Skip to main content
Log in

Yaru3DFPN: a lightweight modified 3D UNet with feature pyramid network and combine thresholding for brain tumor segmentation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Gliomas are the most common and aggressive form of all brain tumors, with a median survival rate of fewer than two years, especially for the highest-grade glioma patient. Accurate and reproducible brain tumor segmentation is essential for an effective treatment plan and diagnosis to reduce the risk of further spread. Automated brain tumor segmentation is challenging because it can appear in the brain with variations in shape, size, and position from one patient to another. Several deep learning architectures have been created to handle automatic segmentation with good performance results on 3D MRI images. However, these architectures are generally large and require high hardware specifications and a large amount of memory and storage. This paper proposes a lightweight modified 3D UNet architecture with an outstanding performance level called Yaru3DFPN. The architecture is built based on the UNet. The block used is ResNet and is modified to use pre-activation strategies and GroupNormalization for batch normalization. In the expanding section, features are arranged into pyramid features. The final output is thresholded using the combining thresholding method. This architecture is light and fast. This proposal was tested using BraTS datasets with the highest dice performance of 80.90%, 86.27%, and 92.02% for ET, TC, and WT areas, respectively. This result outperformed all other comparative architectures and promised to be developed for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used in this study come from the Brain tumor segmentation challenge and can be accessed at https://ipp.cbica.upenn.edu/ for the BraTS 2018, BraTS 2019, and BraTS 2020 datasets. Meanwhile, the BraTS 2021 dataset can be accessed at https://www.synapse.org/brats2021.

References

  1. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M-A, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin H-C, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  PubMed  Google Scholar 

  2. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, DeGroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972. https://doi.org/10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  3. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. https://doi.org/10.1016/J.EJCA.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  4. Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 6893, LNCS PART 3. Springer, pp 354–361. https://doi.org/10.1007/978-3-642-23626-6_44

  5. Ayachi R, Ben Amor N (2009) Brain tumor segmentation using support vector machines. In: Sossai C, Chemello G (eds) Symbolic and quantitative approaches to reasoning with uncertainty. Springer, Berlin, pp 736–747

    Chapter  Google Scholar 

  6. Malathi M, Sinthia P (2018) Mri brain tumour segmentation using hybrid clustering and classification by back propagation algorithm. Asian Pac J Cancer Prev 19(11):3257–3263. https://doi.org/10.31557/APJCP.2018.19.11.3257

    Article  Google Scholar 

  7. Singh P, Lather M (2018) Brain tumor detection and segmentation using hybrid approach of MRI, DWT and K-means. In: ICQNM 2018 : the twelfth international conference on quantum, nano/bio, and micro technologies, Venice, Italy, pp 7–12

  8. Raschke F, Barrick TR, Jones TL, Yang G, Ye X, Howe FA (2019) Tissue-type mapping of gliomas. NeuroImage Clin 21:101648. https://doi.org/10.1016/j.nicl.2018.101648

    Article  PubMed  Google Scholar 

  9. Raju AR, Suresh P, Rao RR (2018) Bayesian HCS-based multi-SVNN: a classification approach for brain tumor segmentation and classification using bayesian fuzzy clustering. Biocybern Biomed Eng 38(3):646–660. https://doi.org/10.1016/j.bbe.2018.05.001

    Article  Google Scholar 

  10. Shahamat H, Saniee Abadeh M (2020) Brain MRI analysis using a deep learning based evolutionary approach. Neural Netw 126:218–234. https://doi.org/10.1016/J.NEUNET.2020.03.017

    Article  PubMed  Google Scholar 

  11. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004

    Article  PubMed  Google Scholar 

  12. Zhang Z, Wu C, Coleman S, Kerr D (2020) DENSE-INception U-net for medical image segmentation. Comput Methods Programs Biomed 192:105395. https://doi.org/10.1016/J.CMPB.2020.105395

    Article  PubMed  Google Scholar 

  13. Baldeon-Calisto M, Lai-Yuen SK (2019) AdaResU-Net: multiobjective adaptive convolutional neural network for medical image segmentation. Neurocomputing. https://doi.org/10.1016/J.NEUCOM.2019.01.110

