Skip to main content
Log in

An integrated convolutional neural network with attention guidance for improved performance of medical image classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Today, it becomes essential to develop computer vision algorithms that are both highly effective and cost-effective for supporting physicians' decisions. Convolutional Neural Network (CNN) is a deep learning architecture that enables learning relevant imaging features by simultaneously optimizing feature extraction and classification phases and has a high potential to meet this need. On the other hand, the lack of low- and high-level local details in a CNN is an issue that can reduce the task performance and prevent the network from focusing on the region of interest. To tackle this issue, we propose an attention-guided CNN architecture, which combines three lightweight encoders (the ensembled encoder) at the feature level to consolidate the feature maps with local details in this study. The proposed model is validated on the publicly available data sets for two commonly studied classification tasks, i.e., the brain tumor and COVID-19 disease classification. Performance improvements of 2.21% and 1.32%, respectively, achieved for brain tumor and COVID-19 classification tasks confirm our assumption that combining encoders recovers local details missed in a deeper encoder. In addition, the attention mechanism used after the ensembled encoder further improves performance by 2.29% for the brain tumor and 6.13% for the COVID-19 classification tasks. Besides that, our ensembled encoder with the attention mechanism enhances the focus on the region of interest by 4.4% in terms of the IoU score. Competitive performance scores accomplished for each classification task against state-of-the-art methods indicate that the proposed model can be an effective tool for medical image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data sets generated and analyzed during the current study are available in the references described in Sect.  4.2 of this manuscript.

References

  1. Gao J et al (2019) Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: an overview. Math Biosci Eng 16(6):6536–6561. https://doi.org/10.3934/mbe.2019326

    Article  MathSciNet  Google Scholar 

  2. Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE (2013) Cognitive and system factors contributing to diagnostic errors in radiology. Am J Roentgenol 201(3):611–617. https://doi.org/10.2214/AJR.12.10375

    Article  Google Scholar 

  3. Brady AP (2017) Error and discrepancy in radiology: Inevitable or avoidable? Insights Imaging 8(1):171–182. https://doi.org/10.1007/s13244-016-0534-1

    Article  Google Scholar 

  4. Öksüz C, Urhan O, Güllü MK (2022) Brain tumor classification using the fused features extracted from expanded tumor region. Biomed Signal Process Control 72:103356. https://doi.org/10.1016/j.bspc.2021.103356

    Article  Google Scholar 

  5. ‘Virtual Press conference on COVID-19 and other global health issues transcript - 5 May 2023’. [Online]. Available: https://www.who.int/publications/m/item/virtual-press-conference-on-covid-19-and-other-global-health-issues-transcript---5-may-2023Accessed 13 Jul 2023

  6. Li C, Zhao C, Bao J, Tang B, Wang Y, Gu B (2020) Laboratory diagnosis of coronavirus disease-2019 (COVID-19). Clin Chim Acta 510:35–46. https://doi.org/10.1016/j.cca.2020.06.045

    Article  Google Scholar 

  7. Yang W et al (2020) The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur Radiol 30(9):4874–4882. https://doi.org/10.1007/s00330-020-06827-4

    Article  Google Scholar 

  8. Ji T et al (2020) Detection of COVID-19: a review of the current literature and future perspectives. Biosens Bioelectron 166:112455. https://doi.org/10.1016/j.bios.2020.112455

    Article  Google Scholar 

  9. Li Y et al (2020) Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J Med Virol 92(7):903–908. https://doi.org/10.1002/jmv.25786

    Article  Google Scholar 

  10. Xue H, Jin Z (2020) The appropriate position of radiology in COVID-19 diagnosis and treatment—current status and opinion from China. Chin J Acad Radiol. https://doi.org/10.1007/s42058-020-00030-6

    Article  Google Scholar 

  11. Öksüz C, Urhan O, Güllü MK (2020) Ensemble-CVDNet: a deep learning based end-to-end classification framework for COVID-19 detection using ensembles of networks. ArXiv201209132 Eess, Dec. 2020. [Online]. Available: http://arxiv.org/abs/2012.09132Accessed 20 Dec 2020

  12. Williams TC et al (2020) Sensitivity of RT-PCR testing of upper respiratory tract samples for SARS-CoV-2 in hospitalised patients: a retrospective cohort study. Wellcome Open Res 5:254. https://doi.org/10.12688/wellcomeopenres.16342.1

    Article  Google Scholar 

  13. Koo HJ, Lim S, Choe J, Choi S-H, Sung H, Do K-H (2018) Radiographic and CT features of viral pneumonia. Radiogr Rev Publ Radiol Soc N Am Inc 38(3):719–739. https://doi.org/10.1148/rg.2018170048

