Abstract
In today’s intricate information technology landscape, the escalating complexity of computer networks is accompanied by a myriad of malicious threats seeking to compromise network components. To address these security challenges, we propose an approach that synergizes reinforcement learning and deep neural networks. Our method involves training autonomous cyber-agents to strategically attack network nodes, aiming to expose vulnerabilities and extract confidential information. We employ various off-policy deep reinforcement learning algorithms, including deep Q-network (DQN), double DQN, and dueling DQN, to train and evaluate these agents within two enterprise simulation networks provided by Microsoft. The simulations, modeled as Markov games between attack and defense, exclude human intervention. Results demonstrate that agents trained by double DQN and dueling DQN surpass baseline agents trained using traditional reinforcement learning and DQN methods. This approach not only enhances our understanding of network vulnerabilities but also lays the groundwork for future efforts to fortify computer network defense and security.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The reinforcement learning agents presented in this manuscript were trained using Microsoft CyberBattleSim [27], a simulation platform for training and evaluating cybersecurity agents. The agents that we have developed and trained can be accessed from our repository at https://github.com/ammohamedds/CyberBattleSim_agents. In addition, the official repository for the simulation contains other baseline agents that may be of interest [27].
References
Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460. https://doi.org/10.1093/mind/lix.236.433
Tesauro G (1995) Temporal difference learning and td-gammon. Commun ACM 38(3):58–68. https://doi.org/10.1145/203330.203343
Kohl N, Stone P (2004) Policy gradient reinforcement learning for fast quadrupedal locomotion. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04. 2004, vol 3, pp 2619–26243. https://doi.org/10.1109/ROBOT.2004.1307456
Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, Berger E, Liang E (2006) Autonomous inverted helicopter flight via reinforcement learning. In: Experimental Robotics IX, Springer, Berlin, Heidelberg, pp 363–372
Singh S, Litman D, Kearns M, Walker M (2002) Optimizing dialogue management with reinforcement learning: experiments with the njfun system. J Artif Int Res 16(1):105–133
Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) A brief survey of deep reinforcement learning. CoRR arXiv:1708.05866
Rusu AA, Colmenarejo SG, Gülçehre Desjardins G, Kirkpatrick J, Pascanu R, Mnih V, Kavukcuoglu K, Hadsell R (2016) Policy distillation. In: ICLR (Poster). arxiv:1511.06295
Nguyen TT, Reddi VJ (2019) Deep reinforcement learning for cyber security. CoRR arXiv:1906.05799
Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller MA (2013) Playing atari with deep reinforcement learning. CoRR arxiv:1312.5602
Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533. https://doi.org/10.1038/nature14236
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap TP, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of go with deep neural networks and tree search. Nature 529:484–489
Vinyals O, Ewalds T, Bartunov S, Georgiev P, Vezhnevets AS, Yeo M, Makhzani A, Küttler H, Agapiou JP, Schrittwieser J, Quan J, Gaffney S, Petersen S, Simonyan K, Schaul T, Hasselt H, Silver D, Lillicrap TP, Calderone K, Keet P, Brunasso A, Lawrence D, Ekermo A, Repp J, Tsing R (2017) Starcraft II: a new challenge for reinforcement learning. CoRR arxiv:1708.04782
