Skip to main content
Log in

Modified deep deterministic policy gradient based on active disturbance rejection control for hypersonic vehicles

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

For the attitude control of hypersonic vehicles, a control scheme based on linear active disturbance rejection (LADRC) and modified deep deterministic policy gradient (MDDPG) is proposed. Firstly, LADRC is used to deal with uncertainty and nonlinear problems in the attitude control process. For the tedious manual parameter tuning process, MDDPG is used to optimize the control gains and bandwidth of LADRC. Secondly, a modified reward function and an early stop criterion are introduced in the MDDPG algorithm to improve the optimization performance. Then, another MDDPG is used as an auxiliary control, which is combined with LADRC for attitude control to improve the robustness and accuracy of the control. The proposed method considers the robustness and rapidity of the control. Finally, the effectiveness of the proposed method is proved by simulation. Compared with traditional LADRC, LADRC based on the Q-learning algorithm, LADRC based on the traditional DDPG algorithm, and LADRC based on MDDPG algorithm, the proposed method has a better control effect and can avoid a lot of manual parameter tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Urzay J (2018) Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Ann Rev Fluid Mech 50:593–627

    MathSciNet  Google Scholar 

  2. Wang Y, Yang X, Yan H (2019) Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Transact Ind Electron 66(12):9439–9447

    Google Scholar 

  3. Tang S, Hu C (2017) Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J Mater Sci Technol 33(2):117–130

    CAS  Google Scholar 

  4. Zhang H, Wang H, Li N, Yu Y, Su Z, Liu Y (2020) Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones. Neural Comput Appl 32:2735–2749

    Google Scholar 

  5. Ding Y, Yue X, Chen G, Si J (2022) Review of control and guidance technology on hypersonic vehicle. Chin J Aeronaut 35(7):1–18

    Google Scholar 

  6. Xu B, Wang X, Shi Z (2019) Robust adaptive neural control of nonminimum phase hypersonic vehicle model. IEEE Transact Syst Man Cybern Syst 51(2):1107–1115

    Google Scholar 

  7. Yuan Y, Wang Z, Guo L, Liu H (2018) Barrier lyapunov functions-based adaptive fault tolerant control for flexible hypersonic flight vehicles with full state constraints. IEEE Transact Syst Man Cybern Syst 50(9):3391–3400

    Google Scholar 

  8. Xu B, Shi Z (2015) An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci 58(7):1–19

    MathSciNet  Google Scholar 

  9. Qiao H, Meng H, Wang M, Ke W, Sun J (2019) Adaptive control for hypersonic vehicle with input saturation and state constraints. Aerosp Sci Technol 84:107–119

    Google Scholar 

  10. Wang Y, Chao T, Wang S, Yang M (2019) Byrnes-isidori-based dynamic sliding-mode control for nonminimum phase hypersonic vehicles. Aerosp Sci Technol 95:105478

    Google Scholar 

  11. Zuo R, Li Y, Lv M, Liu Z (2021) Realization of trajectory precise tracking for hypersonic flight vehicles with prescribed performances. Aerosp Sci Technol 111:106554

    Google Scholar 

  12. Wu G, Meng X, Wang F (2018) Improved nonlinear dynamic inversion control for a flexible air-breathing hypersonic vehicle. Aerosp Sci Technol 78:734–743

    Google Scholar 

  13. Kürkçü B, Kasnakoğlu C, Efe MÖ (2018) Disturbance/uncertainty estimator based integral sliding-mode control. IEEE Transact Autom Control 63(11):3940–3947

    MathSciNet  Google Scholar 

  14. Zhang S, Wang Q, Yang G, Zhang M (2019) Anti-disturbance backstepping control for air-breathing hypersonic vehicles based on extended state observer. ISA Transact 92:84–93

    Google Scholar 

  15. Feng J, Yin B (2021) Improved generalized proportional integral observer based control for systems with multi-uncertainties. ISA Transact 111:96–107