    Article  Google Scholar 

  14. Amini B Air bronchogram | Radiology Reference Article | Radiopaedia.org’, Radiopaedia. [Online]. Available: https://radiopaedia.org/articles/air-bronchogramAccessed 11 Oct 2022

  15. Parrón M, Torres I, Pardo M, Morales C, Navarro M, Martínez-Schmizcraft M (2008) The halo sign in computed tomography images: differential diagnosis and correlation with pathology findings. Arch Bronconeumol 44(7):386–392. https://doi.org/10.1016/S1579-2129(08)60066-X

    Article  Google Scholar 

  16. Hani C et al (2020) COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagn Interv Imaging 101(5):263–268. https://doi.org/10.1016/j.diii.2020.03.014

    Article  Google Scholar 

  17. Gao Y et al (2020) Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat Commun. https://doi.org/10.1038/s41467-020-18684-2

    Article  Google Scholar 

  18. Zhang K et al (2020) Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 181(6):1423-1433.e11. https://doi.org/10.1016/j.cell.2020.04.045

    Article  Google Scholar 

  19. Ning W et al (2020) Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat Biomed Eng. https://doi.org/10.1038/s41551-020-00633-5

    Article  Google Scholar 

  20. Mettler FA, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248(1):254–263. https://doi.org/10.1148/radiol.2481071451

    Article  Google Scholar 

  21. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I (eds) Artificial Neural Networks and Machine Learning—ICANN 2018. In Lecture notes in computer science. Springer International Publishing, Cham, pp 270–279. https://doi.org/10.1007/978-3-030-01424-7_27.

  22. Minaee S, Kafieh R, Sonka M, Yazdani S, Jamalipour Soufi G (2020) Deep-COVID: predicting COVID-19 from chest X-ray images using deep transfer learning. Med Image Anal 65:101794. https://doi.org/10.1016/j.media.2020.101794

    Article  Google Scholar 

  23. Farooq M, Hafeez A (2020) COVID-ResNet: a deep learning framework for screening of COVID19 from radiographs. ArXiv200314395 Cs Eess, Mar. 2020. [Online]. Available: http://arxiv.org/abs/2003.14395Accessed 25 Nov 2020

  24. Meedeniya D, Kumarasinghe H, Kolonne S, Fernando C, la Díez IDT, Marques G (2022) Chest X-ray analysis empowered with deep learning: a systematic review. Appl Soft Comput 126:109319. https://doi.org/10.1016/j.asoc.2022.109319

    Article  Google Scholar 

  25. Li G, Togo R, Ogawa T, Haseyama M (2023) COVID-19 detection based on self-supervised transfer learning using chest X-ray images. Int J Comput Assist Radiol Surg 18(4):715–722. https://doi.org/10.1007/s11548-022-02813-x

    Article  Google Scholar 

  26. Li G, Togo R, Ogawa T, Haseyama M (2023) Boosting automatic COVID-19 detection performance with self-supervised learning and batch knowledge ensembling. Comput Biol Med 158:106877. https://doi.org/10.1016/j.compbiomed.2023.106877

    Article  Google Scholar 

  27. Ullah Z, Usman M, Gwak J (2023) MTSS-AAE: multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images. Expert Syst Appl 216:119475. https://doi.org/10.1016/j.eswa.2022.119475

    Article  Google Scholar 

  28. Yang H, Wang L, Xu Y, Liu X (2023) CovidViT: a novel neural network with self-attention mechanism to detect Covid-19 through X-ray images. Int J Mach Learn Cybern 14(3):973–987. https://doi.org/10.1007/s13042-022-01676-7

    Article  Google Scholar 

  29. Park S et al (2022) Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med Image Anal 75:102299. https://doi.org/10.1016/j.media.2021.102299

    Article  Google Scholar 

  30. Sharma P, Arya R, Verma R, Verma B (2023) Conv-CapsNet: capsule based network for COVID-19 detection through X-Ray scans. Multimed Tools Appl 82(18):28521–28545. https://doi.org/10.1007/s11042-023-14353-w

    Article  Google Scholar 

  31. Deb SD, Jha RK, Kumar R, Tripathi PS, Talera Y, Kumar M (2023) CoVSeverity-Net: an efficient deep learning model for COVID-19 severity estimation from Chest X-Ray images. Res Biomed Eng 39(1):85–98. https://doi.org/10.1007/s42600-022-00254-8

