Skip to main content
Log in

Generative artificial intelligence-enabled dynamic detection of rat nicotine-related circuits

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Nicotine addiction circuits involve integrating specific brain regions that alter to frequent smoking. Detection of these circuits via fMRI contributes to understanding addiction-related mechanisms. Identification of the functional circuits and networks altered by nicotine is essential to improve the treatment of nicotine addiction. However, analyzing fMRI data and detecting functional addiction circuits still have challenges. In this work, we developed a generative AI-enabled framework, rat addiction-related circuits detection platform (RADP), to detect nicotine-related circuits. It has an end-to-end pipeline: functional imaging data acquisition from neurobiological experiments, computational modeling for brain networks, and a novel generative model including spatiotemporal transformer auto-encoder (STA) and dynamic circuits analysis. The proposed spatiotemporal representation contrasting trains the encoder of STA to contrastively capture representations between the addictive and the control groups. Experimental results indicate that the framework can efficiently detect the verified addiction circuits and discover the unknown but significant circuits. Moreover, RADP can be served as a general tool which can be extended to other brain circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, Lu L, Jha P, Hall WD (2022) Tobacco and nicotine use. Nat Rev Dis Prim 8(1):1–16

    Google Scholar 

  2. of Health UD, Services H et al (2014) The health consequences of smoking-50 years of progress: a report of the surgeon general

  3. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676

    Article  PubMed  Google Scholar 

  5. Bifone A, Gozzi A (2011) Functional and pharmacological MRI in understanding brain function at a systems level. In: Molecular and functional models in neuropsychiatry. Springer, pp 323–357

  6. Volkow ND, Fowler JS, Wang GJ et al (2003) The addicted human brain: insights from imaging studies. J Clin Investig 111(10):1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaquero L, Cámara E, Sampedro F, Perez de los Cobos J, Batlle F, Fabregas JM, Sales JA, Cervantes M, Ferrer X, Lazcano G et al (2017) Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit. Addict Biol 22(3):844–856

    Article  CAS  PubMed  Google Scholar 

  8. Hong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, Thaker GK, Stein EA (2009) Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry 66(4):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jing C, Gong C, Chen Z, Lei B, Wang S (2023) TA-GAN: transformer-driven addiction-perception generative adversarial network. Neural Comput Appl 35(13):9579–9591

    Article  Google Scholar 

  10. Pan J, Lei B, Shen Y, Liu Y, Feng Z, Wang S (2021) Characterization multimodal connectivity of brain network by hypergraph GAN for Alzheimer’s disease analysis. In: Pattern recognition and computer vision: 4th Chinese conference, PRCV 2021, Beijing, China, October 29–November 1, 2021, Proceedings, Part III 4. Springer, pp 467–478

  11. Zeng N, Li H, Peng Y (2023) A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease. Neural Comput Appl 35(16):11599–11610

    Article  Google Scholar 

  12. Noella RN, Priyadarshini J (2023) Diagnosis of Alzheimer’s, Parkinson’s disease and frontotemporal dementia using a generative adversarial deep convolutional neural network. Neural Comput Appl 35(3):2845–2854

    Article  Google Scholar 

  13. Raoof I, Gupta MK (2023) A conditional input-based GAN for generating spatio-temporal motor imagery electroencephalograph data. Neural Comput Appl 35:1–21

    Article  Google Scholar 

  14. Gong C, Chen X, Mughal B, Wang S (2023) Addictive brain-network identification by spatial attention recurrent network with feature selection. Brain Inform 10(1):1–11

    Article  Google Scholar 

  15. Nestler EJ, Lüscher C (2019) The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron 102(1):48–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petri G, Expert P, Turkheimer F, Carhart-Harris R, Nutt D, Hellyer PJ, Vaccarino F (2014) Homological scaffolds of brain functional networks. J R Soc Interface 11(101):20140873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weng JC, Huang SY, Lee MS, Ho MC (2021) Association between functional brain alterations and neuropsychological scales in male chronic smokers using resting-state fMRI. Psychopharmacology 238(5):1387–1399

    Article  CAS  PubMed  Google Scholar 

  18. Lüscher C (2016) The emergence of a circuit model for addiction. Ann Rev Neurosci 39:257–276

    Article  PubMed  Google Scholar 

  19. Gong C, Jing C, Chen X, Pun CM, Huang G, Saha A, Nieuwoudt M, Li HX, Hu Y, Wang S (2023) Generative AI for brain image computing and brain network computing: a review. Front Neurosci 17:1203104

    Article  PubMed  PubMed Central  Google Scholar 

  20. Castelli M, Manzoni L (2022) Generative models in artificial intelligence and their applications. Appl Sci 12(9):4127

    Article  CAS  Google Scholar 

  21. You S, Lei B, Wang S, Chui CK, Cheung AC, Liu Y, Gan M, Wu G, Shen Y (2022) Fine perceptive GANs for brain MR image super-resolution in wavelet domain. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3153088

    Article  PubMed  Google Scholar 

  22. Hu S, Lei B, Wang S, Wang Y, Feng Z, Shen Y (2021) Bidirectional mapping generative adversarial networks for brain MR to PET synthesis. IEEE Trans Med Imaging 41(1):145–157

    Article  PubMed  Google Scholar 

  23. Mishra R, Sharma K, Jha R, Bhavsar A (2023) NeuroGAN: image reconstruction from EEG signals via an attention-based GAN. Neural Comput Appl 35(12):9181–9192