    Google Scholar 

  16. Wu Z, Ni J, Qian W, Bu X, Liu B (2021) Composite prescribed performance control of small unmanned aerial vehicles using modified nonlinear disturbance observer. ISA Transact 116:30–45

    Google Scholar 

  17. Piao M, Yang Z, Sun M, Huang J, Chen Z (2019) A practical attitude control scheme for hypersonic vehicle based on disturbance observer. Proc Inst Mech Eng Part G J Aerosp Eng 233(12):4523–4540

    Google Scholar 

  18. Han J (2009) From PID to active disturbance rejection control. IEEE Transact Ind Electron 56(3):900–906

    Google Scholar 

  19. Huang Z, Chen Z, Zheng Y, Sun M, Sun Q (2021) Optimal design of load frequency active disturbance rejection control via double-chains quantum genetic algorithm. Neural Comput Appl 33:3325–3345

    Google Scholar 

  20. Gao Z (2003) Scaling and bandwidth-parameterization based controller tuning. In: ACC, pp. 4989–4996

  21. Rugh WJ, Shamma JS (2000) Research on gain scheduling. Automatica 36(10):1401–1425

    MathSciNet  Google Scholar 

  22. Piao M, Yang Z, Sun M, Huang J, Wang Z, Chen Z (2018) Synthesis of attitude control for statically unstable hypersonic vehicle with low-frequency aero-servo-elastic effect. Aerosp Sci Technol 80:67–77

    Google Scholar 

  23. Wang Y, Han Z (2021) Ant colony optimization for traveling salesman problem based on parameters optimization. Appl Soft Comput 107:107439

    Google Scholar 

  24. Yang L, Chen H (2019) Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network. Neural Comput Appl 31:4463–4478

    Google Scholar 

  25. Rana N, Latiff MSA, Abdulhamid SM, Chiroma H (2020) Whale optimization algorithm: a systematic review of contemporary applications, modifications and developments. Neural Comput Appl 32:16245–16277

    Google Scholar 

  26. Yin Z, Du C, Liu J, Sun X, Zhong Y (2017) Research on autodisturbance-rejection control of induction motors based on an ant colony optimization algorithm. IEEE Transact Ind Electron 65(4):3077–3094

    Google Scholar 

  27. Cai Z, Lou J, Zhao J, Wu K, Liu N, Wang YX (2019) Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control. Mech Syst Signal Process 128:636–654

    Google Scholar 

  28. Faraji B, Gheisarnejad M, Yalsavar M, Khooban M (2020) An adaptive ADRC control for parkinson’s patients using machine learning. IEEE Sens J 21(6):8670–8678

    Google Scholar 

  29. Wang Y, Fang S, Hu J (2022) Active disturbance rejection control based on deep reinforcement learning of PMSM for more electric aircraft. IEEE Transact Power Electron 38(1):406–416

    Google Scholar 

  30. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    PubMed  Google Scholar 

  31. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354–359

    CAS  PubMed  Google Scholar 

  32. Luong N, Hoang D, Gong S, Niyato D, Wang P, Liang Y, Kim D (2019) Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutor 21(4):3133–3174

    Google Scholar 

  33. Raafat S, Mohammad EH, Belal AZ, Tarek AM (2023) Optimal fractional-order PID controller based on fractional-order actor-critic algorithm. Neural Comput Appl 35(3):2347–2380

    Google Scholar 

  34. He S, Zhang M, Fang H, Liu F, Luan X, Ding Z (2020) Reinforcement learning and adaptive optimization of a class of Markov jump systems with completely unknown dynamic information. Neural Comput Appl 32:14311–14320

    Google Scholar 

  35. Li X, Zhang Z, Ji Y, Liu J, Gao Q (2023) Q-learning-based practical disturbance compensation control for hypersonic flight vehicle. Proc Inst Mech Eng Part G J Aerosp Eng 237(8):1916–1929

