Skip to main content
Log in

Machine learning modelling of dew point pressure in gas condensate reservoirs: application of decision tree-based models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In gas condensate reservoirs, the dew point pressure (PDew) plays a significant role in gas and liquid assessment, reservoir characterisation, surface facility design, and reservoir simulation. Although field and laboratory measurements of PDew give accurate results, both approaches are time-consuming and resource-intensive; hence, a fast and accurate determination of PDew is very important. Equation of states (EoS) and empirical correlations are other alternative methods that are used for PDew determination. However, these methods are unable to fully capture the non-linear and complex relationships between fluid composition and PDew. Machine Learning (ML) methods, as reliable tools, have emerged in different aspects of engineering. In this study, for the first time, the application of different decision tree-based methods for the prediction of PDew is investigated. A comprehensive database, containing 681 samples (almost all the available experimental data set of pure and impure samples published from 1942 to 2018), is collected from open literature and different decision tree-based methods namely Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), and Extremely Randomised Tree (ET) are used for modelling. The statistical analysis of developed models' performance showed that the ET method yields the best predictions by Root Mean Squared Error (RMSE) and R2 values of 441 psi and 0.9227, respectively for the testing dataset. Moreover, the results show that the novel ET model has a better performance compared with existing models in the literature and EoSs for the prediction of PDew of gas condensate reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author upon request.

Abbreviations

A:

Arithmetic

AD:

Applicability domain

ACE:

Alternating conditional expectations

AI:

Artificial intelligence

ANFIS:

Adaptive neuro-fuzzy inference system

ANN:

Artificial neural network

BR:

Bayesian regularization

CCE:

Constant composition expansion

CMIS:

Committee machine intelligent system

COA:

Cuckoo optimization algorithm

CSA:

Coupled simulated annealing

CV:

Cross-validation

CVD:

Constant volume depletion

DT:

Decision tree

EGPR:

Evolutionary gaussian processes regression

EoS:

Equation of state

ET:

Extremely randomized tree

FL:

Fuzzy logic

G:

Geometric

GA:

Genetic algorithm

GB:

Gradient boosting

GEP:

Gene expression programming

GRG:

Generalized reduced gradient

H:

Hat Matrix

LM:

Levenberg–Marquardt

LSSVM:

Least-squares support-vector machines

MGGP:

Multi-gene genetic programming

MKF:

Mixed kernels function

ML:

Machine learning

MLP:

Multi-layer perceptron

NN:

Neural network

OOB:

Out of bag

PR:

Peng robinson

PSO:

Particle swarm optimization

PVT:

Pressure–Volume–Temperature

RBF:

Radial basis function

RF:

Random forest

RK:

Redlich–Kwong

SCEUA:

Shuffled complex evolution

SCG:

Scaled conjugate gradient

SRK:

Soave–Redlich–Kwong

SSA:

Salp swarm algorithm

SVM:

Support-vector machines

SW:

Schmidt–Wenzel

ZJ:

Zudkevitch–Joffe

C 1 :

Methane concentration (Fraction)

C 2 :

Ethane concentration (Fraction)

C 3 :

Propane concentration (Fraction)

C 4 :

Butane concentration (Fraction)

C 5 :

Pentane concentration (Fraction)

C 6 :

Hexane concentration (Fraction)

C 7 + :

Heptane plus concentration (Fraction)

CO 2 :

Carbon dioxide concentration (Fraction)

h :

Hat values

h * :

Warning leverage

H 2 S :

Hydrogen sulphide concentration (Fraction)

MAE :

Mean absolute error (%)

MAPE :

Mean absolute percentage error (%)

Max :

The maximum value

max_depth :

Maximum depth of a DT

max_features :

Maximum features to be used in the development of a DT model

Mean :

The mean value

Min :

The minimum value

MPE :

Mean percentage error (%)

MSE :

Mean squared error

MW C7 + :

Molecular weight of heptane plus fraction (g/mol)

n_estimator :

Number of estimators (trees) used in ensembled models

N 2 :

