Skip to main content

Advertisement

Log in

Complex network robustness prediction using attention-augmented CNN

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Assessing the strength of complex networks is crucial for evaluating their functionality and monitoring system security. Two primary perspectives for measuring network robustness are connectivity and controllability, which quantify how well a network maintains connectivity and controllability after experiencing complete attacks. However, conventional robustness calculation methods that use simulation attacks can be impractical for large-scale networks. Recent research has explored the use of deep learning methods for network robustness prediction, including PCR (short for predictor of controllability robustness), which uses a VGG (short for visual geometry group)-based convolutional neural network (CNN) and a linear filter. However, PCR has limitations, including inaccurate edge importance differentiation and fluctuating output curves. This paper presents ATTRP, an attention-based robustness predictor, which addresses these limitations. ATTRP uses a novel convolutional neural network with channel and spatial attention mechanisms to improve prediction accuracy and a robustness filter based on Savitzky–Golay smoothing to rectify the robustness curve. Experimental studies demonstrate that ATTRP outperforms other predictors, with much lower errors, while its computational speed is far superior to that of traditional attacking simulation. Overall, our research provides a more effective and efficient means of predicting network robustness, with potential applications in monitoring system security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The synthetic networks utilized in experiments 5.1, 5.2, 5.3, 5.4, and 5.6 were generated based on three network generating models (ER, SF, SW) using a MATLAB program, according to their specific parameter settings such as the number of nodes and node degree. The source code utilized for generating these networks is available upon request from the authors. The real-world networks used in experiment 5.5 are publicly available in the [networkrepository] at [https://networkrepository.com]. Details on the specific datasets used in this study are provided in the manuscript.

References

  1. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watts DJ, Hofman JM, Sharma A (2017) Prediction and explanation in social systems. Science 355(6324):486–488

    ADS  PubMed  Google Scholar 

  3. Ebel H, Mielsch LI, Bornholdt S (2002) Scale-free topology of e-mail networks. Phys Rev E 66(3 Pt 2A):035103

    ADS  Google Scholar 

  4. Faloutsos M, Faloutsos P, Faloutsos C (2011) The structure and dynamics of networks. Princeton University Press, New Jersey, pp 195–206

    Google Scholar 

  5. Wandelt S, Shi X, Sun X (2021) Estimation and improvement of transportation network robustness by exploiting communities. Reliabil Eng Syst Safety 206:107307

    Google Scholar 

  6. Zhan C, Zheng Y, Lai Z, Hao T, Li B (2021) Identifying epidemic spreading dynamics of covid-19 by pseudocoevolutionary simulated annealing optimizers. Neural Comput Appl 33:4915–4928

    PubMed  Google Scholar 

  7. Zhan C, Jiang W, Min H, Gao Y, Tse C (2023) Human migration-based graph convolutional network for pm2. 5 forecasting in post-covid-19 pandemic age. Neural Comput Appl 35(9):6457–6470

    PubMed  Google Scholar 

  8. Cohen R, Erez K, Ben-Avraham D, Havlin S (2001) Breakdown of the internet under intentional attack. Phys Rev Lett 86(16):3682

    ADS  CAS  PubMed  Google Scholar 

  9. Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci 108(10):3838–3841

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeng A, Liu W (2012) Enhancing network robustness against malicious attacks. Phys Rev E 85(6):066130

    ADS  MathSciNet  Google Scholar 

  11. Buldyrev S, Parshani R, Paul G, Stanley H, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464:1025

    ADS  CAS  PubMed  Google Scholar 

  12. Bashan A, Berezin Y, Buldyrev S, Havlin S (2013) The extreme vulnerability of interdependent spatially embedded networks. Nature Phys 9:667–672

    ADS  CAS  Google Scholar 

  13. Liu YY, Slotine JJ, Barabási AL (2012) Control centrality and hierarchical structure in complex networks. PLOS ONE 7(9):e44459

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shargel B, Sayama H, Epstein IR, Bar-Yam Y (2003) Optimization of robustness and connectivity in complex networks. Phys Rev Lett 90(6):068701

    ADS  PubMed  Google Scholar 

  15. Xiao YD, Lao SY, Hou LL, Bai L (2014) Optimization of robustness of network controllability against malicious attacks. Chinese Phys B 23(11):118902