    Google Scholar 

  36. Zheng Y, Sun Q, Chen Z, Sun M, Tao J, Sun H (2021) Deep Q-network based real-time active disturbance rejection controller parameter tuning for multi-area interconnected power systems. Neurocomputing 460:360–373

    Google Scholar 

  37. Zhao K, Song J, Hu Y, Xu X, Liu Y (2022) Deep deterministic policy gradient-based active disturbance rejection controller for quad-rotor UAVs. Mathematics 10(15):2686

    Google Scholar 

  38. Chen G, Chen Z, Wang L, Zhang W (2023) Deep deterministic policy gradient and active disturbance rejection controller based coordinated control for gearshift manipulator of driving robot. Eng Appl Artif Intell 117:105586

    Google Scholar 

  39. Zheng Y, Tao J, Hartikainen J, Duan F, Sun H, Sun M, Sun Q, Zeng X, Chen Z, Xie G (2023) DDPG based LADRC trajectory tracking control for underactuated unmanned ship under environmental disturbances. Ocean Eng 271:113667

    Google Scholar 

  40. Wang Y, Sun J, He H, Sun C (2019) Deterministic policy gradient with integral compensator for robust quadrotor control. IEEE Transact Syst Man Cybern Syst 50(10):3713–3725

    Google Scholar 

  41. Marrison CI, Stengel RF (1998) Design of robust control systems for a hypersonic aircraft. J Guid Control Dyn 21(1):58–63

    Google Scholar 

  42. Wang Q, Stengel RF (2000) Robust nonlinear control of a hypersonic aircraft. J Guid Control Dyn 23(4):577–585

    Google Scholar 

  43. Parker JT, Serrani A, Yurkovich S, Bolender MA, Doman DB (2007) Control-oriented modeling of an air-breathing hypersonic vehicle. J Guid Control Dyn 30(3):856–869

    Google Scholar 

  44. Shuprajhaa T, Sujit SK, Srinivasan K (2022) Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes. Appl Soft Comput 128:109450

    Google Scholar 

  45. Wang Y, Zhang X, Zhou R, Tang S, Zhou H, Ding W (2022) Research on UCAV maneuvering decision method based on heuristic reinforcement learning. Comput Intell Neurosci 2022:1477078

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grants 62203331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Junjie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The expression for \({c_x}\) is as follows

$$\begin{aligned} {c_x} = {c_{{x_0}}} + {c_{x{\delta _e}}} + {c_{x{\delta _a}}} + {c_{x{\delta _r}}} \end{aligned}$$
(A1)