Isele D, Cosgun A, Subramanian K, Fujimura K (2017) Navigating intersections with autonomous vehicles using deep reinforcement learning. CoRR arxiv:1705.01196
Gu S, Holly E, Lillicrap TP, Levine S (2016) Deep reinforcement learning for robotic manipulation. CoRR arxiv:1610.00633
Savant VB, Kasar RD (2021) A review on network security and cryptography. Res J Eng Technol 12(4):110–114
Al-Shabi M (2019) A survey on symmetric and asymmetric cryptography algorithms in information security. Int J Sci Res Publ (IJSRP) 9(3):576–589
Pachghare V (2019) Cryptography and information security. PHI Learning Pvt. Ltd
Mushtaq MF, Jamel S, Disina AH, Pindar ZA, Shakir NSA, Deris MM (2017) A survey on the cryptographic encryption algorithms. Int J Adv Comput Sci Appl 8(11)
Sharma DK, Singh NC, Noola DA, Doss AN, Sivakumar J (2022) A review on various cryptographic techniques and algorithms. Mater Today Proc 51:104–109
Maloof MA et al (2006) Machine learning and data mining for computer security: methods and applications. Springer, Berlin
Han Y, Rubinstein BIP, Abraham T, Alpcan T, Vel OY, Erfani SM, Hubczenko D, Leckie C, Montague P (2018) Reinforcement learning for autonomous defence in software-defined networking. CoRR arxiv:1808.05770
Wan X, Sheng G, Li Y, Xiao L, Du X (2017) Reinforcement learning based mobile offloading for cloud-based malware detection. In: GLOBECOM 2017 - 2017 IEEE global communications conference, pp 1–6. https://doi.org/10.1109/GLOCOM.2017.8254503
Li Y, Liu J, Li Q, Xiao L (2015) Mobile cloud offloading for malware detections with learning. In: 2015 IEEE conference on computer communications workshops (INFOCOM WKSHPS), pp 197–201. https://doi.org/10.1109/INFCOMW.2015.7179384
Manshaei MH, Zhu Q, Alpcan T, Bacşar T, Hubaux J-P (2013) Game theory meets network security and privacy. ACM Comput Surv. https://doi.org/10.1145/2480741.2480742
Hasselt H, Guez A, Silver D (2015) Deep reinforcement learning with double q-learning. CoRR arxiv:1509.06461
Wang Z, Freitas N, Lanctot M (2015) Dueling network architectures for deep reinforcement learning. CoRR arxiv:1511.06581
Team MDR (2021) CyberBattleSim. GitHub. Created by Christian Seifert, Michael Betser, William Blum, James Bono, Kate Farris, Emily Goren, Justin Grana, Kristian Holsheimer, Brandon Marken, Joshua Neil, Nicole Nichols, Jugal Parikh, Haoran Wei
Khan S, Rahmani H, Shah SAA, Bennamoun M, Medioni G, Dickinson S (2018) A guide to convolutional neural networks for computer vision, vol 8. Springer, Berlin
Ahmed AM, Abdelrazek M, Aryal S, Nguyen TT (2023) An overview of Eulerian video motion magnification methods. Comput Graph 117:145–163. https://doi.org/10.1016/j.cag.2023.10.015
Goldberg Y (2022) Neural network methods for natural language processing. Springer, Berlin
Bekey GA, Goldberg KY (2012) Neural networks in robotics, vol 202. Springer, Berlin
Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. MIT press, Cambridge http://incompleteideas.net/book/the-book-2nd.html
Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016) Openai gym. CoRR arxiv:1606.01540
Wydmuch M, Kempka M, Jaśkowski W (2018) Vizdoom competitions: playing doom from pixels. IEEE Trans Games 11(3):248–259
Lanctot M, Lockhart E, Lespiau J-B, Zambaldi V, Upadhyay S, Pérolat J, Srinivasan S, Timbers F, Tuyls K, Omidshafiei S, Hennes D, Morrill D, Muller P, Ewalds T, Faulkner R, Kramár J, Vylder BD, Saeta B, Bradbury J, Ding D, Borgeaud S, Lai M, Schrittwieser J, Anthony T, Hughes E, Danihelka I, Ryan-Davis J (2019) OpenSpiel: a framework for reinforcement learning in games. CoRR arxiv:arXiv:1908.09453 [cs.LG]
Shah S, Dey D, Lovett C, Kapoor A (2017) Airsim: high-fidelity visual and physical simulation for autonomous vehicles. In: Field and service robotics. arxiv:1705.05065
