Skip to main content
Log in

Memory augmented echo state network for time series prediction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Echo state networks (ESNs), a special class of recurrent neural networks (RNNs), have attracted extensive attention in time series prediction problems. Nevertheless, the memory ability of ESNs is contradictory to nonlinear mapping, which limits the prediction performance of the network on complex time series. To balance the memory ability and the nonlinear mapping, an improved ESN model is proposed, named memory augmented echo state network (MA-ESN). When designing MA-ESN, both linear memory modules and nonlinear mapping modules are introduced into the reservoir in a new way of combination. The linear memory module improves the memory ability, while the nonlinear mapping module retains the nonlinear mapping of the network. Meanwhile, the echo state property of MA-ESN has been analyzed in theory. Finally, we have evaluated the memory ability and prediction performance of the proposed MA-ESN on benchmark time series data sets. The related experimental results demonstrate that the MA-ESN model outperforms some similar ESN models with a special memory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (F. J. Li) upon reasonable request.

References

  1. Zhou L, Wang HW (2022) Multihorizons transfer strategy for continuous online prediction of time-series data in complex systems. Int J Intell Syst 37(10):7706–7735

    Article  Google Scholar 

  2. Schafer AM, Zimmermann HG (2007) Recurrent neural networks are universal approximators. Int J Neural Syst 17(4):253–263

    Article  PubMed  Google Scholar 

  3. Jaeger H (2001) The ‘echo state’ approach to analysing and training recurrent neural networks-with an erratum note. German Natl Res Center Inf Technol GMD Techn Report 148(34):13

    Google Scholar 

  4. Li Y, Li FJ (2019) PSO-based growing echo state network. Appl Soft Comput 85:105774

    Article  Google Scholar 

  5. Chen Q, Jin YC, Song YD (2022) Fault-tolerant adaptive tracking control of Euler-Lagrange systems—An echo state network approach driven by reinforcement learning. Neurocomputing 484:109–116

    Article  Google Scholar 

  6. Ibrahim H, Loo CK, Alnajjar F (2022) Bidirectional parallel echo state network for speech emotion recognition. Neural Comput Appl 34(20):17581–17599

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li L, Pu YF, Luo ZY (2022) Distributed functional link adaptive filtering for nonlinear graph signal processing. Digital Signal Process 128:103558

    Article  Google Scholar 

  8. Zhang L, Ye F, Xie KY et al (2022) An integrated intelligent modeling and simulation language for model-based systems engineering. J Ind Inf Integr 28:100347

    Google Scholar 

  9. Jaeger H (2002) Short term memory in echo state networks. GMD-Report 152. Technical Report

  10. Holzmann G, Hauser H (2010) Echo state networks with filter neurons and a delay & sum readout. Neural Netw 23(2):244–256

    Article  PubMed  Google Scholar 

  11. Lun SX, Yao XS, Hu HF (2016) A new echo state network with variable memory length. Inf Sci 370:103–119

    Article  ADS  Google Scholar 

  12. Dong L, Zhang HJ, Yang K, Zhou DL, Shi JY, Ma JH. Crowd counting by using Top-k relations: a mixed ground-truth CNN framework. IEEE Trans  Consumer Electron 68(3):307–316

    Article  Google Scholar 

  13. Jaeger H, Lukosevicius M, Popovici D, Siewert U (2007) Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw 20(3):335–352

    Article  PubMed  Google Scholar 

  14. Zheng KH, Qian B, Li S, Xiao Y, Zhuang WQ, Ma QL (2020) Long-short term echo state network for time series prediction. IEEE Access 8:91961–91974

    Article  Google Scholar 

  15. Marzen S (2017) Difference between memory and prediction in linear recurrent networks. Phys Rev E 96(3):032308

    Article  PubMed  ADS  Google Scholar 

  16. Verstraeten D, Dambre J, Dutoit X, Schrauwen B (2010) Memory versus non-linearity in reservoirs,” The 2010 International Joint Conference on Neural Networks (IJCNN), 1–8

  17. Bacciu D, Carta A, Sperduti A (2019) Linear memory networks. ICANN 2019: Theoretical Neural Computation. 513–525

  18. Butcher JB, Verstraeten D, Schrauwen B, Day CR, Haycock PW (2013) Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Netw 38:76–89

    Article  CAS  PubMed  Google Scholar 

  19. Inubushi M, Yoshimura K (2017) Reservoir computing beyond memory-nonlinearity trade-off. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  20. Gil-Alana LA (2004) Long memory behaviour in the daily maximum and minimum temperatures in Melbourne, Australia. Meteorol Appl 11(4):319–328

    Article  MathSciNet  Google Scholar 

  21. WuZ, Jiang R (2023) Time-series benchmarks based on frequency features for fair comparative evaluation. Neural Comput Appl 1–13

  22. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  CAS  PubMed  Google Scholar 

  23. Wu Z, Li Q, Zhang H (2021) Chain-structure echo state network with stochastic optimization: methodology and application. IEEE Trans Neural Netw Learn Syst 33(5):1974–1985

    Article  Google Scholar 

  24. Wu Z, Jiang RQ (2023) Time-series benchmarks based on frequency features for fair comparative evaluation. Neural Comput Appl 35(23):17029–17041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 62073153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanjun Li.

Ethics declarations

Conflict of interest

We declare that all the authors have approved the manuscript and agree with the submission to this journal. There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Similar to [3], Theorem 1 can be proved as follows.