    Article  Google Scholar 

  14. Li H, Li A, Wang M (2019) A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med 108:150–160. https://doi.org/10.1016/J.COMPBIOMED.2019.03.014

    Article  PubMed  Google Scholar 

  15. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted intervention-MICCAI 2015. Springer, Cham, pp 234–241

    Google Scholar 

  16. Chen H, Qin Z, Ding Y, Tian L, Qin Z (2019) Brain tumor segmentation with deep convolutional symmetric neural network. Neurocomputing. https://doi.org/10.1016/J.NEUCOM.2019.01.111

    Article  PubMed  PubMed Central  Google Scholar 

  17. Indraswari R, Kurita T, Arifin AZ, Suciati N, Astuti ER (2019) Multi-projection deep learning network for segmentation of 3D medical images. Pattern Recogn Lett 125:791–797. https://doi.org/10.1016/j.patrec.2019.08.003

    Article  ADS  Google Scholar 

  18. Ibtehaz N, Rahman MS (2020) MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 121:74–87. https://doi.org/10.1016/J.NEUNET.2019.08.025

    Article  PubMed  Google Scholar 

  19. Myronenko A (2019) 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) BrainLes 2018: brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, Cham, pp 311–320

    Google Scholar 

  20. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2019) No new-net. In: BrainLes 2018: brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, pp 234–244. https://doi.org/10.1007/978-3-030-11726-9_21

  21. Akbar AS, Fatichah C, Suciati N (2022) SDA-UNET2.5D: shallow dilated with attention Unet2.5D for brain tumor segmentation. Int J Intell Eng Syst 15(2):135–149. https://doi.org/10.22266/ijies2022.0430.14

    Article  Google Scholar 

  22. Akbar AS, Fatichah C, Suciati N (2022) Single level unet3d with multipath residual attention block for brain tumor segmentation. J King Saud Univ Comput Inf Sci 34(6):3247–3258. https://doi.org/10.1016/j.jksuci.2022.03.022

    Article  Google Scholar 

  23. Akbar AS, Fatichah C, Suciati N (2022) Unet3d with multiple atrous convolutions attention block for brain tumor segmentation. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, Cham, pp 182–193

    Chapter  Google Scholar 

  24. Chen S, Ding C, Liu M (2019) Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn 88:90–100. https://doi.org/10.1016/j.patcog.2018.11.009

    Article  ADS  Google Scholar 

  25. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2018) A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 43:98–111. https://doi.org/10.1016/j.media.2017.10.002

    Article  PubMed  Google Scholar 

  26. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117. https://doi.org/10.1038/sdata.2017.117