Tunyasuvunakool S, Muldal A, Doron Y, Liu S, Bohez S, Merel J, Erez T, Lillicrap T, Heess N, Tassa Y (2020) dm_control: software and tasks for continuous control. Softw Impacts 6:100022. https://doi.org/10.1016/j.simpa.2020.100022
Hasselt H (2012) Reinforcement learning in continuous state and action spaces. In: Wiering M, Otterlo M (eds) Reinforcement learning: state-of-the-art. Springer, Berlin, Heidelberg, pp 207–251
Achiam J (2018) spinning up in deep reinforcement learning
Littman ML (1994) Markov games as a framework for multi-agent reinforcement learning. In: Proceedings of the eleventh international conference on international conference on machine learning. ICML’94, pp 157–163. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
Watkins CJCH (1989) Learning from delayed rewards. PhD thesis, King’s College, Cambridge, UK
Konda V, Tsitsiklis J (2000) Actor-critic algorithms. SIAM Journal on Control and Optimization. MIT Press, Cambridge, pp 1008–1014
Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. CoRR arxiv:1602.01783
Schulman J, Levine S, Moritz P, Jordan MI, Abbeel P (2015) Trust region policy optimization. CoRR arxiv:1502.05477
Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. arxiv: 1707.06347
Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D, Pietquin O, Blundell C, Legg S (2017) Noisy networks for exploration. CoRR arxiv: 1706.10295
Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016) Continuous control with deep reinforcement learning. In: ICLR (Poster). arxiv:1509.02971
Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8(3):279–292. https://doi.org/10.1007/BF00992698
Pollack J, Blair A (1996) Why did td-gammon work? In: Mozer MC, Jordan M, Petsche T (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge https://proceedings.neurips.cc/paper/1996/file/459a4ddcb586f24efd9395aa7662bc7c-Paper.pdf
Baird L (1995) Residual algorithms: reinforcement learning with function approximation. In: Proceedings of the twelfth international conference on machine learning, pp 30–37. Morgan Kaufmann, Burlington
Tsitsiklis JN, Van Roy B (1997) An analysis of temporal-difference learning with function approximation. IEEE Trans Autom Control 42(5):674–690. https://doi.org/10.1109/9.580874
Sallans B, Hinton GE (2004) Reinforcement learning with factored states and actions. J Mach Learn Res 5:1063–1088
Maei HR, Szepesvári C, Bhatnagar S, Precup D, Silver D, Sutton RS (2009) Convergent temporal-difference learning with arbitrary smooth function approximation. In: Proceedings of the 22nd international conference on neural information processing systems. NIPS’09, pp 1204–1212. Curran Associates Inc., Red Hook, NY, USA
Sutton RS, Maei H, Szepesvári C (2008) A convergent o(n) temporal-difference algorithm for off-policy learning with linear function approximation. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in Neural Information Processing Systems, vol 21. Curran Associates, Inc., New York https://proceedings.neurips.cc/paper/2008/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf
Sutton RS, Maei HR, Precup D, Bhatnagar S, Silver D, Szepesvári C, Wiewiora E (2009) Fast gradient-descent methods for temporal-difference learning with linear function approximation. ICML ’09, pp 993–1000. Association for Computing Machinery, New York https://doi.org/10.1145/1553374.1553501
Lin L-J (1992) Reinforcement learning for robots using neural networks. PhD thesis, USA. UMI Order No. GAX93-22750
Mcclelland JL, Mcnaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419–457
O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J (2010) Play it again: reactivation of waking experience and memory. Trends Neurosci 33(5):220–229. https://doi.org/10.1016/j.tins.2010.01.006