Recall that,

$$\left\| {f(z(n)) - f(z^{\prime}(n))} \right\| \le L\left\| {z(n) - z^{\prime}(n)} \right\|\;$$

and the activation function f satisfies the Lipschitz condition and the Lipschitz coefficient \(L \le 1\).

So there are

$$\begin{gathered} \;\;{\kern 1pt} {\kern 1pt} {\kern 1pt} \left\| {f(W^{xh} x^{t + 1} + W^{mh} m^{t} ) - f(W^{xh} x^{t + 1} + W^{mh} \tilde{m}^{t} )} \right\|_{2} \hfill \\ \le \left\| {(W^{xh} x^{t + 1} + W^{mh} m^{t} ) - (W^{xh} x^{t + 1} + W^{mh} \tilde{m}^{t} )} \right\|_{2} \hfill \\ \end{gathered}$$

Thus there are

$$\begin{aligned} \left\| {y^{t + 1} } \right\|_{2} = & \left\| {m^{t + 1} - \tilde{m}^{t + 1} } \right\|_{2} = \left\| {(W^{hm} h^{t + 1} + W^{mm} m^{t} ) - (W^{hm} h^{t + 1} + W^{mm} \tilde{m}^{t} )} \right\|_{2} \\ \quad \quad \,\,\,\, = & \left\| {\left\{ {W^{hm} [f(W^{xh} x^{t + 1} + W^{mh} m^{t} )] + W^{mm} m^{t} } \right\} - \left\{ {W^{hm} [f(W^{xh} x^{t + 1} + W^{mh} \tilde{m}^{t} )] + W^{mm} \tilde{m}^{t} } \right\}} \right\|_{2} \\ \quad \quad \,\,\,\, = & \left\| {W^{hm} [f(W^{xh} x^{t + 1} + W^{mh} m^{t} )] - W^{hm} [f(W^{xh} x^{t + 1} + W^{mh} \tilde{m}^{t} )] + W^{mm} m^{t} - W^{mm} \tilde{m}^{t} } \right\|_{2} \\ \quad \quad \,\,\,\, \le & \left\| {W^{hm} \left\{ {[f(W^{xh} x^{t + 1} + W^{mh} m^{t} )] - [f(W^{xh} x^{t + 1} + W^{mh} \tilde{m}^{t} )]} \right\}} \right\|_{2} + \left\| {W^{mm} (m^{t} - \tilde{m}^{t} )} \right\|_{2} \\ \quad \quad \,\,\,\, = & \left\| {W^{hm} } \right\|_{2} \left\| {f(W^{xh} x^{t + 1} + W^{mh} m^{t} ) - f(W^{xh} x^{t + 1} + W^{mh} \tilde{m}^{t} )} \right\|_{2} + \left\| {W^{mm} } \right\|_{2} \left\| {m^{t} - \tilde{m}^{t} } \right\|_{2} \\ \quad \quad \;\,\, \le & \left\| {W^{hm} } \right\|_{2} \left\| {(W^{xh} x^{t + 1} + W^{mh} m^{t} ) - (W^{xh} x^{t + 1} + W^{mh} \tilde{m}^{t} )} \right\|_{2} + \left\| {W^{mm} } \right\|_{2} \left\| {m^{t} - \tilde{m}^{t} } \right\|_{2} \\ \quad \quad \;{\kern 1pt} \, = & \left\| {W^{hm} } \right\|_{2} \left\| {W^{mh} (m^{t} - \tilde{m}^{t} )} \right\|_{2} + \left\| {W^{mm} } \right\|_{2} \left\| {m^{t} - \tilde{m}^{t} } \right\|_{2} \\ \quad \quad \,\,\, = & \left\| {W^{hm} } \right\|_{2} \left\| {W^{mh} } \right\|_{2} \left\| {m^{t} - \tilde{m}^{t} } \right\|_{2} + \left\| {W^{mm} } \right\|_{2} \left\| {m^{t} - \tilde{m}^{t} } \right\|_{2} \\ \quad \quad {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \, = & \left\| {W^{hm} } \right\|_{2} \left\| {W^{mh} } \right\|_{2} \left\| {y^{t} } \right\|_{2} + \left\| {W^{mm} } \right\|_{2} \left\| {y^{t} } \right\|_{2} \\ \quad \quad \,\,\, = & (\left\| {W^{hm} } \right\|_{2} \left\| {W^{mh} } \right\|_{2} + \left\| {W^{mm} } \right\|_{2} )\left\| {y^{t} } \right\|_{2} \\ \quad \quad \,\,\, = & (\sigma_{\max } (W^{hm} )\sigma_{\max } (W^{mh} ) + \sigma_{\max } (W^{mm} ))\left\| {y^{t} } \right\|_{2} \\ \end{aligned}$$

Therefore, if \(\sigma_{\max } (W^{hm} )\sigma_{\max } (W^{mh} ) + \sigma_{\max } (W^{mm} ) < 1\) is true, then \(\mathop {\lim }\nolimits_{t \to \infty } \left\| {y^{t} } \right\|_{2} = 0\) holds for all right infinite input sequences \(u^{ + \infty } \in U^{ + \infty }\). That is, the MA-ESN model has the ESP.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, F. & Wang, W. Memory augmented echo state network for time series prediction. Neural Comput & Applic 36, 3761–3776 (2024). https://doi.org/10.1007/s00521-023-09276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09276-4

Keywords

Navigation