Nitrogen gas concentration (Fraction)

P :

Pressure (psi)

P Dew :

Dew point pressure (psi)

Res :

Residual (psi)

R 2 :

Coefficient of determination

RMSE :

Root mean squared error (psi)

SD :

Standard deviation (psi)

SR :

Standard residual

SG C7 + :

The specific gravity of heptane plus fraction

SMAPE :

Symmetric mean absolute percentage error (%)

t :

Target value (psi)

T :

Temperature (°F)

WMAPE :

Weighted mean absolute percentage error (%)

y :

Predicted value (psi)

References

  1. Bozorgzadeh M, Gringarten AC (2006) condensate bank characterization from well test data and fluid PVT properties. SPE Reserv Evaluat Eng 9(05):596–611

    Article  Google Scholar 

  2. Fevang O (1995) Gas condensate flow behavior and sampling. Division of Petroleum Engineering and Applied Geophysics

  3. Fasesan S, Olukini O, Adewumi O (2003) Characteristics of gas condensate. Petroleum Sci Technol 21(1–2):81–90

    Article  Google Scholar 

  4. McCain WD Jr (1973) Properties of petroleum fluids. Petroleum Publishing Co., Tulsa, OK

    Google Scholar 

  5. El-Banbi AH, McCain WD, Jr., Semmelbeck ME (2000) Investigation of well productivity in gas-condensate reservoirs. SPE/CERI gas technology symposium

  6. Fan L, Harris BW, Jamaluddin A, Kamath J, Mott R, Pope GA et al (2005) Understanding gas-condensate reservoirs. Oilfield Rev 17(4):14–27

    Google Scholar 

  7. Danesh A (1998) PVT and phase behaviour of petroleum reservoir fluids. Elsevier, Amsterdam

    Google Scholar 

  8. Li C, Peng Y, Dong J, Chen L (2015) Prediction of the dew point pressure for gas condensate using a modified Peng-Robinson equation of state and a four-coefficient molar distribution function. J Natural Gas Sci Eng 27:967–978. https://doi.org/10.1016/j.jngse.2015.09.034

    Article  Google Scholar 

  9. Mokhtari R, Varzandeh F, Rahimpour MR (2013) Well productivity in an Iranian gas-condensate reservoir: a case study. J Natural Gas Sci Eng 14:66–76. https://doi.org/10.1016/j.jngse.2013.05.006

    Article  Google Scholar 

  10. Ahmed T (2018) Reservoir engineering handbook. Gulf professional publishing, Houston

    Google Scholar 

  11. Pedersen KS, Fredenslund A, Thomassen P (1989) Properties of oils and natural gases. Gulf Publishing Company, Houston

    Google Scholar 

  12. Doherty L (2000) Memorial fund of AIME, Society of petroleum engineers

  13. Bon J, Bon PJ, Ortega AJ, Nalepa W, Koo R (2017) Design of experimental test method to investigate the effect of OBM contamination on PVT samples from gas condensate reservoirs. In: SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition

  14. Bon J, Sarma H, Rodrigues T, Bon J (2007) Reservoir-fluid sampling revisited— a practical perspective. SPE Reservoir Eval Eng 10(06):589–596. https://doi.org/10.2118/101037-pa

    Article  Google Scholar 

  15. Elsharkawy AM (2002) Predicting the dew point pressure for gas condensate reservoirs: empirical models and equations of state. Fluid Phase Equilib 193(1):147–165. https://doi.org/10.1016/S0378-3812(01)00724-5

    Article  Google Scholar 

  16. Eilerts CK, Smith RV (1942) Specific volumes and phase-boundary properties of separator-gas and liquid-hydrocarbon mixtures. US Department of the Interior, Bureau of Mines

  17. Olds RH, Sage BH, Lacey WN (1949) Volumetric and viscosity studies of oil and gas from a san joaquin valley field. Trans AIME 179(01):287–302. https://doi.org/10.2118/949287-G