where

$$c_{{x_{0} }} = {\text{ }}\left\{ {\begin{array}{*{20}l} {8.7173 \times 10^{{ - 2}} + 3.179 \times 10^{{ - 3}} \cdot \alpha + \left( { - 3.307} \right) \times 10^{{ - 2}} \cdot M} \hfill & {} \hfill \\ { + \left( { - 1.25} \right) \times 10^{{ - 4}} \cdot M \cdot \alpha + 5.036 \times 10^{{ - 3}} \cdot M^{2} } \hfill & {} \hfill \\ { + \left( { - 1.1} \right) \times 10^{{ - 3}} \cdot \alpha ^{2} + 1.405 \times 10^{{ - 7}} \cdot M^{2} \cdot \alpha ^{2} } \hfill & {} \hfill \\ { + \left( { - 3.658} \right) \times 10^{{ - 4}} \cdot M^{3} + 3.175 \times 10^{{ - 4}} \cdot \alpha ^{3} } \hfill & {} \hfill \\ { + 1.274 \times 10^{{ - 5}} \cdot M^{4} + \left( { - 2.985} \right) \times 10^{{ - 5}} \cdot \alpha ^{4} } \hfill & {} \hfill \\ { + \left( { - 1.705} \right) \times 10^{{ - 7}} \cdot M^{5} + 9.766 \times 10^{{ - 7}} \cdot \alpha ^{5} ,\begin{array}{*{20}c} {} & {} \\ \end{array}} \hfill & {M>4.0} \hfill \\ \end{array} } \right.{\text{ }}$$
(A2)
$$c_{{x\delta _{e} }} = {\text{ }}\left\{ {\begin{array}{*{20}l} {4.5548 \times 10^{{ - 4}} + \left( {{\text{ - }}1.1436} \right) \times 10^{{ - 4}} \cdot M} \hfill & {} \hfill \\ { + 2.5411 \times 10^{{ - 5}} \cdot \alpha + \left( { - 3.6417} \right) \times 10^{{ - 5}} \cdot \delta _{e} } \hfill & {} \hfill \\ { + \left( { - 5.3015} \right) \times 10^{{ - 7}} \cdot M \cdot \alpha \cdot \delta _{e} } \hfill & {} \hfill \\ { + 3.014 \times 10^{{ - 6}} \cdot M^{2} + 3.2187 \times 10^{{ - 6}} \cdot \alpha ^{2} } \hfill & {} \hfill \\ { + 6.9629 \times 10^{{ - 6}} \cdot \delta _{e}^{2} } \hfill & {} \hfill \\ { + 2.1026 \times 10^{{ - 12}} \cdot M^{2} \cdot \alpha ^{2} \cdot \delta _{e}^{2} ,\begin{array}{*{20}c} {} & {} \\ \end{array} } \hfill & {M>4.0} \hfill \\ \end{array} } \right.{\text{ }}$$
(A3)
$$\begin{aligned} {c_{x{\delta _a}}}= & {} {c_{x{\delta _e}}} \end{aligned}$$
(A4)