    Article  Google Scholar 

  32. Tabik S et al (2020) COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on Chest X-Ray images. IEEE J Biomed Health Inform 24(12):3595–3605. https://doi.org/10.1109/JBHI.2020.3037127

    Article  Google Scholar 

  33. ‘Cancer Tomorrow’. [Online]. Available: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?types=0&single_unit=10000&cancers=31&years=2030Accessed 03 Jan 2023

  34. Hu LS, Hawkins-Daarud A, Wang L, Li J, Swanson KR (2020) Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett 477:97–106. https://doi.org/10.1016/j.canlet.2020.02.025

    Article  Google Scholar 

  35. Marosi C et al (2008) Meningioma. Crit Rev Oncol Hematol 67(2):153–171. https://doi.org/10.1016/j.critrevonc.2008.01.010

    Article  Google Scholar 

  36. Raverot G et al (2021) Aggressive pituitary tumours and pituitary carcinomas. Nat Rev Endocrinol. https://doi.org/10.1038/s41574-021-00550-w

    Article  Google Scholar 

  37. Deepak S, Ameer PM (2019) Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 111:103345. https://doi.org/10.1016/j.compbiomed.2019.103345

    Article  Google Scholar 

  38. He K, Zhang X, Ren S, Sun J (2021) Deep residual learning for ımage recognition. In: Presented at the proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.htmlAccessed 26 Mar 2021

  39. Szegedy C et al (2015) Going deeper with convolutions. In: Presented at the proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9. [Online]. Available: https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.htmlAccessed 26 Mar 2021

  40. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale ımage recognition. arXiv, Apr. 10, 2015. https://doi.org/10.48550/arXiv.1409.1556.

  41. Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Presented at the proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.htmlAccessed 15 Oct 2022

  42. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable ımage recognition. arXiv, Apr. 11, 2018. [Online]. Available: http://arxiv.org/abs/1707.07012 Accessed 05 Jan 2023

  43. Tan M, Le QV (2020) EfficientNet: rethinking model scaling for convolutional neural networks. ArXiv190511946 Cs Stat, Sep. 2020. [Online]. Available: http://arxiv.org/abs/1905.11946Accessed 17 Nov 2020

  44. Zulfiqar F, Ijaz Bajwa U, Mehmood Y (2023) Multi-class classification of brain tumor types from MR images using EfficientNets. Biomed Signal Process Control 84:104777. https://doi.org/10.1016/j.bspc.2023.104777

    Article  Google Scholar 

  45. Saurav S, Sharma A, Saini R, Singh S (2023) An attention-guided convolutional neural network for automated classification of brain tumor from MRI. Neural Comput Appl 35(3):2541–2560. https://doi.org/10.1007/s00521-022-07742-z

    Article  Google Scholar 

  46. Demir F, Akbulut Y, Taşcı B, Demir K (2023) Improving brain tumor classification performance with an effective approach based on new deep learning model named 3ACL from 3D MRI data. Biomed Signal Process Control 81:104424. https://doi.org/10.1016/j.bspc.2022.104424

    Article  Google Scholar 

  47. Mishra A, Jha R, Bhattacharjee V (2023) SSCLNet: a self-supervised contrastive loss-based pre-trained network for brain MRI classification. IEEE Access 11:6673–6681. https://doi.org/10.1109/ACCESS.2023.3237542

    Article  Google Scholar 

  48. Shahin AI, Aly W, Aly S (2023) MBTFCN: a novel modular fully convolutional network for MRI brain tumor multi-classification. Expert Syst Appl 212:118776. https://doi.org/10.1016/j.eswa.2022.118776

    Article  Google Scholar 

  49. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size’, ArXiv160207360 Cs, Nov. 2016. [Online]. Available: http://arxiv.org/abs/1602.07360 Accessed 17 Nov 2020

  50. Zhang X, Zhou X, Lin M, Sun J (2017) ShuffleNet: an extremely efficient convolutional neural network for mobile devices. ArXiv170701083 Cs, Dec. 2017. [Online]. Available: http://arxiv.org/abs/1707.01083 Accessed 17 Nov 2020

  51. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  52. Russakovsky O et al (2015) ImageNet large scale visual recognition challenge. ArXiv14090575 Cs, Jan. 2015. [Online]. Available: http://arxiv.org/abs/1409.0575 Accessed 17 Nov 2020

  53. Cruz BGS, Bossa MN, Sölter J, Husch AD (2021) Public Covid-19 X-ray datasets and their impact on model bias—a systematic review of a significant problem. Radiol Imaging. https://doi.org/10.1101/2021.02.15.21251775

    Article  Google Scholar 

  54. Kermany DS et al (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122-1131.e9. https://doi.org/10.1016/j.cell.2018.02.010