    Article  Google Scholar 

  18. Organick EI, Golding BH (1952) Prediction of saturation pressures for condensate-gas and volatile-oil mixtures. J Petrol Technol 4(5):135–148. https://doi.org/10.2118/140-G

    Article  Google Scholar 

  19. Nemeth LK (1966) A correlation of dew-point pressure with reservoir fluid composition and temperature. Texas A&M University, Libraries

    Google Scholar 

  20. Nemeth LK, Kennedy HT (1967) A correlation of dewpoint pressure with fluid composition and temperature. Soci Petrol Eng J 7(2):99–104. https://doi.org/10.2118/1477-PA

    Article  Google Scholar 

  21. Potsch KT, Braeuer L (1996) A Novel Graphical Method for Determining Dewpoint Pressures of Gas Condensates. In: European petroleum conference. Milan, Italy: Society of Petroleum Engineers, p. 3.

  22. Crogh A (1996) Improved correlations for retrograde gases. Texas A&M University, Texas

    Google Scholar 

  23. Fang Y, Li B, Hu Y, Sun Z, Zhu Y (1988) Condensate gas phase behavior and development. In: SPE International oil and gas conference and exhibition in China. Society of Petroleum Engineers, Beijing, China, p. 20

  24. Elsharkawy AM (2001) Characterization of the plus fraction and prediction of the dewpoint pressure for gas condensate reservoirs. In: SPE Western regional meeting. Society of Petroleum Engineers, Bakersfield, California, p. 18

  25. Humoud AA, Al-Marhoun MA (2001) A new correlation for gas-condensate dewpoint pressure prediction. In: SPE Middle east oil show. Manama, Bahrain: Society of petroleum engineers, p. 8

  26. Marruffo I, Maita J, Him J, Gonzalo R (2002) Correlations to determine retrograde dew pressure and C7+ percentage of gas condensate reservoirs on basis of production test data of eastern venezuelan fields. In: SPE gas technology symposium. Society of Petroleum Engineers, Calgary, Alberta, Canada, p. 6

  27. Kim J, Chae M, Han J, Park S, Lee Y (2021) The development of leak detection model in subsea gas pipeline using machine learning. J Nat Gas Sci Eng 94:104134. https://doi.org/10.1016/j.jngse.2021.104134

    Article  Google Scholar 

  28. Tariq Z, Murtaza M, Mahmoud M, Aljawad MS, Kamal MS (2022) Machine learning approach to predict the dynamic linear swelling of shales treated with different waterbased drilling fluids. Fuel 315:123282. https://doi.org/10.1016/j.fuel.2022.123282

    Article  Google Scholar 

  29. Tatar A, Esmaeili-Jaghdan Z, Shokrollahi A, Zeinijahromi A (2022) Hydrogen solubility in n-alkanes: data mining and modelling with machine learning approach. Int J Hydrogen Energy 47(85):35999–36021. https://doi.org/10.1016/j.ijhydene.2022.08.195

    Article  Google Scholar 

  30. Rayhani M, Tatar A, Shokrollahi A, Zeinijahromi A (2023) Exploring the power of machine learning in analyzing the gas minimum miscibility pressure in hydrocarbons. Geoenergy Sci Eng 226:211778. https://doi.org/10.1016/j.geoen.2023.211778

    Article  Google Scholar 

  31. González A, Barrufet MA, Startzman R (2003) Improved neural-network model predicts dewpoint pressure of retrograde gases. J Petrol Sci Eng 37(3):183–194. https://doi.org/10.1016/S0920-4105(02)00352-2

    Article  Google Scholar 

  32. Jalali F, Abdy Y, Akbari MK (2007) Using artificial neural network's capability for estimation of gas condensate reservoir's dew point pressure. In: EUROPEC/EAGE conference and exhibition. London, UK, Society of Petroleum Engineers, p. 10.

  33. Al-Dhamen M, Al-Marhoun M (2011) New correlations for dew-point pressure for gas condensate. In: SPE Saudi Arabia section young professionals technical symposium. Society of Petroleum Engineers, Dhahran, Saudi Arabia. p. 18.