$$c_{{x{\delta _r} }} = {\text{ }}\left\{ {\begin{array}{*{20}l} {7.50 \times 10^{{ - 4}} + \left( {{\text{ - }}2.29} \right) \times 10^{{ - 5}} \cdot \alpha + \left( { - 9.69} \right) \times 10^{{ - 5}} \cdot M} \hfill & {} \hfill \\ { + 8.76 \times 10^{{ - 7}} \cdot \alpha ^{2} + 2.70 \times 10^{{ - 6}} \cdot M^{2}, \begin{array}{*{20}c} {} & {} \\ \end{array}} \hfill & {M>4.0} \hfill \\ \end{array} } \right.$$
(A5)

The expression for \({c_y}\) is as follows

$$\begin{aligned} {c_y} = {c_{{y_0}}} + {c_{y{\delta _e}}} + {c_{y{\delta _a}}} \end{aligned}$$
(A6)

where

$$c_{{y_{0} }} = {\text{ }}\left\{ {\begin{array}{*{20}l} { - 8.19 \times 10^{{ - 2}} + 4.70 \times 10^{{ - 2}} \cdot M + 1.86 \times 10^{{ - 2}} \cdot \alpha } \hfill & {} \hfill \\ { + \left( { - 4.73} \right) \times 10^{{ - 4}} \cdot M \cdot \alpha + \left( { - 9.19} \right) \times 10^{{ - 3}} \cdot M^{2} } \hfill & {} \hfill \\ { + \left( { - 1.52} \right) \times 10^{{ - 4}} \cdot \alpha ^{2} + 7.74 \times 10^{{ - 4}} \cdot M^{3} } \hfill & {} \hfill \\ { + 4.08 \times 10^{{ - 6}} \cdot \alpha ^{3} + 5.99 \times 10^{{ - 7}} \cdot M^{2} \cdot \alpha ^{2} } \hfill & {} \hfill \\ { + \left( { - 2.93} \right) \times 10^{{ - 5}} \cdot M^{4} + \left( { - 3.91} \right) \times 10^{{ - 7}} \cdot \alpha ^{4} } \hfill & {} \hfill \\ { + 4.12 \times 10^{{ - 7}} \cdot M^{5} + 1.30 \times 10^{{ - 8}} \cdot \alpha ^{5} ,\begin{array}{*{20}c} {} & {} \\ \end{array} } \hfill & {M>4.0} \hfill \\ \end{array} } \right.{\text{ }}$$
(A7)
$$c_{{y\delta _{e} }} = {\text{ }}\left\{ {\begin{array}{*{20}l} { - 1.45 \times 10^{{ - 5}} + 7.10 \times 10^{{ - 6}} \cdot M + 1.01 \times 10^{{ - 4}} \cdot \alpha } \hfill & {} \hfill \\ { + \left( { - 4.14} \right) \times 10^{{ - 4}} \cdot \delta _{e} + \left( { - 3.51} \right) \times 10^{{ - 6}} \cdot \alpha \cdot \delta _{e} } \hfill & {} \hfill \\ { + 8.72 \times 10^{{ - 6}} \cdot M \cdot \delta _{e} + \left( {1.70} \right) \times 10^{{ - 7}} \cdot M \cdot \alpha \cdot \delta _{e} ,\begin{array}{*{20}c} {} & {} \\ \end{array} } \hfill & {M>4.0} \hfill \\ \end{array} } \right.$$
(A8)
$$\begin{aligned} {c_{y{\delta _a}}}= & {} {c_{y{\delta _e}}} \end{aligned}$$
(A9)

