. Iglesias-Puzas Á, Conde-Taboada A, López-Bran E (2022) A cross-sectional study of youtube videos on mohs surgery: quality of content and sentiment analysis. J Am Acad Dermatol 86(3):649–651

  222. Deori M, Kumar V, Verma MK (2021) Analysis of youtube video contents on koha and dspace, and sentiment analysis of viewers’ comments. Library Hi Tech

  223. IMDB Movie Reviews Datase: https://www.kaggle.com/code/lakshmi25npathi/sentiment-analysis-of-Imdb-movie-reviews/input

  224. SemEval-2017 Task 4 Datase: http://alt.qcri.org/semeval2017/Task4/index.php?id=data-and-tool

  225. Yelp Open Dataset: https://www.yelp.com/dataset

  226. Amazon review data: http://jmcauley.ucsd.edu/data/amazon/

  227. UCI Reviews Datase: https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

  228. Aly M, Atiya A (2013) Labr: a large scale arabic book reviews dataset. In: proceedings of the 51st annual meeting of the association for computational linguistics (Vol. 2: Short Papers), pp 494–498

  229. Omran T, Sharef B, Grosan C, Li Y (2023) Sentiment analysis of multilingual dataset of Bahraini dialects, Arabic, and English. Data 8(4):68

    Google Scholar 

  230. Bahraini Dialects Datase: https://data.mendeley.com/datasets/5rhw2srzjj/1

  231. Nabil M, Aly M, Atiya A (2015) Astd: Arabic sentiment tweets dataset. In: proceedings of the 2015 conference on empirical methods in natural language processing, pp 2515–2519

  232. Taleb C, Khachab M, Mokbel C, Likforman-Sulem L (2017) IEEE 1st international workshop on Arabic script analysis and recognition (ASAR): feature selection for an improved Parkinson’s disease identification based on handwriting. IEEE

  233. Alayba AM, Palade V, England M, Iqbal R (2018) Improving sentiment analysis in arabic using word representation. In: 2018 IEEE 2nd international workshop on Arabic and derived script analysis and recognition (ASAR), pp 13–18. IEEE

  234. Fujisaki H (2003) Prosody, information, and modeling-with emphasis on tonal features of speech. In: workshop on spoken language processing

  235. Sheth T (2017) Non-verbal communication: a significant aspect of proficient occupation. OSR J Hum Soc Sci 22(11):69–72

    Google Scholar 

  236. Halim Z, Rehan M (2020) On identification of driving-induced stress using electroencephalogram signals: a framework based on wearable safety-critical scheme and machine learning. Inf Fusion 53:66–79

    Google Scholar 

  237. Ahmed N, Al Aghbari Z, Girija S (2023) A systematic survey on multimodal emotion recognition using learning algorithms. Intell Syst Appl 17:200171

    Google Scholar 

  238. Intelligence SM (2021) Disponível em: https://www.mordorintelligence.com/industry-reports/global-clove-market. Acesso em 29

  239. Sahoo S, Routray A (2016) Emotion recognition from audio-visual data using rule based decision level fusion. In: 2016 IEEE students’ technology symposium (TechSym), pp 7–12. IEEE

  240. Aadam Tubaishat A, Al-Obeidat F, Halim Z, Waqas M, Qayum F (2022) EmoPercept: EEG-based emotion classification through perceiver. Soft Comput, 1–8

  241. Tashu TM, Hajiyeva S, Horvath T (2021) Multimodal emotion recognition from art using sequential co-attention. J Imaging 7(8):157

    Google Scholar 

  242. Halim Z, Waqar M, Tahir M (2020) A machine learning-based investigation utilizing the in-text features for the identification of dominant emotion in an email. Knowl Based Syst 208:106443

    Google Scholar 

  243. Atmaja BT, Sasou A (2022) Sentiment analysis and emotion recognition from speech using universal speech representations. Sensors 22(17):6369

    Google Scholar 

  244. Lee H-Y, Hu T-Y, Jing H, Chang Y-F, Tsao Y, Kao Y-C, Pao T-L (2013) Ensemble of machine learning and acoustic segment model techniques for speech emotion and autism spectrum disorders recognition. In: INTERSPEECH, pp 215–219

  245. Tahir M, Halim Z, Rahman AU, Waqas M, Tu S, Chen S, Han Z (2022) Non-acted text and keystrokes database and learning methods to recognize emotions. ACM Trans Multimed Comput Commun Appl (TOMM) 18(2):1–24

    Google Scholar 

  246. Bharti D, Kukana P (2020) A hybrid machine learning model for emotion recognition from speech signals. In: 2020 international conference on smart electronics and communication (ICOSEC), pp 491–496. IEEE

  247. Zhang Y, Srivastava G (2022) Speech emotion recognition method in educational scene based on machine learning. EAI Endorsed Trans Scalable Inf Syst 9(5):9–9

    Google Scholar 

  248. Muthusamy H, Polat K, Yaacob S (2015) Improved emotion recognition using gaussian mixture model and extreme learning machine in speech and glottal signals. Math Probl Eng. https://doi.org/10.1155/2015/394083

    Article  Google Scholar 

  249. Guo L, Wang L, Dang J, Liu Z, Guan H (2019) Exploration of complementary features for speech emotion recognition based on kernel extreme learning machine. IEEE Access 7:75798–75809