Riedmiller M (2005) Neural fitted q iteration - first experiences with a data efficient neural reinforcement learning method. In: Proceedings of the 16th European conference on machine learning. ECML’05, pp 317–328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564096_32
Lange S, Riedmiller M (2010) Deep auto-encoder neural networks in reinforcement learning. In: The 2010 international joint conference on neural networks (IJCNN), pp 1–8.https://doi.org/10.1109/IJCNN.2010.5596468
Diuk C, Cohen A, Littman ML (2008) An object-oriented representation for efficient reinforcement learning. In: Proceedings of the 25th international conference on machine learning. ICML ’08, pp 240–247. Association for Computing Machinery, New York https://doi.org/10.1145/1390156.1390187
Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environment: an evaluation platform for general agents. J Artif Int Res 47(1):253–279
Hausknecht M, Lehman J, Miikkulainen R, Stone P (2014) A neuroevolution approach to general Atari game playing. IEEE Trans Comput Intell AI Games 6(4):355–366. https://doi.org/10.1109/TCIAIG.2013.2294713
Hasselt H (2010) Double q-learning. In: Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems, vol 23. Curran Associates, Inc., New York. https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Int Res 4(1):237–285
Sutton RS (1990) Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In: Porter B, Mooney R (eds) Machine learning proceedings 1990, pp 216–224. Morgan Kaufmann, San Francisco (CA). https://doi.org/10.1016/B978-1-55860-141-3.50030-4
Brafman RI, Tennenholtz M (2003) R-max - a general polynomial time algorithm for near-optimal reinforcement learning. J Mach Learn Res 3:213–231. https://doi.org/10.1162/153244303765208377
Fujimoto S, Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods. CoRR arxiv: 1802.09477
Dijk M, Juels A, Oprea A, Rivest R (2013) Flipit: the game of stealthy takeover. J Cryptol. https://doi.org/10.1007/s00145-012-9134-5
Chung K, Kamhoua CA, Kwiat KA, Kalbarczyk ZT, Iyer RK (2016) Game theory with learning for cyber security monitoring. In: 2016 IEEE 17th international symposium on high assurance systems engineering (HASE), pp 1–8. https://doi.org/10.1109/HASE.2016.48
Tartakovsky AG, Rozovskii BL, Blažek RB, Kim H (2006) Detection of intrusions in information systems by sequential change-point methods. Stat Methodol 3(3):252–293. https://doi.org/10.1016/j.stamet.2005.05.003
Rasouli M, Miehling E, Teneketzis D (2014) A supervisory control approach to dynamic cyber-security. CoRR arxiv:1409.0838
Liu W, Zhong S (2017) Web malware spread modelling and optimal control strategies. Sci Rep 7(1):42308
Miehling E, Rasouli M, Teneketzis D (2018) A pomdp approach to the dynamic defense of large-scale cyber networks. IEEE Trans Inf Forensics Secur 13(10):2490–2505. https://doi.org/10.1109/TIFS.2018.2819967
Bronfman-Nadas R, Zincir-Heywood N, Jacobs JT (2018) An artificial arms race: Could it improve mobile malware detectors?. In: 2018 network traffic measurement and analysis conference (TMA), pp 1–8. https://doi.org/10.23919/TMA.2018.8506545
MYERSON RB (1991) Game theory: analysis of conflict. Harvard University Press, Cambridge http://www.jstor.org/stable/j.ctvjsf522 Accessed 04 Oct 2022
Alpcan T, Basar T (2003) A game theoretic approach to decision and analysis in network intrusion detection. In: 42nd IEEE international conference on decision and control (IEEE Cat. No.03CH37475), vol 3, pp 2595–26003. https://doi.org/10.1109/CDC.2003.1273013