    Google Scholar 

  24. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114

  25. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2020) Generative adversarial networks. Commun ACM 63(11):139–144

    Article  MathSciNet  Google Scholar 

  26. Song Y, Ermon S (2019) Generative modeling by estimating gradients of the data distribution. Adv Neural Inf Process Syst 32

  27. Gong C, Xue B, Jing C, He CH, Wu GC, Lei B, Wang S (2022) Time-sequential graph adversarial learning for brain modularity community detection. Math Biosci Eng 19:13276–13293

    Article  PubMed  Google Scholar 

  28. Wang S, Chen Z, You S, Wang B, Shen Y, Lei B (2022) Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Comput Appl 34(11):8657–8669

    Article  Google Scholar 

  29. Duncan A, Heyer MP, Ishikawa M, Caligiuri SP, Liu XA, Chen Z, Micioni Di Bonaventura MV, Elayouby KS, Ables JL, Howe WM et al (2019) Habenular TCF7L2 links nicotine addiction to diabetes. Nature 574(7778):372–377

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Valdés-Hernández PA, Sumiyoshi A, Nonaka H, Haga R, Aubert-Vásquez E, Ogawa T, Iturria-Medina Y, Riera JJ, Kawashima R (2011) An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front Neuroinform 5:26

    PubMed  PubMed Central  Google Scholar 

  31. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, Amsterdam

    Google Scholar 

  32. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst 30

  33. Zhang M, Cui Z, Neumann M, Chen Y (2018) An end-to-end deep learning architecture for graph classification. In: Proceedings of the AAAI conference on artificial intelligence, vol 32

  34. Sun FY, Hoffman J, Verma V, Tang J (2020) Infograph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. In: International conference on learning representations

  35. Nguyen DQ, Nguyen TD, Phung D (2022) Universal graph transformer self-attention networks. In: Companion proceedings of the web conference 2022, pp 193–196

  36. Smolka MN, Bühler M, Klein S, Zimmermann U, Mann K, Heinz A, Braus DF (2006) Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology 184(3):577–588

    Article  CAS  PubMed  Google Scholar 

  37. Björnholm L, Nikkinen J, Kiviniemi V, Niemelä S, Drakesmith M, Evans J, Pike GB, Richer L, Pausova Z, Veijola J et al (2020) Prenatal exposure to maternal cigarette smoking and structural properties of the human corpus callosum. Neuroimage 209:116477

    Article  PubMed  Google Scholar 

  38. Ghasemzadeh Z, Sardari M, Javadi P, Rezayof A (2020) Expression analysis of hippocampal and amygdala CREB-BDNF signaling pathway in nicotine-induced reward under stress in rats. Brain Res 1741:146885

    Article  CAS  PubMed  Google Scholar 

  39. Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular \(\alpha\)5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471(7340):597–601

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamilton DA, Kolb B (2005) Differential effects of nicotine and complex housing on subsequent experience-dependent structural plasticity in the nucleus accumbens. Behav Neurosci 119(2):355

    Article  CAS  PubMed  Google Scholar 

  41. Claus ED, Blaine SK, Filbey FM, Mayer AR, Hutchison KE (2013) Association between nicotine dependence severity, bold response to smoking cues, and functional connectivity. Neuropsychopharmacology 38(12):2363–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen C, Mondoloni S, Le Borgne T, Centeno I, Come M, Jehl J, Solié C, Reynolds LM, Durand-de Cuttoli R, Tolu S et al (2021) Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron 109(16):2604–2615

    Article  CAS  PubMed  Google Scholar 

  43. Flannery JS, Riedel MC, Poudel R, Laird AR, Ross TJ, Salmeron BJ, Stein EA, Sutherland MT (2019) Habenular and striatal activity during performance feedback are differentially linked with state-like and trait-like aspects of tobacco use disorder. Sci Adv 5(10):eaax2084

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fedota JR, Ross TJ, Castillo J, McKenna MR, Matous AL, Salmeron BJ, Menon V, Stein EA (2021) Time-varying functional connectivity decreases as a function of acute nicotine abstinence. Biol Psychiatry Cognit Neurosci Neuroimaging 6(4):459–469

    Article  Google Scholar 

  45. McLaughlin I, Dani JA, De Biasi M (2015) Nicotine withdrawal. Neuropharmacol Nicotine Depend. https://doi.org/10.1007/978-3-319-13482-6_4

    Article  Google Scholar 

  46. Yip SW, Lichenstein SD, Garrison K, Averill CL, Viswanath H, Salas R, Abdallah CG (2022) Effects of smoking status and state on intrinsic connectivity. Biol Psychiatry Cognit Neurosci Neuroimaging 7(9):895–904

    Article  Google Scholar 

  47. Claus ED, Weywadt CR (2020) Resting-state connectivity in former, current, and never smokers. Nicotine Tob Res 22(2):180–187

    PubMed  Google Scholar 

  48. Picciotto MR, Kenny PJ (2021) Mechanisms of nicotine addiction. Cold Spring Harb Perspect Med 11(5):a039610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under Grants 62172403, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, Shenzhen Key Basic Research Projects under Grant JCYJ20200109115641762 and the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuxin Chen or Shuqiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Jing, C., Liu, Xa. et al. Generative artificial intelligence-enabled dynamic detection of rat nicotine-related circuits. Neural Comput & Applic 36, 4693–4707 (2024). https://doi.org/10.1007/s00521-023-09307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09307-0

Keywords

Navigation