Skip to main content
Log in

Combining artificial neural networks and hematological data to diagnose Covid-19 infection in Brazilian population

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Fast and accurate diagnosis of COVID-19 is important to prevent dissemination and disease progression. Artificial Intelligence is known as a universal fitting tool and can be used on the formulation of predictive models for the disease’s diagnosis. Thus, we aimed to obtain a neural network (ANN) to diagnose patients as positive or negative COVID-19 based on patient data and blood tests. Data from 1003 patients followed between June/2020 and October/2020 were used. Covid-19 was confirmed in 777 patients by RT-PCR. The inputs considered were: sex, age, ethinicity, body mass index, tabagism, ex-tabagism, alveolar infiltrate, arterial hypertension, diabetes, heart rate, respiration rate, body temperature, oxygen saturation, D-dimer, activated partial thromboplastin time, prothrombin time, levels of: hemoglobin, platelet, leukocytes, lymphocytes, monocytes, neutrophils, lactate dehydrogenase, C-reactive protein, and creatinine. Blood was collected at the patient’s admission. The ANNs had 25 inputs and the output was the Covid-19 diagnosis. ANNs with one and two hidden layers were proposed. The number of neurons ranged from 5 to 35. The best result was obtained with an ANN containing 15 neurons in the first and second hidden layers, respectively. The model presented accuracy of 83%, and high capacity for the prediction of true positives (precision of 0.90). The results showed that the ANNs are promising to diagnose Covid-19 based on clinical parameters and blood tests. After future refinements and proper validation, this model could be used to diagnose Covid-19 on daily basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data are not publicly available because they contain information that could compromise the privacy of research participants.

References

  1. OWID, Our World In Data. (2022) https://ourworldindata.org/. Accessed: Sept 7th, 2022

  2. Cabitza F, Campagner A, Ferrari D, Resta CD, Ceriotti D, Sabetta E, Colombini A, Vecchi ED, Banfi G, Locatelli M, Carobene A (2021) Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests. Clin Chem Lab Med (CCLM) 59:421–431

    CAS  Google Scholar 

  3. Brinati D, Campagner A, Ferrari D, Locatelli M, Banfi G, Cabitza F (2020) Detection of COVID-19 infection from routine blood exams with machine learning: a feasibility study. J Med Syst 44:135

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan BE (2020) Hematologic parameters in patients with COVID-19 infection: a reply. Am J Hematol 95:E215–E215

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Formica V, Minieri M, Bernardini S, Ciotti M, D’Agostini C, Roselli M, Andreoni M, Morelli C, Parisi G, Federici M, Paganelli C, Legramante JM (2020) Complete blood count might help to identify subjects with high probability of testing positive to SARS-CoV-2. Clin Med 20:e114–e119

    Google Scholar 

  6. Lin D, Vasilakos AV, Tang Y, Yao Y (2016) Neural networks for computer-aided diagnosis in medicine: a review. Neurocomputing 216:700–708

    Google Scholar 

  7. Munir K, Elahi H, Ayub A, Frezza F, Rizzi A (2019) Cancer diagnosis using deep learning: a bibliographic review. Cancers 11:1235

    PubMed  PubMed Central  Google Scholar 

  8. Bakator M, Radosav D (2018) Deep learning and medical diagnosis: a review of literature. Multimod Technol Interact 2:47

    Google Scholar 

  9. Martins TD, Annichino-Bizzacchi JM, Romano AVC, Maciel Filho R (2020) Artificial neural networks for prediction of recurrent venous thromboembolism. Int J Med Inform 141:104221

    CAS  PubMed  Google Scholar 

  10. Alyasseri ZAA, Al-Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, Alomari OA, Abdulkareem KH, Adam A, Damasevicius R, Mohammed MA, Zitar RA (2022) Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. Expert Syst 39:e12759

    PubMed  Google Scholar 

  11. Aslan MF, Sabanci K, Durdu A, Unlersen MF (2022) COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization. Comput Biol Med 142:105244

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thirukrishna JT, Krishna SRS, Shashank P, Srikanth S, Raghu V (2022) Survey on diagnosing CORONA VIRUS from radiography Chest X-ray images using convolutional neural networks. Wirel Pers Commun 124:2261–2270