The expression of \({m_z}\) is as follows

$$\begin{aligned} {m_z} = {m_{{z_0}}} + {m_{z{\delta _e}}} + {m_{z{\delta _\alpha }}} + {m_{z{\delta _r}}} + {m_{zz}}\frac{{{\omega _z}{L_c}}}{{2V}} \end{aligned}$$
(A10)

where

$$m_{{z_{0} }} = {\text{ }}\left\{ {\begin{array}{*{20}l} { - 2.192 \times 10^{{ - 2}} + 7.739 \times 10^{{ - 3}} \cdot M + \left( { - 2.260} \right) \times 10^{{ - 3}} \cdot \alpha } \hfill & {} \hfill \\ { + 1.808 \times 10^{{ - 4}} \cdot M \cdot \alpha + 8.849 \times 10^{{ - 4}} \cdot M^{2} } \hfill & {} \hfill \\ { + 2.616 \times 10^{{ - 4}} \cdot \alpha ^{2} + \left( { - 2.880} \right) \times 10^{{ - 7}} \cdot M^{2} \cdot \alpha ^{2} } \hfill & {} \hfill \\ { + 4.617 \times 10^{{ - 5}} \cdot M^{3} + \left( { - 7.887} \right) \times 10^{{ - 5}} \cdot \alpha ^{3} } \hfill & {} \hfill \\ { + \left( { - 1.143} \right) \times 10^{{ - 6}} \cdot M^{4} + 8.288 \times 10^{{ - 6}} \cdot \alpha ^{4} } \hfill & {} \hfill \\ { + 1.082 \times 10^{{ - 8}} \cdot M^{5} + \left( { - 2.789} \right) \times 10^{{ - 7}} \cdot \alpha ^{5} ,\begin{array}{*{20}c} {} & {} \\ \end{array} } \hfill & {M>4.0} \hfill \\ \end{array} } \right.{\text{ }}$$
(A11)
$$m_{{z\delta _{e} }} = {\text{ }}\left\{ {\begin{array}{*{20}l} { - 5.67 \times 10^{{ - 5}} + \left( { - 1.51} \right) \times 10^{{ - 6}} \cdot M} \hfill & {} \hfill \\ { + \left( { - 6.59} \right) \times 10^{{ - 5}} \cdot \alpha + 2.89 \times 10^{{ - 4}} \cdot \delta _{e} } \hfill & {} \hfill \\ { + 4.48 \times 10^{{ - 6}} \cdot \alpha \cdot \delta _{e} + \left( { - 4.46} \right) \times 10^{{ - 6}} \cdot M \cdot \alpha } \hfill & {} \hfill \\ { + \left( { - 5.87} \right) \times 10^{{ - 6}} \cdot M \cdot \delta _{e} } \hfill & {} \hfill \\ { + 9.72 \times 10^{{ - 8}} \cdot M \cdot \alpha \cdot \delta _{e} ,\begin{array}{*{20}c} {} & {} \\ \end{array} } \hfill & {M>4.0} \hfill \\ \end{array} } \right.{\text{ }}$$
(A12)
$$\begin{aligned} {m_{z{\delta _a}}}= & {} {m_{z{\delta _e}}} \end{aligned}$$
(A13)
$$m_{{z\delta _{r} }} = \left\{ {\begin{array}{*{20}l} { - 2.79 \times 10^{{ - 5}} \cdot \alpha + \left( { - 5.89} \right) \times 10^{{ - 8}} \cdot \alpha ^{2} } \hfill & {} \hfill \\ { + 1.58 \times 10^{{ - 3}} \cdot M^{2} + 6.42 \times 10^{{ - 8}} \cdot \alpha ^{3} } \hfill & {} \hfill \\ { + ( - 6.69) \times 10^{{ - 4}} \cdot M^{3} + \left( { - 2.10} \right) \times 10^{{ - 8}} \cdot \alpha ^{4} } \hfill & {} \hfill \\ { + 1.05 \times 10^{{ - 4}} \cdot M^{4} + 3.14 \times 10^{{ - 9}} \cdot \alpha ^{5} } \hfill & {} \hfill \\ { + \left( { - 7.74} \right) \times 10^{{ - 6}} \cdot M^{5} + \left( { - 2.18} \right) \times 10^{{ - 10}} \cdot \alpha ^{6} } \hfill & {} \hfill \\ { + 2.70 \times 10^{{ - 7}} \cdot M^{6} + 5.74 \times 10^{{ - 12}} \cdot \alpha ^{7} } \hfill & {} \hfill \\ { - 3.58 \times 10^{{ - 9}} \cdot M^{7}, \begin{array}{*{20}c} {} & {} \\ \end{array} } \hfill & {M>4.0} \hfill \\ \end{array} } \right.$$
(A14)
$$m_{{zz}} = {\text{ }}\left\{ {\begin{array}{*{20}l} { - 1.36 + 0.386M + 7.85 \times 10^{{ - 4}} \cdot \alpha } \hfill & {} \hfill \\ { + 1.40 \times 10^{{ - 4}} \cdot M \cdot \alpha + \left( { - 5.42} \right) \times 10^{{ - 2}} \cdot M^{2} } \hfill & {} \hfill \\ { + 2.36 \times 10^{{ - 3}} \cdot \alpha ^{2} + \left( { - 1.95} \right) \times 10^{{ - 6}} \cdot M^{2} \cdot \alpha ^{2} } \hfill & {} \hfill \\ { + 3.80 \times 10^{{ - 3}} \cdot M^{3} + \left( { - 1.48} \right) \times 10^{{ - 3}} \cdot \alpha ^{3} } \hfill & {} \hfill \\ { + \left( { - 1.30} \right) \times 10^{{ - 4}} \cdot M^{4} + 1.69 \times 10^{{ - 4}} \cdot \alpha ^{4} } \hfill & {} \hfill \\ { + 1.71 \times 10^{{ - 6}} \cdot M^{5} + \left( { - 5.93} \right) \times 10^{{ - 6}} \cdot \alpha ^{5} ,\begin{array}{*{20}c} {} & {} \\ \end{array} } \hfill & {M>4.0} \hfill \\ \end{array} } \right.{\text{ }}$$
(A15)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yuehui, J., Yu, S. et al. Modified deep deterministic policy gradient based on active disturbance rejection control for hypersonic vehicles. Neural Comput & Applic 36, 4071–4081 (2024). https://doi.org/10.1007/s00521-023-09302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09302-5

Keywords

Navigation