Nguyen KC, Alpcan T, Basar T (2009) Security games with incomplete information. In: 2009 IEEE international conference on communications, pp 1–6. https://doi.org/10.1109/ICC.2009.5199443
Durkota K, Lisy V, Bošansky B, Kiekintveld C (2015) Optimal network security hardening using attack graph games. In: Proceedings of the 24th International Conference on Artificial Intelligence. IJCAI’15, pp 526–532. AAAI Press
Carroll TE, Grosu D (2009) A game theoretic investigation of deception in network security. In: 2009 Proceedings of 18th international conference on computer communications and networks, pp 1–6
Tambe M (2011) Security and game theory: algorithms, deployed systems, lessons learned, 1st edn. Cambridge University Press, Cambridge
Mailath GJ, Samuelson L (2006) Repeated games and reputations: long-run relationships. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780195300796.001.0001
Bergadano F, Gunetti D, Picardi C (2002) User authentication through keystroke dynamics. ACM Trans Inf Syst Secur 5(4):367–397. https://doi.org/10.1145/581271.581272
Maxion RA, Townsend TN (2004) Masquerade detection augmented with error analysis. IEEE Trans Reliab 53(1):124–147. https://doi.org/10.1109/TR.2004.824828
Shapley LS (1953) Stochastic games*. Proc Nat Acad Sci 39(10):1095–1100. https://doi.org/10.1073/pnas.39.10.1095
Bethencourt J, Franklin J, Vernon M (2005) Mapping internet sensors with probe response attacks. In: 14th USENIX security symposium (USENIX Security 05). USENIX Association, Baltimore, MD. https://www.usenix.org/conference/14th-usenix-security-symposium/mapping-internet-sensors-probe-response-attacks
Elderman R, Pater L, Thie A, Drugan M, Wiering M (2017) Adversarial reinforcement learning in a cyber security simulation. In: Filipe J, van den Herik J, Rocha A, Filipe J (eds) ICAART 2017 - Proceedings of the 9th international conference on agents and artificial intelligence, pp 559–566. SCITEPRESS-Science and Technology Publications, Lda., 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), ICAART 2017 ; Conference date: 24-02-2017 Through 26-02-2017
Alpcan T, Başar T (2010) Network security: a decision and game-theoretic approach. Cambridge University Press, Cambridge https://doi.org/10.1017/CBO9780511760778
Li T, Peng G, Zhu Q, Basar T (2021) The confluence of networks, games and learning. CoRR arxiv:2105.08158
Roy S, Ellis C, Shiva S, Dasgupta D, Shandilya V, Wu Q (2010) A survey of game theory as applied to network security. In: 2010 43rd Hawaii international conference on system sciences, pp 1–10. https://doi.org/10.1109/HICSS.2010.35
Uther WTB, Veloso MM (2003) Adversarial reinforcement learning
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: 2nd international conference on learning representations, ICLR 2014; Conference date: 14-04-2014 Through 16-04-2014
Gilmer J, Metz L, Faghri F, Schoenholz SS, Raghu M, Wattenberg M, Goodfellow IJ (2018) Adversarial spheres. CoRR arxiv:1801.02774
Shafahi A, Huang WR, Studer C, Feizi S, Goldstein T (2018) Are adversarial examples inevitable? CoRR arxiv:1809.02104
Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and Harnessing Adversarial Examples. https://doi.org/10.48550/ARXIV.1412.6572, arXiv arxiv:1412.6572
Huang SH, Papernot N, Goodfellow IJ, Duan Y, Abbeel P (2017) Adversarial attacks on neural network policies. CoRR arxiv:1702.02284
Lin Y, Hong Z, Liao Y, Shih M, Liu M, Sun M (2017) Tactics of adversarial attack on deep reinforcement learning agents. CoRR arxiv:1703.06748
Kos J, Song D (2017) Delving into adversarial attacks on deep policies. https://doi.org/10.48550/ARXIV.1705.06452, arXiv arxiv:1705.06452
Pattanaik A, Tang Z, Liu S, Bommannan G, Chowdhary G (2017) Robust deep reinforcement learning with adversarial attacks. CoRR arxiv:1712.03632