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mulrenan C, Rhode K, Fischer BM (2022) A literature review on the use of artificial intelligence for the diagnosis of COVID-19 on CT and chest X-ray. Diagnostics 12:869

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huyut MT, Velichko A (2022) Diagnosis and prognosis of COVID-19 disease using routine blood values and LogNNet neural network. Sensors 22:4820

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Babaei Rikan S, Sorayaie Azar A, Ghafari A, Bagherzadeh Mohasefi J, Pirnejad H (2022) COVID-19 diagnosis from routine blood tests using artificial intelligence techniques. Biomed Signal Process Control 72:103263

    PubMed  Google Scholar 

  16. Abdulkareem KH, Mohammed MA, Salim A, Arif M, Geman O, Gupta D, Khanna A (2021) Realizing an effective COVID-19 diagnosis system based on machine learning and IoT in smart hospital environment. IEEE Internet Things J 8:15919–15928

    PubMed  Google Scholar 

  17. Takara B, Freitas F, Bacelar A, Lykawka R, Sanchez MSA (2022) Artificial intelligence to evaluate diagnosed COVID-19 chest radiographs. Braz J Radiat Sci. https://doi.org/10.15392/bjrs.v10i3.2056

    Article  Google Scholar 

  18. Pinasco GC, de Mattos Farina EMJ, Barcellos Filho FN, Fiorotti WF, Ferreira MCM, de Souza Cruz SC, Colodette AL, Loureiro LR, Comério T, Farias DCS (2022) An interpretable machine learning model for COVID-19 screening. J Human Growth Dev 32:268–274

    Google Scholar 

  19. Alakus TB, Turkoglu I (2020) Comparison of deep learning approaches to predict COVID-19 infection. Chaos, Solit Fract 140:110120

    MathSciNet  Google Scholar 

  20. AlJame M, Ahmad I, Imtiaz A, Mohammed A (2020) Ensemble learning model for diagnosing COVID-19 from routine blood tests. Inform Med Unlocked 21:100449

    PubMed  PubMed Central  Google Scholar 

  21. Batista AFDM, Miraglia JL, Donato THR, and Chiavegatto Filho ADP (2020) COVID-19 diagnosis prediction in emergency care patients: a machine learning approach. MedRxiv

  22. Avila E, Kahmann A, Alho C, Dorn M (2020) Hemogram data as a tool for decision-making in COVID-19 management: applications to resource scarcity scenarios. PeerJ 8:e9482

    PubMed  PubMed Central  Google Scholar 

  23. Freitas Barbosa VA, Gomes JC, de Santana MA, Albuquerque JEDA, de Souza RG, de Souza RE, dos Santos WP (2022) Heg. IA: an intelligent system to support diagnosis of Covid-19 based on blood tests. Res Biomed Eng 38:99–116

    Google Scholar 

  24. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    MathSciNet  Google Scholar 

  25. Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7:155–162

    MathSciNet  Google Scholar 

  26. Beale E (1972) A derivation of conjugate gradients. In: Lootsma FA (ed) Numerical methods for nonlinear optimization. Academic Press, London, pp 39–43

    Google Scholar 

  27. Riedmiller M, Braun H (1992) RPROP-A fast adaptive learning algorithm. Proc ISCIS VII 1:586–591

    Google Scholar 

  28. Chien-Cheng Y and Bin-Da L (2002) A backpropagation algorithm with adaptive learning rate and momentum coefficient. In: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290), 2:1218–1223

  29. . Rakitianskaia A and Engelbrecht A (2015) Measuring saturation in neural networks. In: 2015 IEEE Symposium Series on Computational Intelligence, 1:1423–1430

  30. Glorot X, and Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, 9:249–256

  31. O’Donoghue J, Roantree M, McCarren A (2017) Detecting feature interactions in agricultural trade data using a deep neural network. Springer International Publishing, Cham, pp 449–458

    Google Scholar 

  32. Barek MA, Aziz MA, Islam MS (2020) Impact of age, sex, comorbidities and clinical symptoms on the severity of COVID-19 cases: a meta-analysis with 55 studies and 10014 cases. Heliyon 6:e05684

    PubMed  PubMed Central  Google Scholar 

  33. Sandoval M, Nguyen DT, Vahidy FS, Graviss EA (2021) Risk factors for severity of COVID-19 in hospital patients age 18–29 years. PLoS ONE 16:e0255544