  34. Ahmadi MA, Ebadi M (2014) Evolving smart approach for determination dew point pressure through condensate gas reservoirs. Fuel 117:1074–1084. https://doi.org/10.1016/j.fuel.2013.10.010

    Article  Google Scholar 

  35. Ahmadi MA, Elsharkawy A (2017) Robust correlation to predict dew point pressure of gas condensate reservoirs. Petroleum 3(3):340–347. https://doi.org/10.1016/j.petlm.2016.05.001

    Article  Google Scholar 

  36. Ali A, Guo L (2020) Adaptive neuro-fuzzy approach for prediction of dewpoint pressure for gas condensate reservoirs. Pet Sci Technol 38(9):673–681. https://doi.org/10.1080/10916466.2020.1769655

    Article  Google Scholar 

  37. Arabloo M, Shokrollahi A, Gharagheizi F, Mohammadi AH (2013) Toward a predictive model for estimating dew point pressure in gas condensate systems. Fuel Process Technol 116:317–324. https://doi.org/10.1016/j.fuproc.2013.07.005

    Article  Google Scholar 

  38. Daneshfar R, Keivanimehr F, Mohammadi-Khanaposhtani M, Baghban A (2020) A neural computing strategy to estimate dew-point pressure of gas condensate reservoirs. Pet Sci Technol 38(10):706–712. https://doi.org/10.1080/10916466.2020.1780257

    Article  Google Scholar 

  39. El-hoshoudy AN, Gomaa S, Desouky SM (2018) Prediction of dew point pressure in gas condensate reservoirs based on a combination of gene expression programming (GEP) and multiple regression analysis. Petrol Petrochem Eng J 2(5):000163

    Google Scholar 

  40. Ghassemzadeh S, Schaffie M, Sarrafi A, Ranjbar M (2014) Predicting dew point pressure: using a hybrid intelligent network. Pet Sci Technol 32(24):2969–2975. https://doi.org/10.1080/10916466.2014.919004

    Article  Google Scholar 

  41. Ghassemzadeh S, Shafflie M, Sarrafi A, Ranjbar M (2013) The importance of normalization in predicting dew point pressure by ANFIS. Pet Sci Technol 31(10):1040–1047. https://doi.org/10.1080/10916466.2011.598895

    Article  Google Scholar 

  42. Haji-Savameri M, Menad NA, Norouzi-Apourvari S, Hemmati-Sarapardeh A (2020) Modeling dew point pressure of gas condensate reservoirs: comparison of hybrid soft computing approaches, correlations, and thermodynamic models. J Petrol Sci Eng 184:106558. https://doi.org/10.1016/j.petrol.2019.106558

    Article  Google Scholar 

  43. Kamari A, Sattari M, Mohammadi AH, Ramjugernath D (2016) Rapid method for the estimation of dew point pressures in gas condensate reservoirs. J Taiwan Inst Chem Eng 60:258–266. https://doi.org/10.1016/j.jtice.2015.10.011

    Article  Google Scholar 

  44. Kaydani H, Hagizadeh A, Mohebbi A (2013) A dew point pressure model for gas condensate reservoirs based on an artificial neural network. Pet Sci Technol 31(12):1228–1237. https://doi.org/10.1080/10916466.2010.540616

    Article  Google Scholar 

  45. Kaydani H, Mohebbi A, Hajizadeh A (2016) Dew point pressure model for gas condensate reservoirs based on multi-gene genetic programming approach. Appl Soft Comput 47:168–178. https://doi.org/10.1016/j.asoc.2016.05.049

    Article  Google Scholar 

  46. Khaksar Manshad A, Rostami H, Moein Hosseini S, Rezaei H (2016) Application of artificial neural network-particle swarm optimization algorithm for prediction of gas condensate dew point pressure and comparison with gaussian processes regression-particle swarm optimization algorithm. J Energy Res Technol 138(3):032903. https://doi.org/10.1115/1.4032226

