Skip to main content
Log in

QuanCro: a novel framework for quantification of corn crops’ consistency under natural field conditions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Crop population and inter-plant spacing in corn farms can provide useful insight into plant phenotypic analysis and informed establishment decisions, improving crop productivity. Traditionally, farmers have relied on manual inspection to assess crop consistency, such as counting plant stands and manually estimating plant spacing. This assessment is carried out in small predefined areas, leading to insufficient crop consistency analysis on the entire field. Moreover, alternative computer vision techniques computing only one or two key parameters also prove insufficient for accurate crop consistency assessment. This research presents a framework called QuanCro that utilizes red–green–blue images from field machinery to analyze crop parameters such as plant stands counting, plant emergence rate, and plant spacing. It utilizes the state-of-the-art object detection network—You Only Look Once version 7 (YOLOv7), to locate and count corn plants combined with our proposed semantic segmentation model, Small Pyramid-UNet (SP-UNet) architecture, to determine leaf area index. This architecture is designed to be memory efficient and computationally less expensive than similar networks, such as HRNet_Mscale (72.1M) and SegNet (34.65M), as it has approximately 21M parameters. The SP-UNet is further integrated with the Zhang–Suen thinning technique and progressive probabilistic Hough transform for crop row detection and plant spacing information. QuanCro accurately estimates crop densities and identifies inconsistent crop areas. The method is tested using 8000 images and shows a mean average precision of 0.976 for identifying plant stands. The SP-UNet achieves intersection over union scores of 0.973, 0.924, and 0.926 for crops, rows, and backgrounds, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from Croptimistic Technology Inc. Still, restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are, however, available from the authors upon reasonable request and with permission of Croptimistic Technology Inc.

References

  1. Ren X, Sun D, Wang Q (2016) Modeling the effects of plant density on maize productivity and water balance in the loess plateau of China. Agric Water Manag 171:40–48. https://doi.org/10.1016/j.agwat.2016.03.014

    Article  Google Scholar 

  2. Varela S, Dhodda PR, Hsu WH, Prasad PV, Assefa Y, Peralta NR, Griffin T, Sharda A, Ferguson A, Ciampitti IA (2018) Early-season stand count determination in corn via integration of imagery from unmanned aerial systems (UAS) and supervised learning techniques. Remote Sens 10(2):343. https://doi.org/10.3390/rs10020343

    Article  Google Scholar 

  3. Che Y, Wang Q, Zhou L, Wang X, Li B, Ma Y (2022) The effect of growth stage and plant counting accuracy of maize inbred lines on lai and biomass prediction. Precis Agric 66:1–27. https://doi.org/10.1007/s11119-022-09915-1

    Article  Google Scholar 

  4. Ahila Priyadharshini R, Arivazhagan S, Arun M, Mirnalini A (2019) Maize leaf disease classification using deep convolutional neural networks. Neural Comput Appl 31:8887–8895. https://doi.org/10.1007/s00521-019-04228-3

    Article  Google Scholar 

  5. Nagaraju M, Chawla P (2022) Maize crop disease detection using npnet-19 convolutional neural network. Neural Comput Appl 66:1–25. https://doi.org/10.1007/s00521-022-07722-3

    Article  Google Scholar 

  6. Deb M, Garai A, Das A, Dhal KG (2022) Ls-net: a convolutional neural network for leaf segmentation of rosette plants. Neural Comput Appl 34(21):18511–18524. https://doi.org/10.1007/s00521-022-07479-9

    Article  Google Scholar 

  7. Mishra AM, Harnal S, Gautam V, Tiwari R, Upadhyay S (2022) Weed density estimation in soya bean crop using deep convolutional neural networks in smart agriculture. J Plant Dis Prot 129(3):593–604. https://doi.org/10.1007/s41348-022-00595-7

    Article  Google Scholar 

  8. Russel NS, Selvaraj A (2022) Leaf species and disease classification using multiscale parallel deep cnn architecture. Neural Comput Appl 34(21):19217–19237. https://doi.org/10.1007/s00521-022-07521-w

    Article  Google Scholar 

  9. Bouguettaya A, Zarzour H, Kechida A, Taberkit AM (2022) Deep learning techniques to classify agricultural crops through UAV imagery: a review. Neural Comput Appl 34(12):9511–9536. https://doi.org/10.1007/s00521-022-07104-9

    Article  Google Scholar 

  10. Kitano BT, Mendes CC, Geus AR, Oliveira HC, Souza JR (2019) Corn plant counting using deep learning and UAV images. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2019.2930549

    Article  Google Scholar 

  11. Buzzy M, Thesma V, Davoodi M, Mohammadpour Velni J (2020) Real-time plant leaf counting using deep object detection networks. Sensors 20(23):6896. https://doi.org/10.3390/s20236896

    Article  Google Scholar 

  12. Vong CN, Conway LS, Feng A, Zhou J, Kitchen NR, Sudduth KA (2022) Corn emergence uniformity estimation and mapping using UAV imagery and deep learning. Comput Electron Agric 198:107,008. https://doi.org/10.1016/j.compag.2022.107008