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, Prastawa M, Alberts E, Lipkova J, Freymann J, Kirby J, Bilello M, Fathallah-Shaykh H, Wiest R, Kirschke J, Wiestler B, Colen R, Kotrotsou A, Lamontagne P, Marcus D, Milchenko M, Nazeri A, Weber M-A, Mahajan A, Baid U, Gerstner E, Kwon D, Acharya G, Agarwal M, Alam M, Albiol A, Albiol A, Albiol FJ, Alex V, Allinson N, Amorim PHA, Amrutkar A, Anand G, Andermatt S, Arbel T, Arbelaez P, Avery A, Azmat M, B, P, Bai W, Banerjee S, Barth B, Batchelder T, Batmanghelich K, Battistella E, Beers A, Belyaev M, Bendszus M, Benson E, Bernal J, Bharath HN, Biros G, Bisdas S, Brown J, Cabezas M, Cao S, Cardoso JM, Carver EN, Casamitjana A, Castillo LS, Catà M, Cattin P, Cerigues A, Chagas VS, Chandra S, Chang Y-J, Chang S, Chang K, Chazalon J, Chen S, Chen W, Chen JW, Chen Z, Cheng K, Choudhury AR, Chylla R, Clérigues A, Colleman S, Colmeiro RGR, Combalia M, Costa A, Cui X, Dai Z, Dai L, Daza LA, Deutsch E, Ding C, Dong C, Dong S, Dudzik W, Eaton-Rosen Z, Egan G, Escudero G, Estienne T, Everson R, Fabrizio J, Fan Y, Fang L, Feng X, Ferrante E, Fidon L, Fischer M, French AP, Fridman N, Fu H, Fuentes D, Gao Y, Gates E, Gering D, Gholami A, Gierke W, Glocker B, Gong M, Gonzàlez-Villà S, Grosges T, Guan Y, Guo S, Gupta S, Han W-S, Han IS, Harmuth K, He H, Hernàndez-Sabaté A, Herrmann E, Himthani N, Hsu W, Hsu C, Hu X, Hu X, Hu Y, Hu Y, Hua R, Huang T-Y, Huang W, Huffel SV, Huo Q, HV V, Iftekharuddin KM, Isensee F, Islam M, Jackson AS, Jambawalikar SR, Jesson A, Jian W, Jin P, Jose VJM, Jungo A, Kainz B, Kamnitsas K, Kao P-Y, Karnawat A, Kellermeier T, Kermi A, Keutzer K, Khadir MT, Khened M, Kickingereder P, Kim G, King N, Knapp H, Knecht U, Kohli L, Kong D, Kong X, Koppers S, Kori A, Krishnamurthi G, Krivov E, Kumar P, Kushibar K, Lachinov D, Lambrou T, Lee J, Lee C, Lee Y, Lee M, Lefkovits S, Lefkovits L, Levitt J, Li T, Li H, Li W, Li H, Li X, Li Y, Li H, Li Z, Li X, Li Z, Li X, Li W, Lin Z-S, Lin F, Lio P, Liu C, Liu B, Liu X, Liu M, Liu J, Liu L, Llado X, Lopez MM, Lorenzo PR, Lu Z, Luo L, Luo Z, Ma J, Ma K, Mackie T, Madabushi A, Mahmoudi I, Maier-Hein KH, Maji P, Mammen C, Mang A, Manjunath BS, Marcinkiewicz M, McDonagh S, McKenna S, McKinley R, Mehl M, Mehta S, Mehta R, Meier R, Meinel C, Merhof D, Meyer C, Miller R, Mitra S, Moiyadi A, Molina-Garcia D, Monteiro MAB, Mrukwa G, Myronenko A, Nalepa J, Ngo T, Nie D, Ning H, Niu C, Nuechterlein NK, Oermann E, Oliveira A, Oliveira DDC, Oliver A, Osman AFI, Ou Y-N, Ourselin S, Paragios N, Park MS, Paschke B, Pauloski JG, Pawar K, Pawlowski N, Pei L, Peng S, Pereira SM, Perez-Beteta J, Perez-Garcia VM, Pezold S, Pham B, Phophalia A, Piella G, Pillai GN, Piraud M, Pisov M, Popli A, Pound MP, Pourreza R, Prasanna P, Prkovska V, Pridmore TP, Puch S, Élodie Puybareau Qian B, Qiao X, Rajchl M, Rane S, Rebsamen M, Ren H, Ren X, Revanuru K, Rezaei M, Rippel O, Rivera LC, Robert C, Rosen B, Rueckert D, Safwan M, Salem M, Salvi J, Sanchez I, Sànchez I, Santos HM, Sartor E, Schellingerhout D, Scheufele K, Scott MR, Scussel AA, Sedlar S, Serrano-Rubio JP, Shah NJ, Shah N, Shaikh M, Shankar BU, Shboul Z, Shen H, Shen D, Shen L, Shen H, Shenoy V, Shi F, Shin HE, Shu H, Sima D, Sinclair M, Smedby O, Snyder JM, Soltaninejad M, Song G, Soni M, Stawiaski J, Subramanian S, Sun L, Sun R, Sun J, Sun K, Sun Y, Sun G, Sun S, Suter YR, Szilagyi L, Talbar S, Tao D, Tao D, Teng Z, Thakur S, Thakur MH, Tharakan S, Tiwari P, Tochon G, Tran T, Tsai YM, Tseng K-L, Tuan TA, Turlapov V, Tustison N, Vakalopoulou M, Valverde S, Vanguri R, Vasiliev E, Ventura J, Vera L, Vercauteren T, Verrastro CA, Vidyaratne L, Vilaplana V, Vivekanandan A, Wang G, Wang Q, Wang CJ, Wang W, Wang D, Wang R, Wang Y, Wang C, Wang G, Wen N, Wen X, Weninger L, Wick W, Wu S, Wu Q, Wu Y, Xia Y, Xu Y, Xu X, Xu P, Yang T-L, Yang X, Yang H-Y, Yang J, Yang H, Yang G, Yao H, Ye X, Yin C, Young-Moxon B, Yu J, Yue X, Zhang S, Zhang A, Zhang K, Zhang X, Zhang L, Zhang X, Zhang Y, Zhang L, Zhang J, Zhang X, Zhang T, Zhao S, Zhao Y, Zhao X, Zhao L, Zheng Y, Zhong L, Zhou C, Zhou X, Zhou F, Zhu H, Zhu J, Zhuge Y, Zong W, Kalpathy-Cramer J, Farahani K, Davatzikos C, van Leemput K, Menze B (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge

  28. Wu Y, He K (2020) Group normalization. Int J Comput Vis 128(3):742–755. https://doi.org/10.1007/s11263-019-01198-w

    Article  Google Scholar 

  29. Moradi S, Oghli MG, Alizadehasl A, Shiri I, Oveisi N, Oveisi M, Maleki M, Dhooge J (2019) MFP-Unet: a novel deep learning based approach for left ventricle segmentation in echocardiography. Physica Med 67:58–69. https://doi.org/10.1016/J.EJMP.2019.10.001

    Article  Google Scholar 

  30. González Sánchez JC, Magnusson M, Sandborg M, Carlsson Tedgren Å, Malusek A (2020) Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Physica Med 69:241–247. https://doi.org/10.1016/j.ejmp.2019.12.014

    Article  Google Scholar 

  31. Lin T-Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 936–944. https://doi.org/10.1109/CVPR.2017.106

  32. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  33. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: Leibe B, Matas J, Sebe N, Welling M (eds) Comput Vis ECCV 2016. Springer, Cham, pp 630–645

    Chapter  Google Scholar 

  34. Chen H, Dou Q, Yu L, Qin J, Heng P-A (2018) VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 170:446–455. https://doi.org/10.1016/J.NEUROIMAGE.2017.04.041

    Article  PubMed  Google Scholar 

  35. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  Google Scholar 

  36. Xie H, Yang D, Sun N, Chen Z, Zhang Y (2019) Automated pulmonary nodule detection in CT images using deep convolutional neural networks. Pattern Recogn 85:109–119. https://doi.org/10.1016/j.patcog.2018.07.031

    Article  ADS  Google Scholar 

  37. Liu L, Wu FX, Wang J (2019) Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation. Neurocomputing 350:117–127. https://doi.org/10.1016/j.neucom.2019.03.049

    Article  Google Scholar 

  38. Kabir Anaraki A, Ayati M, Kazemi F (2019) Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern Biomed Eng 39(1):63–74. https://doi.org/10.1016/j.bbe.2018.10.004

    Article  Google Scholar 

  39. Chang J, Zhang L, Gu N, Zhang X, Ye M, Yin R, Meng Q (2019) A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent 58:316–322. https://doi.org/10.1016/j.jvcir.2018.11.047

    Article  Google Scholar 

  40. Yang T, Song J, Li L (2019) A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI. Biocybern Biomed Eng 39(3):613–623. https://doi.org/10.1016/J.BBE.2019.06.003

    Article  Google Scholar 

  41. Akbar AS, Fatichah C, Suciati N (2020) Simple MyUnet3D for BraTS segmentation. In: ICICoS 2020—proceeding: 4th international conference on informatics and computational sciences. https://doi.org/10.1109/ICICoS51170.2020.9299072

  42. Akbar AS, Fatichah C, Suciati N (2021) Modified MobileNet for patient survival prediction. In: Crimi A, Bakas S (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, Cham, pp 374–387

    Chapter  Google Scholar 

  43. Sovrasov V (2018) ptflops: a flops counting tool for neural networks in pytorch framework (2018–2023). https://github.com/sovrasov/flops-counter.pytorch