    Article  Google Scholar 

  47. Khan MR, Kalam S, Tariq Z, Abdulraheem A (2019) A novel empirical correlation to predict the dew point pressure using intelligent algorithms. In: Abu Dhabi international petroleum exhibition & conference. Abu Dhabi, UAE: Society of Petroleum Engineers, p. 15

  48. Majidi SMJ, Shokrollahi A, Arabloo M, Mahdikhani-Soleymanloo R, Masihi M (2014) Evolving an accurate model based on machine learning approach for prediction of dew-point pressure in gas condensate reservoirs. Chem Eng Res Des 92(5):891–902. https://doi.org/10.1016/j.cherd.2013.08.014

    Article  Google Scholar 

  49. Najafi-Marghmaleki A, Tatar A, Barati-Harooni A, Choobineh M-J, Mohammadi AH (2016) GA-RBF model for prediction of dew point pressure in gas condensate reservoirs. J Mol Liq 223:979–986. https://doi.org/10.1016/j.molliq.2016.08.087

    Article  Google Scholar 

  50. Nowroozi S, Ranjbar M, Hashemipour H, Schaffie M (2009) Development of a neural fuzzy system for advanced prediction of dew point pressure in gas condensate reservoirs. Fuel Process Technol 90(3):452–457. https://doi.org/10.1016/j.fuproc.2008.11.009

    Article  Google Scholar 

  51. Rabiei A, Sayyad H, Riazi M, Hashemi A (2015) Determination of dew point pressure in gas condensate reservoirs based on a hybrid neural genetic algorithm. Fluid Phase Equilib 387:38–49. https://doi.org/10.1016/j.fluid.2014.11.027

    Article  Google Scholar 

  52. Rostami H, Khaksar MA (2014) Application of evolutionary Gaussian processes regression by particle swarm optimization for prediction of dew point pressure in gas condensate reservoirs. Neural Comput Appl 24(3):705–713. https://doi.org/10.1007/s00521-012-1275-9

    Article  Google Scholar 

  53. Rostami-Hosseinkhani H, Esmaeilzadeh F, Mowla D (2014) Application of expert systems for accurate determination of dew-point pressure of gas condensate reservoirs. J Natural Gas Sci Eng 18:296–303. https://doi.org/10.1016/j.jngse.2014.02.009

    Article  Google Scholar 

  54. Shokir EME-M (2008) Dewpoint pressure model for gas condensate reservoirs based on genetic programming. Energy Fuels 22(5):3194–3200. https://doi.org/10.1021/ef800225b

    Article  Google Scholar 

  55. Zhong Z, Liu S, Kazemi M, Carr TR (2018) Dew point pressure prediction based on mixed-kernels-function support vector machine in gas-condensate reservoir. Fuel 232:600–609. https://doi.org/10.1016/j.fuel.2018.05.168

    Article  Google Scholar 

  56. Godwin ON (2012) A new analytical method for predicting dew point pressures for gas condensate reservoirs. In: Nigeria annual international conference and exhibition. Lagos, Nigeria: Society of Petroleum Engineers, p. 11

  57. Alzahabi A, El-Banbi A, Alexandre Trindade A, Soliman M (2017) A regression model for estimation of dew point pressure from down-hole fluid analyzer data. J Petrol Explorat Prod Technol 7(4):1173–1183. https://doi.org/10.1007/s13202-016-0308-9

    Article  Google Scholar 

  58. Mirzaie M, Esfandyari H, Tatar A (2021) Dew point pressure of gas condensates, modeling and a comprehensive review on literature data. J Petrol Sci Eng 2021:110072. https://doi.org/10.1016/j.petrol.2021.110072

    Article  Google Scholar 

  59. Gouda A, Gomaa S, Attia A, Emara R, Desouky SM, El-hoshoudy AN (2022) Development of an artificial neural network model for predicting the dew point pressure of retrograde gas condensate. J Petrol Sci Eng 208:109284. https://doi.org/10.1016/j.petrol.2021.109284

