Skip to main content
Log in

Subconcept perturbation-based classifier for within-class multimodal data

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In classification, it is generally assumed that data from one class consist of one pure compact data cluster. However, in many cases, this cluster might consist of multiple subclusters, in other words, within-class multimodality. In such a scenario, it may be difficult or even impossible for a single classifier to find a suitable model using limited data. So, training a model using smaller chunks of data is an alternative that helps avoid complex models and reduces the task’s complexity. This paper proposes the subconcept Perturbation-based Classifier (sPerC) that finds the best clusters per class using cluster validation measures, and one meta-classifier is trained per subcluster. This way, each class is represented by a set of meta-classifiers instead of one classifier. Such a design diminishes the complexity of the task, and using a divide-to-conquer strategy favors the precision of each meta-classifier. Through a set of comprehensive experiments on 30 datasets, the sPerC results compared favorably to other classifiers in multi-class classification tasks, showing that creating specialized classifiers per class in different regions of the feature space can be advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Algorithm 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All data supporting the findings of this study are available the Knowledge Extraction based on Evolutionary Learning (KEEL) [39] and UCI Machine Learning (UCI) [40] repositories. Table 1 shows the datasets.

Code Availability

Source code and supplementary data can be found in the GitHub repository: https://github.com/rjos/perturbation-classifiers.

References

  1. Silva ER, Cavalcanti GDC, Ren TI (2016) Class-wise feature extraction technique for multimodal data. Neurocomputing 214:1001–1010

    Article  Google Scholar 

  2. Sugiyama M, Cohen WW, Moore AW (2006) Local fisher discriminant analysis for supervised dimensionality reduction. In: Cohen WW, Moore AW ((eds) ICML, ACM international conference proceeding series, vol 148, pp 905–912. http://dblp.uni-trier.de/db/journals/ijon/ijon214.html

  3. Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J Mach Learn Res 8:1027–1061

    Google Scholar 

  4. Wang T, Tian S, Huang H, Deng D (2009) Learning by local kernel polarization. Neurocomputing 72:3077–3084

    Article  Google Scholar 

  5. Sharma S, Somayaji A, Japkowicz N (2018) Learning over subconcepts: strategies for 1-class classification. Comput Intell 34:440–467

    Article  MathSciNet  Google Scholar 

  6. Taheri M, Moslehi Z, Mirzaei A, Safayani M (2019) A self-adaptive local metric learning method for classification. Pattern Recognit. https://doi.org/10.1016/j.patcog.2019.106994

    Article  Google Scholar 

  7. Krawczyk B, Wozniak M, Cyganek B (2014) Clustering-based ensembles for one-class classification. Inf Sci 264:182–195

    Article  MathSciNet  Google Scholar 

  8. Guo H, Zhou J, Wu CA (2018) Imbalanced learning based on data-partition and smote. Information 9:238

    Article  Google Scholar 

  9. Abdallah L, Badarna M, Khalifa W, Yousef M (2021) Multikoc: multi-one-class classifier based k-means clustering. Algorithms 14:134

    Article  MathSciNet  Google Scholar 

  10. Liu Y, Li Z, Xiong H, Gao X, Wu J (2010) Understanding of internal clustering validation measures. In: Society IC (eds) Proceedings of the 2010 IEEE international conference on data mining, vol 10. ICDM, Washington, DC, USA, pp 911–916

  11. Fragoso RC, Cavalcanti GD, Pinheiro RH, Oliveira LS (2021) Dynamic selection and combination of one-class classifiers for multi-class classification. Knowl Based Syst 228:107290

    Article  Google Scholar 

  12. Marcelino CG, Pedreira CE (2022) Feature space partition: a local-global approach for classification. Neural Comput Appl 34:21877–21890. https://doi.org/10.1007/s00521-022-07647-x

    Article  Google Scholar 

  13. Ezugwu AE et al (2021) Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Comput Appl 33:6247–6306. https://doi.org/10.1007/s00521-020-05395-4

    Article  Google Scholar 

  14. Hassan BA, Rashid TA (2021) A multidisciplinary ensemble algorithm for clustering heterogeneous datasets. Neural Comput Appl 33:10987–11010. https://doi.org/10.1007/s00521-020-05649-1

    Article  Google Scholar 

  15. Zhang H, Li P, Meng F, Fan W, Xue Z (2023) Mapreduce-based distributed tensor clustering algorithm. Neural Comput Appl. https://doi.org/10.1007/s00521-023-08415-1

    Article  Google Scholar 

  16. Mousavian Anaraki SA, Haeri A, Moslehi F (2022) Generating balanced and strong clusters based on balance-constrained clustering approach (strong balance-constrained clustering) for improving ensemble classifier performance. Neural Comput Appl 34:21139–21155. https://doi.org/10.1007/s00521-022-07595-6

    Article  Google Scholar 

  17. Karna A, Gibert K (2022) Automatic identification of the number of clusters in hierarchical clustering. Neural Comput Appl 34:119–134. https://doi.org/10.1007/s00521-021-05873-3

    Article  Google Scholar 

  18. Nidheesh N, Nazeer KAA, Ameer PM (2020) A hierarchical clustering algorithm based on silhouette index for cancer subtype discovery from genomic data. Neural Comput Appl 32:11459–11476. https://doi.org/10.1007/s00521-019-04636-5

