Skip to main content

Advertisement

Log in

DFMA-ICH: a deformable mixed-attention model for intracranial hemorrhage lesion segmentation based on deep supervision

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Intracranial hemorrhage (ICH) is a common and critical disease in clinical, with rapid progression, high disability, and mortality rates. Existing segmentation methods, such as U-Net and TransUNet, perform poorly for the problems in ICH segmentation such as small bleeding lesions, partial volume effects, and edge tissue adhesion with edema in ICH data. To solve these issues more efficiently, a deformable mixed-attention model based on deep supervision for ICH lesion segmentation (DFMA-ICH) is proposed in this study. DFMA-ICH consists of the short-term dense concatenate network (STDC) as the backbone with a mixed-attention method, an attention refining residual module (ARRM), and a mixed feature fusion module (MFFM). The mixed-attention method includes multi-scale spatial attention (MSP) and channel attention mechanism (SE) to extract rich lesion information. The double-pooling attention module (DPA) in ARRM is designed to correct features. In MFFM, different attention modules are constructed to reasonably combine low- and high-level features, and deformable convolution (DConv) is applied for boundary optimization. DFMA-ICH is trained by the deep supervision method to equalize the corresponding outputs at different stages. Overall, DFMA-ICH outperforms other advanced models on both spontaneous and traumatic ICH datasets by transfer learning with the Dice of 86.03, 80.98%, and HD of 12.35, 47.28 mm, respectively. Moreover, DFMA-ICH incurs the lowest time-space cost and exhibits the fastest inference speed. The study confirms that the proposed DFMA-ICH can provide an accurate and efficient method for ICH segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and code availability

The public dataset of this study is available on the website of the 2022 Intracranial Hemorrhage Segmentation Challenge on Non-Contrast head CT at: https://instance.grand-challenge.org/. In addition, when the paper is published, the corresponding code will be public at: https://github.com/1017375868/DFMA-ICH/.

References

  1. Chen J, Lu Y, Yu Q, et al (2021a) Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306

  2. Chen LC, Papandreou G, Schroff F, et al (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587

  3. Chen LC, Zhu Y, Papandreou G, et al (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari V, Hebert M, Sminchisescu C, et al (eds) Computer Vision - ECCV 2018. Springer International Publishing, pp 833–851, https://doi.org/10.1007/978-3-030-01234-2_49

  4. Chen Q, Zhu D, Liu J et al (2021) Clinical-radiomics nomogram for risk estimation of early hematoma expansion after acute intracerebral hemorrhage. Acad Radiol 28(3):307–317. https://doi.org/10.1016/j.acra.2020.02.021

    Article  Google Scholar 

  5. Dai J, Qi H, Xiong Y, et al (2017) Deformable convolutional networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 764–773, https://doi.org/10.1109/ICCV.2017.89

  6. Dosovitskiy A, Beyer L, Kolesnikov A, et al (2020) An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929

  7. Fan M, Lai S, Huang J, et al (2021) Rethinking bisenet for real-time semantic segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 9711–9720, https://doi.org/10.1109/CVPR46437.2021.00959

  8. Freeman WD, Aguilar MI (2012) Intracranial hemorrhage: Diagnosis and management. Neurol Clin 30(1):211–240. https://doi.org/10.1016/j.ncl.2011.09.002

    Article  Google Scholar 

  9. Gillebert CR, Humphreys GW, Mantini D (2014) Automated delineation of stroke lesions using brain ct images. NeuroImage: Clin 4:540–548. https://doi.org/10.1016/j.nicl.2014.03.009, https://www.sciencedirect.com/science/article/pii/S2213158214000394

  10. Hariharan B, Arbelaez P, Girshick R, et al (2015) Hypercolumns for object segmentation and fine-grained localization. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 447–456, https://doi.org/10.1109/CVPR.2015.7298642

  11. He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778, https://doi.org/10.1109/CVPR.2016.90

  12. Hou Q, Zhang L, Cheng M, et al (2020) Strip pooling: Rethinking spatial pooling for scene parsing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 4002–4011, https://doi.org/10.1109/CVPR42600.2020.00406