    Article  Google Scholar 

  13. Khaki S, Pham H, Han Y, Kuhl A, Kent W, Wang L (2021) Deepcorn: a semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation. Knowl Based Syst 218:106,874. https://doi.org/10.1016/j.knosys.2021.106874

    Article  Google Scholar 

  14. Mota-Delfin C, López-Canteñs GdJ, López-Cruz IL, Romantchik-Kriuchkova E, Olguín-Rojas JC (2022) Detection and counting of corn plants in the presence of weeds with convolutional neural networks. Remote Sens 14(19):4892. https://doi.org/10.3390/rs14194892

    Article  Google Scholar 

  15. Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934

  16. Jocher G, Stoken A, Borovec J, NanoCode012, ChristopherSTAN, Changyu L, Laughing, tkianai, Hogan A, lorenzomammana, yxNONG, AlexWang1900, Diaconu L, Marc, wanghaoyang0106, ml5ah, Doug, Ingham F, Frederik, Guilhen, Hatovix, Poznanski J, Fang J, Yu L, changyu98, Wang M, Gupta N, Akhtar O, PetrDvoracek, Rai P (2020) Ultralytics/yolov5: v3.1—bug fixes and performance improvements. Zenodo. https://doi.org/10.5281/zenodo.4154370

  17. Guo W, Zheng B, Potgieter AB, Diot J, Watanabe K, Noshita K, Jordan DR, Wang X, Watson J, Ninomiya S et al (2018) Aerial imagery analysis-quantifying appearance and number of sorghum heads for applications in breeding and agronomy. Front Plant Sci 9:1544. https://doi.org/10.3389/fpls.2018.01544

    Article  Google Scholar 

  18. Guerrero JM, Guijarro M, Montalvo M, Romeo J, Emmi L, Ribeiro A, Pajares G (2013) Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Syst Appl 40(2):656–664. https://doi.org/10.1016/j.eswa.2012.07.073

    Article  Google Scholar 

  19. García-Santillán I, Peluffo-Ordoñez D, Caranqui V, Pusdá M, Garrido F, Granda P (2018) In: International conference on information technology & systems. Springer, pp 355–366. https://doi.org/10.1007/978-3-319-73450-7_34

  20. Winterhalter W, Fleckenstein FV, Dornhege C, Burgard W (2018) Crop row detection on tiny plants with the pattern Hough transform. IEEE Robot Autom Lett 3(4):3394–3401. https://doi.org/10.1109/LRA.2018.2852841

    Article  Google Scholar 

  21. Bah MD, Hafiane A, Canals R (2017) In: 2017 Seventh international conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–6. https://doi.org/10.1109/IPTA.2017.8310102

  22. Bah MD, Hafiane A, Canals R (2019) Crownet: deep network for crop row detection in UAV images. IEEE Access 8:5189–5200. https://doi.org/10.1109/ACCESS.2019.2960873

    Article  Google Scholar 

  23. Ullah HS, Bais A (2022) Evaluation of model generalization for growing plants using conditional learning. Artif Intell Agric 6:189–198. https://doi.org/10.1016/j.aiia.2022.09.006

    Article  Google Scholar 

  24. Doha R, Al Hasan M, Anwar S, Rajendran V (2021) In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp 2773–2781. https://doi.org/10.1145/3447548.3467155

  25. de Silva R, Cielniak G, Gao J (2021) Towards agricultural autonomy: crop row detection under varying field conditions using deep learning. arXiv preprint arXiv:2109.08247

  26. Tang L, Tian LF (2008) Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement. Trans ASABE 51(6):2181–2191. https://doi.org/10.13031/2013.25381

    Article  Google Scholar 

  27. Long J, Shelhamer E, Darrell T (2015) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440. https://doi.org/10.1109/cvpr.2015.7298965

  28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778. https://doi.org/10.1109/cvpr.2016.90

  29. Sudarma M, Sutramiani NP (2014) The thinning Zhang–Suen application method in the image of Balinese scripts on the papyrus. Int J Comput Appl 91(1):9–13. https://doi.org/10.5120/15844-4726

    Article  Google Scholar 

  30. Galamhos C, Matas J, Kittler J (1999) In: Proceedings of the 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), (IEEE, 1999), vol 1, pp 554–560. https://doi.org/10.1109/CVPR.1999.786993

  31. Baar S, Kobayashi Y, Horie T, Sato K, Suto H, Watanabe S (2022) Non-destructive leaf area index estimation via guided optical imaging for large scale greenhouse environments. Comput Electron Agric 197:106,911. https://doi.org/10.1016/j.compag.2022.106911

    Article  Google Scholar 

  32. Asad MH, Bais A (2020) Crop and weed leaf area index mapping using multi-source remote and proximal sensing. IEEE Access 8:138,179-138,190. https://doi.org/10.1109/ACCESS.2020.3012125