  44. Yep T (2020) torchinfo. https://github.com/TylerYep/torchinfo

  45. Niblack W (1986) Introduction to digital image processing. Pearson Education, London

    Google Scholar 

  46. Baid U, Ghodasara S, Mohan S, Bilello M, Calabrese E, Colak E, Farahani K, Kalpathy-Cramer J, Kitamura FC, Pati S, Prevedello LM, Rudie JD, Sako C, Shinohara RT, Bergquist T, Chai R, Eddy J, Elliott J, Reade W, Schaffter T, Yu T, Zheng J, Moawad AW, Coelho LO, McDonnell O, Miller E, Moron FE, Oswood MC, Shih RY, Siakallis L, Bronstein Y, Mason JR, Miller AF, Choudhary G, Agarwal A, Besada CH, Derakhshan JJ, Diogo MC, Do-Dai DD, Farage L, Go JL, Hadi M, Hill VB, Iv M, Joyner D, Lincoln C, Lotan E, Miyakoshi A, Sanchez-Montano M, Nath J, Nguyen XV, Nicolas-Jilwan M, Jimenez JO, Ozturk K, Petrovic BD, Shah C, Shah LM, Sharma M, Simsek O, Singh AK, Soman S, Statsevych V, Weinberg BD, Young RJ, Ikuta I, Agarwal AK, Cambron SC, Silbergleit R, Dusoi A, Postma AA, Letourneau-Guillon L, Perez-Carrillo GJG, Saha A, Soni N, Zaharchuk G, Zohrabian VM, Chen Y, Cekic MM, Rahman A, Small JE, Sethi V, Davatzikos C, Mongan J, Hess C, Cha S, Villanueva-Meyer J, Freymann JB, Kirby JS, Wiestler B, Crivellaro P, Colen RR, Kotrotsou A, Marcus D, Milchenko M, Nazeri A, Fathallah-Shaykh H, Wiest R, Jakab A, Weber M-A, Mahajan A, Menze B, Flanders AE, Bakas S (2021) The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv (2021). https://doi.org/10.48550/ARXIV.2107.02314

  47. MONAI Consortium: MONAI: medical open network for AI. Zenodo (2022). https://doi.org/10.5281/ZENODO.4323058

  48. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251. https://doi.org/10.1109/TMI.2016.2538465

    Article  PubMed  Google Scholar 

  49. Hu K, Gan Q, Zhang Y, Deng S, Xiao F, Huang W, Cao C, Gao X (2019) Brain tumor segmentation using multi-cascaded convolutional neural networks and conditional random field. IEEE Access 7:92615–92629. https://doi.org/10.1109/ACCESS.2019.2927433

    Article  Google Scholar 

  50. Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y (2021) Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn 110:107562. https://doi.org/10.1016/J.PATCOG.2020.107562

    Article  Google Scholar 

  51. Tuan TA, Tuan TA, Bao PT (2019) Brain tumor segmentation using bit-plane and UNET. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, Cham, pp 466–475

    Chapter  Google Scholar 

  52. Rezaei M, Yang H, Meinel C (2019) voxel-GAN: adversarial framework for learning imbalanced brain tumor segmentation. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, Cham, pp 321–333

    Chapter  Google Scholar 

  53. Zhang J, Jiang Z, Dong J, Hou Y, Liu B (2020) Attention gate ResU-Net for automatic MRI brain tumor segmentation. IEEE Access 8:58533–58545. https://doi.org/10.1109/ACCESS.2020.2983075

    Article  Google Scholar 

  54. Zhou Z, He Z, Jia Y (2020) AFPNet: a 3D fully convolutional neural network with atrous-convolution feature pyramid for brain tumor segmentation via MRI images. Neurocomputing 402:235–244. https://doi.org/10.1016/j.neucom.2020.03.097

    Article  Google Scholar 

  55. Zhou Z, He Z, Shi M, Du J, Chen D (2020) 3D dense connectivity network with atrous convolutional feature pyramid for brain tumor segmentation in magnetic resonance imaging of human heads. Comput Biol Med 121:103766. https://doi.org/10.1016/j.compbiomed.2020.103766

    Article  CAS  PubMed  Google Scholar 

  56. Guo X, Yang C, Ma T, Zhou P, Lu S, Ji N, Li D, Wang T, Lv H (2020) Brain tumor segmentation based on attention mechanism and multi-model fusion. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 50–60. https://doi.org/10.1007/978-3-030-46643-5_5

  57. Baid U, Shah NA, Talbar S (2020) Brain tumor segmentation with cascaded deep convolutional neural network. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 90–98. https://doi.org/10.1007/978-3-030-46643-5_9