    Article  Google Scholar 

  55. Chowdhury MEH et al (2020) Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8:132665–132676. https://doi.org/10.1109/ACCESS.2020.3010287

    Article  Google Scholar 

  56. Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M (2020) COVID-19 Image data collection: prospective predictions are the future. ArXiv200611988 Cs Eess Q-Bio, Dec. 2020. [Online]. Available: http://arxiv.org/abs/2006.11988Accessed 26 Mar 2021

  57. Balachandar N, Chang K, Kalpathy-Cramer J, Rubin DL (2020) Accounting for data variability in multi-institutional distributed deep learning for medical imaging. J Am Med Inform Assoc 27(5):700–708. https://doi.org/10.1093/jamia/ocaa017

    Article  Google Scholar 

  58. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK (2018) Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLOS Med 15(11):e1002683. https://doi.org/10.1371/journal.pmed.1002683

    Article  Google Scholar 

  59. AlBadawy EA, Saha A, Mazurowski MA (2018) Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med Phys 45(3):1150–1158. https://doi.org/10.1002/mp.12752

    Article  Google Scholar 

  60. Catala ODT et al (2021) Bias analysis on public X-ray image datasets of pneumonia and COVID-19 patients. IEEE Access 9:42370–42383. https://doi.org/10.1109/ACCESS.2021.3065456

    Article  Google Scholar 

  61. Kundu S, Elhalawani H, Gichoya JW, Kahn CE (2020) How might ai and chest imaging help unravel COVID-19’s mysteries? Radiol Artif Intell 2(3):e200053. https://doi.org/10.1148/ryai.2020200053

    Article  Google Scholar 

  62. ‘ari-dasci/OD-covidgr’. ARI-DaSCI, Nov. 28, 2020. [Online]. Available: https://github.com/ari-dasci/OD-covidgrAccessed 14 Apr 2021

  63. Desai S et al (2020) Chest imaging with clinical and genomic correlates representing a rural COVID-19 positive population. Cancer Imaging Arch. https://doi.org/10.7937/TCIA.2020.PY71-5978

    Article  Google Scholar 

  64. Desai S et al (2020) Chest imaging representing a COVID-19 positive rural U.S. population. Sci Data 7(1):414. https://doi.org/10.1038/s41597-020-00741-6

    Article  Google Scholar 

  65. Jenjaroenpun P et al (2020) Two SARS-CoV-2 genome sequences of isolates from rural U.S. patients harboring the D614G mutation, obtained using nanopore sequencing. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01109-20

    Article  Google Scholar 

  66. Jaeger S, Candemir S, Antani S, Wáng Y-XJ, Lu P-X, Thoma G (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475–477. https://doi.org/10.3978/j.issn.2223-4292.2014.11.20

    Article  Google Scholar 

  67. ‘Tuberculosis Chest X-ray Image Data Sets. - LHNCBC Abstract’. [Online]. Available: https://lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageDataSets.htmlAccessed 25 Apr 2021.

  68. Candemir S et al (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33(2):577–590. https://doi.org/10.1109/TMI.2013.2290491

    Article  Google Scholar 

  69. Warren MA et al (2018) Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 73(9):840–846. https://doi.org/10.1136/thoraxjnl-2017-211280

    Article  Google Scholar 

  70. ‘COVID-19 Image Repository’. ml-workgroup, Aug. 01, 2021. [Online]. Available: https://github.com/ml-workgroup/covid-19-image-repository/blob/ad7ab099b425f16e06bba22322336b7d6a732965/data.csvAccessed 17 Aug 2021

  71. Clark K et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057. https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  72. Wong HYF et al (2020) Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 296(2):E72–E78. https://doi.org/10.1148/radiol.2020201160

    Article  Google Scholar 

  73. Cheng J (2017) brain tumor dataset. figshare, p 879509079 Bytes. https://doi.org/10.6084/M9.FIGSHARE.1512427.V5.

  74. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2019) MobileNetV2: ınverted residuals and linear bottlenecks. ArXiv180104381 Cs, Mar. 2019. [Online]. Available: http://arxiv.org/abs/1801.04381Accessed 18 Nov 2020

  75. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE ınternational conference on computer vision (ICCV). IEEE, Venice, pp 618–626. https://doi.org/10.1109/ICCV.2017.74.

  76. MD Zeiler, R Fergus (2014) Visualizing and Understanding Convolutional Networks. In: D Fleet, T Pajdla, B Schiele, T Tuytelaars (eds) Computer vision—ECCV 2014. İn Lecture notes in computer science. Springer International Publishing, Cham, pp 818–833. https://doi.org/10.1007/978-3-319-10590-1_53.