    Google Scholar 

  250. Liu Z-T, Wu M, Cao W-H, Mao J-W, Xu J-P, Tan G-Z (2018) Speech emotion recognition based on feature selection and extreme learning machine decision tree. Neurocomputing 273:271–280

    Google Scholar 

  251. Rahman AU, Halim Z (2023) Identifying dominant emotional state using handwriting and drawing samples by fusing features. Appl Intell 53(3):2798–2814

    Google Scholar 

  252. Huang J, Liu B, Tao J (2021) Learning long-term temporal contexts using skip rnn for continuous emotion recognition. Virtual Real Intell Hardw 3(1):55–64

    Google Scholar 

  253. Baird A, Amiriparian S, Milling M, Schuller BW (2021) Emotion recognition in public speaking scenarios utilising an lstm-rnn approach with attention. In: 2021 IEEE spoken language technology workshop (SLT), pp 397–402. IEEE

  254. Mohammadrezaei P, Aminan M, Soltanian M, Borna K (2023) Improving cnn-based solutions for emotion recognition using evolutionary algorithms. Results Appl Math 18:100360

    Google Scholar 

  255. Bautista JL, Lee YK, Shin HS (2022) Speech emotion recognition based on parallel cnn-attention networks with multi-fold data augmentation. Electronics 11(23):3935

    Google Scholar 

  256. Singh YB, Goel S (2022) A systematic literature review of speech emotion recognition approaches. Neurocomputing 492:245–63

    Google Scholar 

  257. Zhong Z (2023) Speech emotion recognition based on svm and cnn using mfcc feature extraction. In: international conference on statistics, data science, and computational intelligence (CSDSCI 2022), vol. 12510, pp 445–452. SPIE

  258. Saumya S, Singh JP (2022) Spam review detection using lstm autoencoder: an unsupervised approach. Electron Commer Res 22(1):113–133

  259. Nejad SJ, Ahmadi-Abkenari F, Bayat P (2020) Opinion spam detection based on supervised sentiment analysis approach. In: 2020 10th international conference on computer and knowledge engineering (ICCKE), pp 209–214. IEEE

  260. Lunando E, Purwarianti A (2013) Indonesian social media sentiment analysis with sarcasm detection. In: 2013 international conference on advanced computer science and information systems (ICACSIS), pp. 195–198. IEEE

  261. Rao MV, Sindhu C (2021) Detection of sarcasm on amazon product reviews using machine learning algorithms under sentiment analysis. In: 2021 sixth international conference on wireless communications, signal processing and networking (WiSPNET), pp 196–199. IEEE

  262. Adarsh M, Ravikumar P (2019) Sarcasm detection in text data to bring out genuine sentiments for sentimental analysis. In: 2019 1st international conference on advances in information technology (ICAIT), pp 94–98. IEEE

  263. Prasad AG, Sanjana S, Bhat SM, Harish B (2017) Sentiment analysis for sarcasm detection on streaming short text data. In: 2017 2nd international conference on knowledge engineering and applications (ICKEA), pp 1–5. IEEE

  264. Singh N, Tomar D (2019) Comprehensive analysis of scope of negation for sentiment analysis over social media. J Theor Appl Inf Technol 97(6):1704–1719

    Google Scholar 

  265. Pröllochs N, Feuerriegel S, Neumann D (2016) Negation scope detection in sentiment analysis: decision support for news-driven trading. Decis Support Syst 88:67–75

    Google Scholar 

  266. Lazib L, Qin B, Zhao Y, Zhang W, Liu T (2020) A syntactic path-based hybrid neural network for negation scope detection. Front Comp Sci 14(1):84–94

    Google Scholar 

  267. Wu F, Huang Y (2016) Sentiment domain adaptation with multiple sources. In: proceedings of the 54th annual meeting of the association for computational linguistics (Vol. 1: Long Papers), pp 301–310

  268. Yuan Z, Wu S, Wu F, Liu J, Huang Y (2018) Domain attention model for multi-domain sentiment classification. Knowl-Based Syst 155:1–10

    Google Scholar 

  269. Amujo O, Ibeke E, Fuzi R, Ogara U, Iwendi C (2023) Sentiment computation of uk-originated covid-19 vaccine tweets: a chronological analysis and news effect. Sustainability 15(4):3212

    Google Scholar 

  270. Maeda K, Kurata H (2023) Automatic generation of sbml kinetic models from natural language texts using gpt. Int J Mol Sci 24(8):7296

    Google Scholar 

  271. Sammani F, Mukherjee T, Deligiannis N (2022) Nlx-gpt: a model for natural language explanations in vision and vision-language tasks. In: proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 8322–8332

  272. Trummer I (2022) Codexdb: synthesizing code for query processing from natural language instructions using gpt-3 codex. Procee VLDB Endow 15(11):2921–2928

    Google Scholar 

Download references

Funding

This work is unfunded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Amjad Al-Qablan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Qablan, T.A., Mohd Noor, M., Al-Betar, M.A. et al. A survey on sentiment analysis and its applications. Neural Comput & Applic 35, 21567–21601 (2023). https://doi.org/10.1007/s00521-023-08941-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08941-y

Keywords

Navigation