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gallo Marin B, Aghagoli G, Lavine K, Yang L, Siff EJ, Chiang SS, Salazar-Mather TP, Dumenco L, Savaria MC, Aung SN, Flanigan T, Michelow IC (2021) Predictors of COVID-19 severity: a literature review. Rev Med Virol 31:e2146

    Google Scholar 

  35. Pennington AF, Kompaniyets L, Summers AD, Danielson ML, Goodman AB, Chevinsky JR, Preston LE, Schieber LZ, Namulanda G, Courtney J, Strosnider HM, Boehmer TK, Mac Kenzie WR, Baggs J, and Gundlapalli AV (2020) Risk of clinical severity by age and race/ethnicity among adults hospitalized for COVID-19—United States, March–September 2020. Open Forum Infectious Diseases, 8

  36. Rapp JL, Lieberman-Cribbin W, Tuminello S, Taioli E (2021) Male sex, severe obesity, older age, and chronic kidney disease are associated with COVID-19 severity and mortality in New York City. Chest 159:112–115

    CAS  PubMed  Google Scholar 

  37. Pozdnyakova O, Connell NT, Battinelli EM, Connors JM, Fell G, Kim AS (2020) Clinical significance of CBC and WBC morphology in the diagnosis and clinical course of COVID-19 infection. Am J Clin Pathol 155:364–375

    Google Scholar 

  38. Puah SH, Young BE, Chia PY, Ho VK, Loh J, Gokhale RS, Tan SY, Sewa DW, Kalimuddin S, Tan CK, Pada SKMS, Cove ME, Chai LYA, Parthasarathy P, Ho BCH, Ng JJ, Ling LM, Abisheganaden JA, Lee VJM, Tan CH, Lin RTP, Leo YS, Lye DC, Yeo TW, Lim PL, Ang BSP, Lee CC, Lee LSU, Ng OT, Chan M, Marimuthu K, Vasoo S, Wong CS, Lee TH, Sadarangani SP, Lin RJ, Sadasiv MS, Ng DHL, Choy CY, Tan GSE, Tan YK, Ong SWX, Sutjipto S, Lee PH, Tay JY, Ying D, Khoo BY, Tay WC, Ng G, Mah YY, Tan W, Lew SJW, Fong RKC, Oh HML, Chien JMF, Shafi H, Cheong HY, Teo DCH, Tan TT, Tan BH, Low JGH, Wijaya L, Venkatachalam I, Chua YY, Cherng BPZ, Chan YFZ, Phua GC, Goh KJ, Soh JXJ, Zheng S, Lingegowda PB, Peh WM, Lee YL, Ho JY, Chia AYJ, Lin L, Ooi ST, Anantharajah TP, Somani J, Oon JEL, Yan GZ, and t Singapore novel coronavirus outbreak research (2021) Clinical features and predictors of severity in COVID-19 patients with critical illness in Singapore. Sci Rep 11:7477

  39. Taj S, Kashif A, Arzinda Fatima S, Imran S, Lone A, Ahmed Q (2021) Role of hematological parameters in the stratification of COVID-19 disease severity. Ann Med Surg 62:68–72

    Google Scholar 

  40. Marcos M, Belhassen-García M, Sánchez-Puente A, Sampedro-Gomez J, Azibeiro R, Dorado-Díaz P-I, Marcano-Millán E, García-Vidal C, Moreiro-Barroso M-T, Cubino-Bóveda N, Pérez-García M-L, Rodríguez-Alonso B, Encinas-Sánchez D, Peña-Balbuena S, Sobejano-Fuertes E, Inés S, Carbonell C, López-Parra M, Andrade-Meira F, López-Bernús A, Lorenzo C, Carpio A, Polo-San-Ricardo D, Sánchez-Hernández M-V, Borrás R, Sagredo-Meneses V, Sanchez P-L, Soriano A, Martín-Oterino J-Á (2021) Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients. PLoS ONE 16:e0240200

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Alnor A, Sandberg MB, Toftanes BE, Vinholt PJ (2021) Platelet parameters and leukocyte morphology is altered in COVID-19 patients compared to non-COVID-19 patients with similar symptomatology. Scand J Clin Lab Invest 81:213–217