    Article  Google Scholar 

  60. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  Google Scholar 

  61. Rokach L, Maimon O (2007) Data mining with decision trees: theory and applications. World Scientific

  62. Piryonesi SM, El-Diraby TE (2020) Data analytics in asset management: cost-effective prediction of the pavement condition index. J Infrastruct Syst 26(1):04019036. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512

    Article  Google Scholar 

  63. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  64. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. 2017 LightGBM: A highly efficient gradient boosting decision tree. In: Advances in neural information processing systems. Long Beach, CA, USA. p. 3146–3154

  65. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  66. Chen B, Pawar RJ (2019) Characterization of CO2 storage and enhanced oil recovery in residual oil zones. Energy 183:291–304. https://doi.org/10.1016/j.energy.2019.06.142

    Article  Google Scholar 

  67. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43(6):1947–1958. https://doi.org/10.1021/ci034160g

    Article  Google Scholar 

  68. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42. https://doi.org/10.1007/s10994-006-6226-1

    Article  Google Scholar 

  69. Bhat PC, Prosper HB, Sekmen S, Stewart C (2018) Optimizing event selection with the random grid search. Comput Phys Commun 228:245–257. https://doi.org/10.1016/j.cpc.2018.02.018

    Article  Google Scholar 

  70. Romeijn HE (2009) Random search methods random search methods. In: Floudas CA, Pardalos PM (eds) Encyclopedia of optimization. Springer, Boston, MA, pp 3245–3251

    Google Scholar 

  71. Al-Mahroos FM, Tjoa GH (1987) Analysis and phase behavior of khuff gas system in bahrain field. Middle East Oil Show

  72. Al-Meshari AA (2004) New strategic method to tune equation-of-state to match experimental data for compositional simulation. Texas A&M University, Ann Arbor, p 248

    Google Scholar 

  73. Ameli F, Dabir B (2015) Application of a smart mesh generation technique in gas condensate reservoirs: auto-tune PVT package for property estimation. J Natural Gas Sci Eng 24:1–17. https://doi.org/10.1016/j.jngse.2015.03.005

    Article  Google Scholar 

  74. Bonyadi M, Esmaeilzadeh F (2007) Prediction of gas condensate properties by Esmaeilzadeh–Roshanfekr equation of state. Fluid Phase Equilib 260(2):326–334. https://doi.org/10.1016/j.fluid.2007.07.075

    Article  Google Scholar 

  75. Coats KH (1985) Simulation of gas condensate reservoir performance. J Petrol Technol 37(10):1870–1886. https://doi.org/10.2118/10512-pa

    Article  Google Scholar 

  76. Coats KH, Smart GT (1986) Application of a regression-based EOS PVT program to laboratory data. SPE Reserv Eng 1(03):277–299. https://doi.org/10.2118/11197-pa

    Article  Google Scholar 

  77. Daridon J-L, Pauly J, Coutinho JAP, Montel F (2001) Solid−liquid−vapor phase boundary of a north sea waxy crude: measurement and modeling. Energy Fuels 15(3):730–735. https://doi.org/10.1021/ef000263e

    Article  Google Scholar 

  78. Firoozabadi A, Hekim Y, Katz DL (1978) Reservoir depletion calculations for gas condensates using extended analyses in the peng-robinson equation of state. Canad J Chem Eng 56(5):610–615. https://doi.org/10.1002/cjce.5450560515

    Article  Google Scholar 

  79. Hoffman AE, Crump JS, Hocott CR (1953) Equilibrium constants for a gas-condensate system. J Petrol Technol 5(1):1–10. https://doi.org/10.2118/219-g

    Article  Google Scholar 

  80. Kelkar M (2008) Natural gas production engineering. PennWell Books, OK

    Google Scholar 

  81. Kenyon D (1987) Third SPE comparative solution project: gas cycling of retrograde condensate reservoirs. J Petrol Technol 39(8):981–997. https://doi.org/10.2118/12278-pa