    Article  Google Scholar 

  19. Araújo EL, Cavalcanti GDC, Ren TI (2020) Perturbation-based classifier. Soft Comput 24:16565–16576

    Article  Google Scholar 

  20. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, Hoboken

    Google Scholar 

  21. Fukunaga K (1972) Introduction to statistical pattern recognition. Academic Press, New York

    Google Scholar 

  22. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22:4–37. https://doi.org/10.1109/34.824819

    Article  Google Scholar 

  23. Ade MRR, Deshmukh PR (2013) Methods for incremental learning: a survey. Semantic Scholar, New York

    Google Scholar 

  24. Kivinen J, Smola AJ, Williamson RC (2004) Online learning with kernels. IEEE Trans Signal Process 52:2165–2176

    Article  MathSciNet  Google Scholar 

  25. Lutz A, Rodner E, Denzler J (2011) Efficient multi-class incremental learning using gaussian processes. In: Open German–Russian workshop on pattern recognition and image understanding, pp 182-185

  26. Lütz A, Rodner E, Denzler J (2013) I want to know more–efficient multi-class incremental learning using gaussian processes. Pattern Recogn Image Anal 23:402–407. https://doi.org/10.1134/S1054661813030103

    Article  Google Scholar 

  27. Hämäläinen J, Jauhiainen S, Kärkkäinen T (2017) Comparison of internal clustering validation indices for prototype-based clustering. Algorithms 10:105

    Article  MathSciNet  Google Scholar 

  28. Arbelaitz O, Gurrutxaga I, Muguerza J, Pèrez JM, Perona I (2013) An extensive comparative study of cluster validity indices. Pattern Recogn 46:243–256

    Article  Google Scholar 

  29. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Simul Comput 3:1–27

    Article  MathSciNet  Google Scholar 

  30. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1:224–227

    Article  Google Scholar 

  31. Tibshirani R, Guenther W, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B 63(2):411–423

    Article  MathSciNet  Google Scholar 

  32. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  33. Ünlü R, Xanthopoulos P (2019) Estimating the number of clusters in a dataset via consensus clustering. Expert Syst Appl 125:33–39

    Article  Google Scholar 

  34. Rendon E, Abundez I, Arizmendi A, Quiroz E (2011) Internal versus external cluster validation indexes. Int J Comput Commun 5(1):27–34

    Google Scholar 

  35. Weiss GM (2010) The impact of small disjuncts on classifier learning. In: Stahlbock R, Crone SF, Lessmann S (eds) Data mining annals of information systems, vol 8. Springer, Cham, pp 193–226

    Google Scholar 

  36. Weiss GM, Prieditis A (1995) Learning with rare cases and small disjuncts. In: Prieditis A, Russell SJ (eds) ICML. Morgan Kaufmann, Burlington, pp 558–565

    Google Scholar 

  37. He Z, Xu X (2003) Discovering cluster-based local outliers. Pattern Recogn Lett 24:1641–1650

    Article  Google Scholar 

  38. Valentini G (2005) An experimental bias-variance analysis of svm ensembles based on resampling techniques. IEEE Trans Syst Man Cybern Part B 35:1252–1271

    Article  Google Scholar 

  39. Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple Valued Log. Soft Comput. 17:255–287

    Google Scholar 

  40. Dua D, Graff C (2017) Uci machine learning repository. http://archive.ics.uci.edu/ml

  41. Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159

    Article  Google Scholar 

  42. López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci 250:113–141

    Article  Google Scholar 

  43. Cheng B, Titterington DM (1994) Neural networks: a review from a statistical perspective. Stat Sci 9:2–30

    MathSciNet  Google Scholar 

  44. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/a:1010933404324

    Article  Google Scholar 

  45. Schölkopf B, Smola AJ (2002) Learning with kernels:support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning. MIT Press, Cambridge

    Google Scholar 

  46. Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15:3133–3181

    MathSciNet  Google Scholar 

  47. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  Google Scholar 

  48. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83

    Article  Google Scholar 

  49. Holte RC, Acker L, Porter BW, Sridharan NS (1989) Concept learning and the problem of small disjuncts. In: Sridharan NS (ed) IJCAI. Morgan Kaufmann, Burlington, pp 813–818

    Google Scholar 

  50. Weiss GM, Hirsh H, Kautz HA, Porter BW (2000) A quantitative study of small disjuncts. In: Kautz HA, Porter BW (eds) AAAI/IAAI. AAAI Press / The MIT Press, New York, pp 665–670

    Google Scholar 

  51. Goder A, Filkov V (2008) Consensus clustering algorithms: comparison and refinement. In: Proceedings of the meeting on algorithm engineering & expermiments, Society for Industrial and Applied Mathematics, USA, pp 109-117

Download references

Acknowledgements

This research has been partially supported by the following Brazilian agencies: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FACEPE (Fundação de Amparo à Ciência e Tecnologia de Pernambuco).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. C. Cavalcanti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, G.D.C., Soares, R.J.O. & Araújo, E.L. Subconcept perturbation-based classifier for within-class multimodal data. Neural Comput & Applic 36, 2479–2491 (2024). https://doi.org/10.1007/s00521-023-09144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09144-1

Keywords

Navigation