    CAS  PubMed  Google Scholar 

  42. Liu Y, Liao W, Wan L, Xiang T, Zhang W (2021) Correlation between relative nasopharyngeal virus RNA load and lymphocyte count disease severity in patients with COVID-19. Viral Immunol 34:330–335

    CAS  PubMed  Google Scholar 

  43. Althaus K, Marini I, Zlamal J, Pelzl L, Singh A, Häberle H, Mehrländer M, Hammer S, Schulze H, Bitzer M, Malek N, Rath D, Bösmüller H, Nieswandt B, Gawaz M, Bakchoul T, Rosenberger P (2021) Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 137:1061–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaminska H, Szarpak L, Kosior D, Wieczorek W, Szarpak A, Al-Jeabory M, Gawel W, Gasecka A, Jaguszewski MJ, Jarosz-Chobot P (2021) Impact of diabetes mellitus on in-hospital mortality in adult patients with COVID-19: a systematic review and meta-analysis. Acta Diabetol 58:1101–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Abdi A, Jalilian M, Sarbarzeh PA, Vlaisavljevic Z (2020) Diabetes and COVID-19: a systematic review on the current evidences. Diabetes Res Clin Pract 166:108347

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nassar M, Nso N, Baraka B, Alfishawy M, Mohamed M, Nyabera A, Sachmechi I (2021) The association between COVID-19 and type 1 diabetes mellitus: a systematic review. Diabetes Metab Syndr 15:447–454

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Naveed M, Naeem M, ur Rahman M, Gul Hilal M, Kakakhel MA, Ali G, Hassan A (2019) Review of potential risk groups for coronavirus disease 2019 (COVID-19). New Microb New Infect 41(2021):100849

    Google Scholar 

  48. Santos LG, Baggio JADO, Leal TC, Costa FA, Fernandes TRMDO, Silva RVD, Armstrong A, Carmo RF, Souza CDFD (2021) Prevalence of systemic arterial hypertension and diabetes mellitus in individuals with COVID-19: a retrospective study of deaths in Pernambuco, Brazil. Arq Bras Cardiol 117:416–422

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Souza FSH, Hojo-Souza NS, Batista BDDO, da Silva CM, Guidoni DL (2021) On the analysis of mortality risk factors for hospitalized COVID-19 patients: a data-driven study using the major Brazilian database. PLoS ONE 16:e0248580

    PubMed  PubMed Central  Google Scholar 

  50. Shah H, Khan MSH, Dhurandhar NV, Hegde V (2021) The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetol 58:831–843

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, and a.t.N.C.-R. Consortium (2020) Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA, 323: 2052–2059

  52. Mubarik S, Liu X, Eshak ES, Liu K, Liu Q, Wang F, Shi F, Wen H, Bai J, Yu C and Cao J (2021) The association of hypertension with the severity of and mortality from the COVID-19 in the early stage of the epidemic in Wuhan, China: a multicenter retrospective cohort study. Front Med 8

  53. Peña JE-Dl, Rascón-Pacheco RA, Ascencio-Montiel IDJ, González-Figueroa E, Fernández-Gárate JE, Medina-Gómez OS, Borja-Bustamante P, Santillán-Oropeza JA, and Borja-Aburto VH (2021) Hypertension, diabetes and obesity, major risk factors for death in patients with COVID-19 in Mexico. Archiv Med Res 52:443–449

  54. Chang T-H, Chou C-C, Chang L-Y (2020) Effect of obesity and body mass index on coronavirus disease 2019 severity: a systematic review and meta-analysis. Obes Rev 21:e13089

    CAS  PubMed  Google Scholar 

  55. Mohseni H, Amini S, Abiri B, Kalantar M (2021) Do body mass index (BMI) and history of nutritional supplementation play a role in the severity of COVID-19? A retrospective study. Nutr Food Sci 51:1017–1027

    Google Scholar 

  56. Siqueira JVV, Almeida LG, Zica BO, Brum IB, Barceló A, de Siqueira Galil AG (2020) Impact of obesity on hospitalizations and mortality, due to COVID-19: a systematic review. Obes Res Clin Pract 14:398–403