    ADS  Google Scholar 

  16. Wu J, Barahona M, Tan YJ, Deng HZ (2011) Spectral measure of structural robustness in complex networks. IEEE Trans Syst Man Cybern-Part A Syst Humans 41(6):1244–1252

    Google Scholar 

  17. Gao J, Buldyrev SV, Havlin S, Stanley HE (2011) Robustness of a network of networks. Phys Rev Lett 107(19):195701

    ADS  PubMed  Google Scholar 

  18. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    ADS  CAS  PubMed  Google Scholar 

  19. Chen G, Lou Y, Wang L (2019) A comparative study on controllability robustness of complex networks. IEEE Trans Circ Syst II Express Briefs 66(5):828–832

    ADS  Google Scholar 

  20. Wang S, Liu J, Jin Y (2020) Robust structural balance in signed networks using a multiobjective evolutionary algorithm. IEEE Computat Intell Magazine 15(2):24–35

    MathSciNet  CAS  Google Scholar 

  21. Wang S, Liu J, Jin Y (2019) Surrogate-assisted robust optimization of large-scale networks based on graph embedding. IEEE Trans Evolut Computat 24(4):735–749

    Google Scholar 

  22. Chen J, Liu J (2021) 2021 IEEE congress on evolutionary computation (CEC). IEEE, pp 327–334

    Google Scholar 

  23. Wang S, Liu J, Jin Y (2021) A computationally efficient evolutionary algorithm for multiobjective network robustness optimization. IEEE Trans Evolut Computat 25(3):419–432

    Google Scholar 

  24. Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci 108(10):3838–3841

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buesser P, Daolio F, Tomassini M (2011) International conference on adaptive and natural computing algorithms. Springer, London, pp 167–176

    Google Scholar 

  26. Zhou M, Liu J (2014) A memetic algorithm for enhancing the robustness of scale-free networks against malicious attacks. Phys A Statist Mechan Appl 410:131–143

    Google Scholar 

  27. Lou Y, He Y, Wang L, Chen G (2020) Predicting network controllability robustness: a convolutional neural network approach. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3013251

    Article  PubMed  Google Scholar 

  28. Dhiman A, Sun P, Kooij R (2021) International conference on machine learning for networking (MLN2020). Springer International Publishing, pp 19–39

    Google Scholar 

  29. Lou Y, He Y, Wang L, Tsang KF, Chen G (2021) Knowledge-based prediction of network controllability robustness. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3071367

    Article  PubMed  Google Scholar 

  30. Lou Y, Wu R, Li J, Wang L, Chen G (2021) A convolutional neural network approach to predicting network connectedness robustness. IEEE Trans Netw Sci Eng. https://doi.org/10.1109/TNSE.2021.3107186

    Article  Google Scholar 

  31. Lou Y, Wu R, Li J, Wang L, Li X, Chen G (2022) A learning convolutional neural network approach for network robustness prediction. arXiv preprint arXiv:2203.10552

  32. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    ADS  CAS  PubMed  Google Scholar 

  33. Niepert M, Ahmed M, Kutzkov K (2016) In: international conference on machine learning (ICML), pp. 2014–2023

  34. Woo S, Park J, Lee JY, Kweon IS (2018) In: proceedings of the European conference on computer vision (ECCV), pp. 3–19

  35. Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Analyt Chem 36(8):1627–1639

    ADS  CAS  Google Scholar 

  36. Schafer RW (2011) What is a savitzky-golay filter? [Lecture notes]. IEEE Signal Process Magaz 28(4):111–117

    ADS  Google Scholar 

  37. Holme P, Kim BJ, Yoon CN, Han SK (2002) Attack vulnerability of complex networks. Phys Rev E 65(5):056109

    ADS  Google Scholar 

  38. Lombardi A, Hörnquist M (2007) Controllability analysis of networks. Phys Rev E 75(5):056110

    ADS  Google Scholar 

  39. Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473(7346):167–173

    ADS  CAS  PubMed  Google Scholar 

  40. Wang XF, Chen G (2002) Pinning control of scale-free dynamical networks. Phys Statist Mech Appl 310(3–4):521–531

    MathSciNet  Google Scholar 

  41. Li X, Wang X, Chen G (2004) Pinning a complex dynamical network to its equilibrium. IEEE Trans Circ Syst Regular Papers 51(10):2074–2087