  58. Rosas González S, Birgui Sekou T, Hidane M, Tauber C (2020) 3D automatic brain tumor segmentation using a multiscale input U-Net network. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 113–123. https://doi.org/10.1007/978-3-030-46643-5_11

  59. Chang Y, Zheng Z, Sun Y, Zhao M, Lu Y, Zhang Y (2023) DPAFNet: a residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation. Biomed Signal Process Control 79:104037. https://doi.org/10.1016/J.BSPC.2022.104037

    Article  Google Scholar 

  60. Ma S, Zhang Z, Ding J, Li X, Tang J, Guo F (2021) A deep supervision CNN network for brain tumor segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, pp 158–167. https://doi.org/10.1007/978-3-030-72087-2_14

  61. Awasthi N, Pardasani R, Gupta S (2021) Multi-threshold attention U-Net (MTAU) based model for multimodal brain tumor segmentation in MRI scans. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, pp 168–178. https://doi.org/10.1007/978-3-030-72087-2_15

  62. Soltaninejad M, Pridmore T, Pound M (2021) Efficient MRI brain tumor segmentation using multi-resolution encoder–decoder networks. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, pp 30–39. https://doi.org/10.1007/978-3-030-72087-2_3

  63. Savadikar C, Kulhalli R, Garware B (2021) Brain tumour segmentation using probabilistic U-Net. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, pp 255–264. https://doi.org/10.1007/978-3-030-72087-2_22

  64. Peiris H, Chen Z, Egan G, Harandi M (2022) Reciprocal adversarial learning for brain tumor segmentation: a solution to BraTS challenge 2021 segmentation task. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 171–181. https://doi.org/10.1007/978-3-031-08999-2_13

  65. Yang H, Shen Z, Li Z, Liu J, Xiao J (2022) Combining global information with topological prior for brain tumor segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 204–215. https://doi.org/10.1007/978-3-031-08999-2_16

  66. Li Z, Shen Z, Wen J, He T, Pan L (2022) Automatic brain tumor segmentation using multi-scale features and attention mechanism. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 216–226. https://doi.org/10.1007/978-3-031-08999-2_17

  67. Roth J, Keller J, Franke S, Neumuth T, Schneider D (2022) Multi-plane UNet++ ensemble for glioblastoma segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 285–294. https://doi.org/10.1007/978-3-031-08999-2_23

  68. Demoustier M, Khemir I, Nguyen QD, Martin-Gaffé L, Boutry N (2022) Residual 3d u-net with localization for brain tumor segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 389–399. https://doi.org/10.1007/978-3-031-08999-2_33

  69. Rahman MM, Sadique MS, Temtam AG, Farzana W, Vidyaratne L, Iftekharuddin KM (2022) Brain tumor segmentation using UNet-context encoding network. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 463–472. https://doi.org/10.1007/978-3-031-08999-2_40

  70. Pei L, Liu Y (2022) Multimodal brain tumor segmentation using a 3d ResUNet in BraTS 2021. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 315–323. https://doi.org/10.1007/978-3-031-08999-2_26

  71. Lin W-W, Li T, Huang T-M, Lin J-W, Yueh M-H, Yau S-T (2022) A two-phase optimal mass transportation technique for 3d brain tumor detection and segmentation. In: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, pp 400–409. https://doi.org/10.1007/978-3-031-08999-2_34

Download references

Acknowledgements

This work was supported by the Ministry of Research, Technology, and Higher Education, Indonesia. We are deeply grateful for BPPDN (Beasiswa Pendidikan Pascasarjana Dalam Negeri) and PDD (Penelitian Disertasi Doktor) 2020–2021 Grant, which enabled this research could be done. We also thank the Directorate of Research and Innovation funding at the National Research and Innovation Agency (BRIN) and the Education Fund Management Institute (LPDP) for continue supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agus Subhan Akbar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or financial conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, A.S., Fatichah, C., Suciati, N. et al. Yaru3DFPN: a lightweight modified 3D UNet with feature pyramid network and combine thresholding for brain tumor segmentation. Neural Comput & Applic 36, 7529–7544 (2024). https://doi.org/10.1007/s00521-024-09475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-09475-7

Keywords

Navigation