  77. Cohen JP () İEEE8023/covid-chestxray-dataset’. Dec. 06, 2020. Accessed: Dec. 06, 2020. [Online]. Available: https://github.com/ieee8023/covid-chestxray-dataset

  78. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  79. Ismael AM, Şengür A (2021) Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst Appl 164:114054. https://doi.org/10.1016/j.eswa.2020.114054

    Article  Google Scholar 

  80. Nour M, Cömert Z, Polat K (2020) A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2020.106580

    Article  Google Scholar 

  81. Brunese L, Mercaldo F, Reginelli A, Santone A (2020) Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput Methods Progr Biomed 196:105608. https://doi.org/10.1016/j.cmpb.2020.105608

    Article  Google Scholar 

  82. Ouchicha C, Ammor O, Meknassi M (2020) CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos Solitons Fractals 140:110245. https://doi.org/10.1016/j.chaos.2020.110245

    Article  MathSciNet  Google Scholar 

  83. Rahman T et al (2021) Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med 132:104319. https://doi.org/10.1016/j.compbiomed.2021.104319

    Article  Google Scholar 

  84. Altan A, Karasu S (2020) Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos Solitons Fractals 140:110071. https://doi.org/10.1016/j.chaos.2020.110071

    Article  MathSciNet  Google Scholar 

  85. Öksüz C, Urhan O, Güllü MK (2022) COVID-19 detection with severity level analysis using the deep features, and wrapper-based selection of ranked features. Concurr Comput Pract Exp 34(20):e6802. https://doi.org/10.1002/cpe.6802

    Article  Google Scholar 

  86. Zhao H et al (2022) SC2Net: a novel segmentation-based classification network for detection of COVID-19 in chest X-ray images. IEEE J Biomed Health Inform 26(8):4032–4043. https://doi.org/10.1109/JBHI.2022.3177854

    Article  Google Scholar 

  87. Fang Z et al (2022) A novel multi-stage residual feature fusion network for detection of COVID-19 in chest X-ray images. IEEE Trans Mol Biol Multi Scale Commun 8(1):17–27. https://doi.org/10.1109/TMBMC.2021.3099367

    Article  Google Scholar 

  88. Cores D, Vila-Blanco N, Pérez-Alarcón M, Martínez-de-Alegría A, Mucientes M, Carreira MJ (2022) A few-shot approach for COVID-19 screening in standard and portable chest X-ray images. Sci Rep. https://doi.org/10.1038/s41598-022-25754-6

    Article  Google Scholar 

  89. Weinstock MB et al Chest X-Ray Findings in 636 Ambulatory Patients with COVID-19 Presenting to an Urgent Care Center: A Normal Chest X-Ray Is no Guarantee, p 6

  90. Cheng J et al (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10(10):e0140381. https://doi.org/10.1371/journal.pone.0140381

    Article  Google Scholar 

  91. Swati ZNK et al (2019) Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph 75:34–46. https://doi.org/10.1016/j.compmedimag.2019.05.001

    Article  Google Scholar 

  92. Shaik NS, Cherukuri TK (2022) Multi-level attention network: application to brain tumor classification. Signal Image Video Process 16(3):817–824. https://doi.org/10.1007/s11760-021-02022-0

    Article  Google Scholar 

  93. Mondal A, Shrivastava VK (2022) A novel Parametric Flatten-p Mish activation function based deep CNN model for brain tumor classification. Comput Biol Med 150:106183. https://doi.org/10.1016/j.compbiomed.2022.106183

    Article  Google Scholar 

  94. Jun W, Liyuan Z (2022) Brain tumor classification based on attention guided deep learning model. Int J Comput Intell Syst 15(1):35. https://doi.org/10.1007/s44196-022-00090-9

    Article  Google Scholar 

  95. Razzaghi P, Abbasi K, Shirazi M, Rashidi S (2022) Multimodal brain tumor detection using multimodal deep transfer learning. Appl Soft Comput 129:109631. https://doi.org/10.1016/j.asoc.2022.109631

    Article  Google Scholar 

  96. Bodapati JD, Balaji BB (2023) TumorAwareNet: deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-15557-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coşku Öksüz.

Ethics declarations

Conflict of interest

The named authors have no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öksüz, C., Urhan, O. & Güllü, M.K. An integrated convolutional neural network with attention guidance for improved performance of medical image classification. Neural Comput & Applic 36, 2067–2099 (2024). https://doi.org/10.1007/s00521-023-09164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09164-x

Keywords

Navigation