    MathSciNet  Google Scholar 

  42. Yu W, Chen G, Lu J, Kurths J (2013) Synchronization via pinning control on general complex networks. SIAM J Control Optimizat 51(2):1395–1416

    MathSciNet  Google Scholar 

  43. Kalman RE et al (1960) Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5(2):102–119

    MathSciNet  Google Scholar 

  44. Kalman RE (1960) In: proceedings first international conference on automatic control, Moscow, USSR, pp. 481–492

  45. Xiang L, Chen F, Ren W, Chen G (2019) Advances in network controllability. IEEE Circ Syst Magaz 19(2):8–32

    Google Scholar 

  46. Wang WX, Ni X, Lai YC, Grebogi C (2012) Optimizing controllability of complex networks by minimum structural perturbations. Phys Rev E 85(2):026115

    ADS  Google Scholar 

  47. Wang B, Gao L, Gao Y, Deng Y (2013) Maintain the structural controllability under malicious attacks on directed networks. EPL (Europhys Lett) 101(5):58003

    ADS  CAS  Google Scholar 

  48. Nie S, Wang X, Zhang H, Li Q, Wang B (2014) Robustness of controllability for networks based on edge-attack. PLoS One 9(2):e89066

    ADS  PubMed  PubMed Central  Google Scholar 

  49. Iyer S, Killingback T, Sundaram B, Wang Z (2013) Attack robustness and centrality of complex networks. PLOS ONE 8(4):e59613

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nguyen Q, Pham H, Cassi D, Bellingeri M (2019) Conditional attack strategy for real-world complex networks. Phys Statist Mech Appl 530:121561

    Google Scholar 

  51. Nie T, Guo Z, Zhao K, Lu ZM (2015) New attack strategies for complex networks. Phys Statist Mech Appl 424:248–253

    Google Scholar 

  52. Ruan YR, Lao SY, Wang JD, Bai L, Chen LD (2017) Node importance measurement based on neighborhood similarity in complex network. Acta Phys Sin 66(3):038902

    Google Scholar 

  53. Yang H, An S (2020) Critical nodes identification in complex networks. Symmetry 12(1):123

    ADS  Google Scholar 

  54. Šimon M, Dirgová Luptáková I, Huraj L, Host’oveckỳ M, Pospíchal J (2017) Combined heuristic attack strategy on complex networks. Math Probl Eng 18:e2017

    Google Scholar 

  55. Hamedmoghadam H, Jalili M, Hai LV, Stone L (2021) Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks. Nature Commun 12(1):1254

    ADS  CAS  Google Scholar 

  56. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslovak Math J 23(2):298–305

    MathSciNet  Google Scholar 

  57. Frank H, Frisch I (1970) Analysis and design of survivable networks. IEEE Trans Commun Technol 18(5):501–519

    MathSciNet  Google Scholar 

  58. Sydney A, Scoglio C, Youssef M, Schumm P (2010) Characterising the robustness of complex networks. Int J Internet Technol Sec Trans 2(3–4):291–320

    Google Scholar 

  59. Yuan ZZ, Zhao C, Di ZR, Wang WX, Lai YC (2013) Exact controllability of complex networks. Nature Commun 4:2447

    ADS  Google Scholar 

  60. Erdös P, Rényi A (1960) On the evolution of random graphs. Math Inst Hungar Acad Sci 5:17–61

    MathSciNet  Google Scholar 

  61. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    ADS  MathSciNet  PubMed  Google Scholar 

  62. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442

    ADS  CAS  PubMed  Google Scholar 

  63. Chan H, Akoglu L (2016) Optimizing network robustness by edge rewiring: a general framework. Data Min Knowl Discov 30(5):1395–1425

    MathSciNet  Google Scholar 

  64. Rossi R, Ahmed N (2015) In: proceedings of the AAAI conference on artificial intelligence, vol. 29

  65. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Statist Assoc 47(260):583–621

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under grant number 62002249, entitled ‘Optimization and Application of Controllability Robustness of Complex Networks Based on Computational Intelligence.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junli Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest or competing interests related to this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wu, R. & Li, J. Complex network robustness prediction using attention-augmented CNN. Neural Comput & Applic 36, 7279–7294 (2024). https://doi.org/10.1007/s00521-024-09460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-09460-0

Keywords