  13. Howard AG, Zhu M, Chen B, et al (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861

  14. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 7132–7141, https://doi.org/10.1109/CVPR.2018.00745

  15. Hu K, Chen K, He X et al (2020) Automatic segmentation of intracerebral hemorrhage in ct images using encoder-decoder convolutional neural network. Inf Proc Manag 57(6):102352. https://doi.org/10.1016/j.ipm.2020.102352

    Article  Google Scholar 

  16. Huang H, Lin L, Tong R, et al (2020) Unet 3+: A full-scale connected unet for medical image segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1055–1059, https://doi.org/10.1109/ICASSP40776.2020.9053405

  17. Ikram MA, Wieberdink RG, Koudstaal PJ (2012) International epidemiology of intracerebral hemorrhage. Curr Atheroscler Rep 14(4):300–306. https://doi.org/10.1007/s11883-012-0252-1

    Article  Google Scholar 

  18. Islam M, Sanghani P, See AAQ, et al (2019) Ichnet: Intracerebral hemorrhage (ich) segmentation using deep learning. In: Crimi A, Bakas S, Kuijf H, et al (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, pp 456–463, https://doi.org/10.1007/978-3-030-11723-8_46

  19. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  20. Krähenbühl P, Koltun V (2011) Efficient inference in fully connected crfs with gaussian edge potentials. arXiv preprint arXiv:1210.5644

  21. Kuang H, Najm M, Menon BK, et al (2018) Joint segmentation of intracerebral hemorrhage and infarct from non-contrast ct images of post-treatment acute ischemic stroke patients. In: Frangi AF, Schnabel JA, Davatzikos C, et al (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2018. Springer International Publishing, pp 681–688, https://doi.org/10.1007/978-3-030-00931-1_78

  22. Kuang Z, Deng X, Yu L et al (2020) \(\psi\)-net: Focusing on the border areas of intracerebral hemorrhage on ct images. Comput Methods Progr Biomed 194:105546. https://doi.org/10.1016/j.cmpb.2020.105546

    Article  Google Scholar 

  23. Kyung S, Shin K, Jeong H et al (2022) Improved performance and robustness of multi-task representation learning with consistency loss between pretexts for intracranial hemorrhage identification in head ct. Med Image Anal 81:102489. https://doi.org/10.1016/j.media.2022.102489

    Article  Google Scholar 

  24. Lee JY, Kim JS, Kim TY et al (2020) Detection and classification of intracranial haemorrhage on ct images using a novel deep-learning algorithm. Scientific Rep 10(1):20546. https://doi.org/10.1038/s41598-020-77441-z

    Article  Google Scholar 

  25. Li X, Wang W, Hu X, et al (2019) Selective kernel networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 510–519, https://doi.org/10.1109/CVPR.2019.00060

  26. Li X, Luo G, Wang W et al (2022) Hematoma expansion context guided intracranial hemorrhage segmentation and uncertainty estimation. IEEE J Biomed Health Inform 26(3):1140–1151. https://doi.org/10.1109/JBHI.2021.3103850

    Article  Google Scholar 

  27. Li X, Luo G, Wang K, et al (2023) The state-of-the-art 3d anisotropic intracranial hemorrhage segmentation on non-contrast head ct: The instance challenge. arXiv preprint arXiv:2301.03281

  28. Liu J, Xu H, Chen Q et al (2019) Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 43:454–459. https://doi.org/10.1016/j.ebiom.2019.04.040

    Article  Google Scholar 

  29. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3431–3440, https://doi.org/10.1109/CVPR.2015.7298965

  30. Manvel A, Vladimir K, Alexander T, et al (2019) Radiologist-level stroke classification on non-contrast ct scans with deep u-net. In: Shen D, Liu T, Peters TM, et al (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. Springer International Publishing, pp 820–828, https://doi.org/10.1007/978-3-030-32248-9_91

  31. Murugappan M, Bourisly AK, Prakash NB et al (2023) Automated semantic lung segmentation in chest CT images using deep neural network. Neural Comput Appl 35(21):15343–15364. https://doi.org/10.1007/s00521-023-08407-1