    Article  Google Scholar 

  82. Kurata F, Katz DLV (1942) Critical properties of volatile hydrocarbon mixtures. University of Michigan

  83. Pedersen KS, Thomassen P, Fredenslund A (1988) Proceedings of the Presentation at the 1988. AIChE Spring National Meeting. New Orleans, LA, USA

  84. Reamer H, Sage B (1950) Volumetric behavior of oil and gas from a Louisiana field I. J Petrol Technol 2(9):261–268

    Article  Google Scholar 

  85. Sage BH, Olds RH (1947) Volumetric behavior of oil and gas from several san joaquin valley fields. Trans AIME 170(1):156–173. https://doi.org/10.2118/947156-g

    Article  Google Scholar 

  86. Sportisse M, Barreau A, Ungerer P (1997) Modeling of gas condensates properties using continuous distribution functions for the characterisation of the heavy fraction. Fluid Phase Equilib 139(1):255–276. https://doi.org/10.1016/S0378-3812(97)00178-7

    Article  Google Scholar 

  87. Vogel JL, Yarborough L (1980) The effect of nitrogen on the phase behavior and physical properties of reservoir fluids. In: SPE/DOE Enhanced oil recovery symposium

  88. Yang T, Chen WD, Guo TM (1997) Phase behavior of a near-critical reservoir fluid mixture. Fluid Phase Equilib 128(1):183–197. https://doi.org/10.1016/S0378-3812(96)03163-9

    Article  Google Scholar 

  89. McKinney W, Team PD (2021) Pandas-Powerful python data analysis toolkit. Pandas—Powerful Python Data Anal Toolkit. Release 1.3.5:https://pandas.pydata.org/.

  90. Rousseeuw PJ, Leroy AM (2005) Robust regression and outlier detection. Wiley, Hoboken

    Google Scholar 

  91. Goodall CR (1993) 13 Computation using the QR decomposition. Handbook Statist 9:467–508

    Article  Google Scholar 

  92. Gramatica P (2007) Principles of QSAR models validation: internal and external. Mol Inf 26(5):694–701

    Google Scholar 

  93. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MT, Gramatica P et al (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships: the report and recommendations of ECVAM Workshop 521,2. Altern Lab Anim 33:155–173

    Article  Google Scholar 

  94. Meloun M, Bordovská S, Kupka K (2010) Outliers detection in the statistical accuracy test of ap K a prediction. J Math Chem 47(2):891–909

    Article  MathSciNet  Google Scholar 

  95. Nasrifar K, Bolland O, Moshfeghian M (2005) Predicting natural gas dew points from 15 equations of state. Energy Fuels 19(2):561–572. https://doi.org/10.1021/ef0498465

    Article  Google Scholar 

  96. Pedersen KS, Christensen PL, Shaikh JA, Christensen PL (2006) Phase behavior of petroleum reservoir fluids. CRC Press, Cambridge

    Book  Google Scholar 

  97. Ronze D, Fongarland P, Pitault I, Forissier M (2002) Hydrogen solubility in straight run gasoil. Chem Eng Sci 57(4):547–553. https://doi.org/10.1016/S0009-2509(01)00404-3

    Article  Google Scholar 

  98. Danesh A, Xu DH, Todd AC (1991) Comparative study of cubic equations of state for predicting phase behaviour and volumetric properties of injection gas-reservoir oil systems. Fluid Phase Equilib 63(3):259–278. https://doi.org/10.1016/0378-3812(91)80036-U

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Shokrollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to include the supplementary files.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 4794 kb)

Appendix: Instruction on how to use the developed models

Appendix: Instruction on how to use the developed models

The developed models are provided for the users. The models work using Python. The input data are received from an excel file. After the models predicted the outputs, they will be printed in the same excel file, in the sheet "Output". The model files and the code are also provided as supplementary files.

figure a
figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili-Jaghdan, Z., Tatar, A., Shokrollahi, A. et al. Machine learning modelling of dew point pressure in gas condensate reservoirs: application of decision tree-based models. Neural Comput & Applic 36, 1973–1995 (2024). https://doi.org/10.1007/s00521-023-09201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09201-9

Keywords

Navigation