    PubMed  PubMed Central  Google Scholar 

  57. Gao M, Piernas C, Astbury NM, Hippisley-Cox J, O’Rahilly S, Aveyard P, Jebb SA (2021) Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol 9:350–359

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu J, Pang J, Ji P, Zhong Z, Li H, Li B, Zhang J, Lu J (2021) Coagulation dysfunction is associated with severity of COVID-19: a meta-analysis. J Med Virol 93:962–972

    CAS  PubMed  Google Scholar 

  59. Yao Y, Cao J, Wang Q, Shi Q, Liu K, Luo Z, Chen X, Chen S, Yu K, Huang Z, Hu B (2020) D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care 8:49

    PubMed  PubMed Central  Google Scholar 

  60. Li Y, Zhao K, Wei H, Chen W, Wang W, Jia L, Liu Q, Zhang J, Shan T, Peng Z, Liu Y, Yan X (2020) Dynamic relationship between D-dimer and COVID-19 severity. Br J Haematol 190:e24–e27

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Melo EB, Oliveira ET, Martins TD (2020) A neural network correlation for molar density and specific heat of water: predictions at pressures up to 100 MPa. Fluid Phase Equilib 506:112411

    CAS  Google Scholar 

  62. Gungor B, Atici A, Baycan OF, Alici G, Ozturk F, Tugrul S, Asoglu R, Cevik E, Sahin I, Barman HA (2021) Elevated D-dimer levels on admission are associated with severity and increased risk of mortality in COVID-19: a systematic review and meta-analysis. Am J Emerg Med 39:173–179

    PubMed  Google Scholar 

  63. Pirsalehi A, Salari S, Baghestani A, Sanadgol G, Shirini D, Baerz MM, Abdi S, Akbari ME, Bashash D (2021) Differential alteration trend of white blood cells (WBCs) and monocytes count in severe and non-severe COVID-19 patients within a 7-day follow-up. Iran J Microbiol 13:8–16

    PubMed  PubMed Central  Google Scholar 

  64. Kilercik M, Demirelce Ö, Serdar MA, Mikailova P, Serteser M (2021) A new haematocytometric index: predicting severity and mortality risk value in COVID-19 patients. PLoS ONE 16:e0254073

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kazancioglu S, Yilmaz FM, Bastug A, Sakallı A, Ozbay BO, Buyuktarakci C, Bodur H, Yilmaz G (2021) Lymphocyte subset alteration and monocyte CD4 expression reduction in patients with severe COVID-19. Viral Immunol 34:342–351

    CAS  PubMed  Google Scholar 

  66. Simadibrata DM, Calvin J, Wijaya AD, Ibrahim NAA (2021) Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COVID-19 patients: a meta-analysis. Am J Emerg Med 42:60–69

    PubMed  PubMed Central  Google Scholar 

  67. Ottaiano GY, da Cruz INS, da Cruz HS, Martins TD (2021) Estimation of vaporization properties of pure substances using artificial neural networks. Chem Eng Sci 231:116324

    CAS  Google Scholar 

  68. Valera VY, Codolo MC, Martins TD (2021) Artificial neural network for prediction of SO2 removal and volumetric mass transfer coefficient in spray tower. Chem Eng Res Des 170:1–12

    CAS  Google Scholar 

  69. Haykin S (2005) Neural networks – a comprehensive foundation. Prentice Hall, Delhi

    Google Scholar 

  70. Martins TD, Annichino-Bizzacchi JM, Romano AVC, Filho RM (2019) Principal component analysis on recurrent venous thromboembolism. Clin Appl Thromb Hemost 25:1076029619895323

    PubMed  PubMed Central  Google Scholar 

  71. Mandrekar JN (2010) Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 5:1315–1316

    PubMed  Google Scholar 

Download references

Acknowledgements

São Paulo Research Foundation (FAPESP)—(grant #2016/14172-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago D. Martins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethical comitee of the Sociedade Beneficente de Senhoras Hospital Sírio-Libanês (CAAE: 30439920.9.0000.5461).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, T.D., Martins, S.D., Montalvão, S. et al. Combining artificial neural networks and hematological data to diagnose Covid-19 infection in Brazilian population. Neural Comput & Applic 36, 4387–4399 (2024). https://doi.org/10.1007/s00521-023-09312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09312-3

Keywords