    Article  Google Scholar 

  33. Wang CY, Bochkovskiy A, Liao HYM (2022) Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696

  34. Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D (2020) In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 12993–13000. https://doi.org/10.1609/aaai.v34i07.6999

  35. DeVries T, Taylor GW (2017) Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552

  36. Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y (2019) In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6023–6032. https://doi.org/10.1109/iccv.2019.00612

  37. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017) mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412

  38. Hosang J, Benenson R, Schiele B (2017) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4507–4515. https://doi.org/10.1109/cvpr.2017.685

  39. Bodla N, Singh B, Chellappa R, Davis LS (2017) In: Proceedings of the IEEE international conference on computer vision, pp 5561–5569. arXiv:1704.04503

  40. Ronneberger O, Fischer P, Brox T (2015) In: International conference on medical image computing and computer-assisted intervention (Springer, 2015), pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  41. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857

  42. Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27(3):236–239. https://doi.org/10.1145/357994.358023

    Article  Google Scholar 

  43. Guo Z, Hall RW (1992) Fast fully parallel thinning algorithms. CVGIP Image Underst 55(3):317–328. https://doi.org/10.1016/1049-9660(92)90029-3

    Article  MATH  Google Scholar 

  44. Jain H, Kumar AP (2017) A sequential thinning algorithm for multi-dimensional binary patterns. arXiv preprint arXiv:1710.03025

  45. Stephens RS (1991) Probabilistic approach to the Hough transform. Image Vis Comput 9(1):66–71. https://doi.org/10.1016/0262-8856(91)90051-p

    Article  Google Scholar 

  46. Hart PE, Duda R (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15. https://doi.org/10.1145/361237.361242

    Article  MATH  Google Scholar 

  47. Muad AM, Hussain A, Samad SA, Mustaffa MM, Majlis BY (2004) In: 2004 IEEE Region 10 conference TENCON 2004. IEEE, pp 207–210. https://doi.org/10.1109/TENCON.2004.1414393

  48. Shirzadifar A, Maharlooei M, Bajwa SG, Oduor PG, Nowatzki JF (2020) Mapping crop stand count and planting uniformity using high resolution imagery in a maize crop. Biosyst Eng 200:377–390. https://doi.org/10.1016/j.biosystemseng.2020.10.013

    Article  Google Scholar 

  49. Quan L, Feng H, Lv Y, Wang Q, Zhang C, Liu J, Yuan Z (2019) Maize seedling detection under different growth stages and complex field environments based on an improved Faster R-CNN. Biosyst Eng 184:1–23. https://doi.org/10.1016/j.biosystemseng.2019.05.002

    Article  Google Scholar 

  50. Zhang J, Ma Q, Cui X, Guo H, Wang K, Zhu D (2020) High-throughput corn ear screening method based on two-pathway convolutional neural network. Comput Electron Agric 175:105,525. https://doi.org/10.1016/j.compag.2020.105525

    Article  Google Scholar 

  51. Zhang L, Grift TE (2010) In: 2010 Pittsburgh, Pennsylvania, June 20–June 23, 2010 (American Society of Agricultural and Biological Engineers, 2010), p 1. https://doi.org/10.13031/2013.29834

  52. Pang Y, Shi Y, Gao S, Jiang F, Veeranampalayam-Sivakumar AN, Thompson L, Luck J, Liu C (2020) Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery. Comput Electron Agric 178:105766. https://doi.org/10.1016/j.compag.2020.105766

    Article  Google Scholar 

  53. Zhou Y, Yang Y, Zhang B, Wen X, Yue X, Chen L (2021) Autonomous detection of crop rows based on adaptive multi-ROI in maize fields. Int J Agric Biol Eng 14(4):217–225. https://doi.org/10.25165/j.ijabe.20211404.6315

    Article  Google Scholar 

  54. Tateosian L, Tateosian L (2015) Arcgis and python. Python For ArcGIS, pp 77–94. https://doi.org/10.1007/978-3-319-18398-5_5

Download references

Acknowledgements

Two grants jointly fund the research. The first grant, the Mitacs Accelerate grant (Ref. IT27704), entitled “Estimating Organic Matter, Soil Surface Roughness, Plant Stand Count, and Inter-plant Spacing from High-Resolution RGB Imagery” with Croptimistic Technology Inc. (www.swatmaps.com). The second grant, an NSERC Alliance grant (Ref. ALLRP 549723-19), entitled "Ground Truth Validation of Crop Growth Cycle Using High-Resolution Proximal and Remote Sensing" with CropPro Consulting (www.croppro.ca) and Croptimistic Technology Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhib Ullah.

Ethics declarations

Conflict of interest

The authors state no conflict of interest in this manuscript’s subject matter or material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, F., Ullah, M. & Bais, A. QuanCro: a novel framework for quantification of corn crops’ consistency under natural field conditions. Neural Comput & Applic 35, 24877–24896 (2023). https://doi.org/10.1007/s00521-023-08961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08961-8

Keywords

Navigation