    Article  Google Scholar 

  32. Najm M, Kuang H, Federico A et al (2019) Automated brain extraction from head ct and cta images using convex optimization with shape propagation. Comput Methods Progr Biomed 176:1–8. https://doi.org/10.1016/j.cmpb.2019.04.030

    Article  Google Scholar 

  33. Nijiati M, Tuersun A, Zhang Y et al (2022) A symmetric prior knowledge based deep learning model for intracerebral hemorrhage lesion segmentation. Front Physiol. https://doi.org/10.3389/fphys.2022.977427

    Article  Google Scholar 

  34. Oktay O, Schlemper J, Folgoc LL, et al (2018) Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999

  35. Parizel PM, Fau Makkat S, Van Miert E, Van Miert E, Fau Van Goethem JW et al (2001) Intracranial hemorrhage: principles of ct and mri interpretation. Eur Radiol 11:1770–1783. https://doi.org/10.1007/s003300000800

    Article  Google Scholar 

  36. Patel A, Schreuder FHBM, Klijn CJM et al (2019) Intracerebral haemorrhage segmentation in non-contrast ct. Scientific Rep 9(1):17858. https://doi.org/10.1038/s41598-019-54491-6

    Article  Google Scholar 

  37. Prakash KNB, Zhou S, Morgan TC et al (2012) Segmentation and quantification of intra-ventricular/cerebral hemorrhage in ct scans by modified distance regularized level set evolution technique. Int J Comput Assist Radiol Surg 7(5):785–798. https://doi.org/10.1007/s11548-012-0670-0

    Article  Google Scholar 

  38. Roh D, Sun CH, Murthy S et al (2019) Hematoma expansion differences in lobar and deep primary intracerebral hemorrhage. Neurocritical Care 31(1):40–45. https://doi.org/10.1007/s12028-018-00668-2

    Article  Google Scholar 

  39. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, et al (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Springer International Publishing, pp 234–241, https://doi.org/10.1007/978-3-319-24574-4_28

  40. Scherer M, Cordes J, Younsi A, et al (2016) Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke: J Cerebral Circul 47(11). https://doi.org/10.1161/STROKEAHA.116.013779

  41. Selvaraju RR, Das A, Vedantam R, et al (2016) Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization. arXiv preprint arXiv:1610.02391

  42. Shibuya E, Hotta K (2022) Cell image segmentation by using feedback and convolutional LSTM. Visual Comput 38(11):3791–3801. https://doi.org/10.1007/s00371-021-02221-3

    Article  Google Scholar 

  43. Siddique MS, Gregson BA, Fernandes HM et al (2002) Comparative study of traumatic and spontaneous intracerebral hemorrhage. J Neurosurg 96(1):86–89. https://doi.org/10.3171/jns.2002.96.1.0086

    Article  Google Scholar 

  44. van Asch CJ, Luitse MJ, Rinkel GJ et al (2010) Incidence, case fatality, and functional outcome of intracerebral hemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9(2):167–176. https://doi.org/10.1016/S1474-4422(09)70340-0

    Article  Google Scholar 

  45. Wang H, Cao P, Wang J, et al (2022a) Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI conference on artificial intelligence, pp 2441–2449, https://doi.org/10.1609/aaai.v36i3.20144

  46. Wang H, Xie S, Lin L, et al (2022b) Mixed transformer u-net for medical image segmentation. In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 2390–2394, https://doi.org/10.1109/ICASSP43922.2022.9746172

  47. Wang H, Zhang D, Ding S et al (2023) Rib segmentation algorithm for X-ray image based on unpaired sample augmentation and multi-scale network. Neural Comput Appl 35(16):11583–11597. https://doi.org/10.1007/s00521-021-06546-x

    Article  Google Scholar 

  48. Wang J, Sun K, Cheng T et al (2021) Deep high-resolution representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell 43(10):3349–3364. https://doi.org/10.1109/TPAMI.2020.2983686

    Article  Google Scholar 

  49. Wang J, Peng Y, Guo Y (2023) Dmct-net: dual modules convolution transformer network for head and neck tumor segmentation in pet/ct. Phys Med Biol 68(11):115006. https://doi.org/10.1088/1361-6560/acd29f

    Article  Google Scholar 

  50. Xiao H, Ran Z, Mabu S et al (2022) Saunet++: an automatic segmentation model of covid-19 lesion from ct slices. Visual Comput. https://doi.org/10.1007/s00371-022-02414-4

    Article  Google Scholar 

  51. Xiao H, Li L, Liu Q et al (2023) Transformers in medical image segmentation: A review. Biomed Signal Proc Contr 84:104791. https://doi.org/10.1016/j.bspc.2023.104791

    Article  Google Scholar 

  52. Xiao H, Liu Q, Li L (2023) Mfmanet: Multi-feature multi-attention network for efficient subtype classification on non-small cell lung cancer ct images. Biomed Signal Proc Contr 84:104768. https://doi.org/10.1016/j.bspc.2023.104768

    Article  Google Scholar 

  53. Xu Q, Ma Z, He N et al (2023) Dcsau-net: A deeper and more compact split-attention u-net for medical image segmentation. Comput Biol Med 154:106626. https://doi.org/10.1016/j.compbiomed.2023.106626

    Article  Google Scholar 

  54. Yao C, Hu M, Li Q, et al (2022) Transclaw u-net: Claw u-net with transformers for medical image segmentation. In: 2022 5th International Conference on Information Communication and Signal Processing (ICICSP), pp 280–284, https://doi.org/10.1109/ICICSP55539.2022.10050624

  55. Ye H, Gao F, Yin Y et al (2019) Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol 29(11):6191–6201. https://doi.org/10.1007/s00330-019-06163-2

    Article  Google Scholar 

  56. Zhou Z, Siddiquee MMR, Tajbakhsh N et al (2020) Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imag 39(6):1856–1867. https://doi.org/10.1109/TMI.2019.2959609

    Article  Google Scholar 

  57. Zhu DQ, Chen Q, Xiang YL et al. (2021) Predicting intraventricular hemorrhage growth with a machine learning-based, radiomics-clinical model. Aging 13(9), 12833–12848. https://doi.org/10.18632/aging.202954

  58. Zhu J, Ge M, Chang Z et al (2023) Crcnet: Global-local context and multi-modality cross attention for polyp segmentation. Biomed Signal Proc Contr 83:104593. https://doi.org/10.1016/j.bspc.2023.104593

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chongqing Natural Science Foundation (Grant No. CSTB2023TIAD-STX0020, CSTB2022NSCO-BHX0691, CSTB2023NSCQ-LZX0127, CSTB2022NSCQ-MSX0837), the Science and Technology Foundation of Chongqing Education Commission (Grant No. KJQN202201152), the Scientific Research Foundation of Chongqing University of Technology (Grant No. 2020zDz028), and the Graduate Innovation Project of Chongqing University of Technology (Grant No. gzlcx20232097).

Author information

Authors and Affiliations

Authors

Contributions

XS, HX, and QX took part in conceptualization. XS and HX were involved in the methodology. XS, HX, LL, YL, and QL carried out experiment data analysis. XS wrote and prepared the original draft. HX, QX, LC, DC, and HZ took part in the article review, project funding provision, and work supervision. QX, LC, DC, and HZ contributed to resources.

Corresponding authors

Correspondence to Qingling Xia, Lihua Chen or Diyou Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statement

The studies involving human participants were reviewed and approved by Daping Hospital of Army Medical University in Chongqing, China, and Taihu Hospital in Wuxi, Jiangsu, China. The two corresponding ethics committee review documents have been submitted as attachments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Shi, X., Xia, Q. et al. DFMA-ICH: a deformable mixed-attention model for intracranial hemorrhage lesion segmentation based on deep supervision. Neural Comput & Applic 36, 8657–8679 (2024). https://doi.org/10.1007/s00521-024-09545-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-09545-w

Keywords