Gleave A, Dennis M, Kant N, Wild C, Levine S, Russell S (2019) Adversarial policies: Attacking deep reinforcement learning. CoRR arxiv:1905.10615
Molina-Markham A, Miniter C, Powell B, Ridley A (2021) Network environment design for autonomous cyberdefense. CoRR arxiv:2103.07583
Xie C, Wu Y, Maaten L, Yuille AL, He K (2018) Feature denoising for improving adversarial robustness. CoRR arxiv:1812.03411
Pinto L, Davidson J, Sukthankar R, Gupta A (2017) Robust adversarial reinforcement learning. CoRR arxiv:1703.02702
Ilahi I, Usama M, Qadir J, Janjua MU, Al-Fuqaha A, Hoang DT, Niyato D (2022) Challenges and countermeasures for adversarial attacks on deep reinforcement learning. IEEE Trans Artif Intell 3(2):90–109. https://doi.org/10.1109/TAI.2021.3111139
Chen T, Liu J, Xiang Y, Niu W, Tong E, Han Z (2019) Adversarial attack and defense in reinforcement learning-from AI security view. Cybersecurity 2:1–22
Silva SH, Najafirad P (2020) Opportunities and challenges in deep learning adversarial robustness: a survey. CoRR arxiv:2007.00753
Rege M (2018) Machine learning for cyber defense and attack. https://api.semanticscholar.org/CorpusID:232319054
Benjamin DP, Pal P, Webber F, Rubel P, Atigetchi M (2008) Using a cognitive architecture to automate cyberdefense reasoning. In: 2008 bio-inspired, learning and intelligent systems for security, pp 58–63. https://doi.org/10.1109/BLISS.2008.17
Ko RKL (2020) Cyber autonomy: Automating the hacker- self-healing, self-adaptive, automatic cyber defense systems and their impact to the industry, society and national security. CoRR arxiv:2012.04405
Baah GK, Hobson T, Okhravi H, Roberts SC, Streilein WW, Yuditskaya S (2015) A study of gaps in cyber defense automation. https://api.semanticscholar.org/CorpusID:40128147
Applebaum A, Dennler C, Dwyer P, Moskowitz M, Nguyen H, Nichols N, Park N, Rachwalski P, Rau F, Webster A, Wolk M (2022) Bridging automated to autonomous cyber defense: foundational analysis of tabular q-learning. In: Proceedings of the 15th ACM workshop on artificial intelligence and security. AISec’22, pp 149–159. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3560830.3563732
Standen M, Lucas M, Bowman D, Richer TJ, Kim J, Marriott D (2021) CybORG: a gym for the development of autonomous cyber agents. arXiv arXiv:2108.09118
Vyas S, Hannay J, Bolton A, Burnap PP (2023) Automated cyber defence: a review
Lohn A, Knack A, Burke A, Jackson K (2023) Autonomous cyber defence: a roadmap from lab to ops. Technical report, CETaS Research Reports (June). https://cetas.turing.ac.uk/publications/autonomous-cyber-defence
Rush G, Tauritz D, Kent A (2015) Coevolutionary agent-based network defense lightweight event system (candles), pp 859–866. https://doi.org/10.1145/2739482.2768429
Zhu M, Hu Z, Liu P (2014) Reinforcement learning algorithms for adaptive cyber defense against heartbleed. In: Proceedings of the First ACM workshop on moving target defense. MTD ’14, pp 51–58. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2663474.2663481
Rawat DB, Reddy SR (2017) Software defined networking architecture, security and energy efficiency: a survey. IEEE Commun Surv Tutor 19(1):325–346. https://doi.org/10.1109/COMST.2016.2618874
Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tutor 17(4):2317–2346. https://doi.org/10.1109/COMST.2015.2474118
Kim G, Kim Y, Lim H (2022) Deep reinforcement learning-based routing on software-defined networks. IEEE Access 10:18121–18133. https://doi.org/10.1109/ACCESS.2022.3151081
Salahuddin MA, Al-Fuqaha A, Guizani M (2015) Software-defined networking for RSU clouds in support of the internet of vehicles. IEEE Internet Things J 2(2):133–144. https://doi.org/10.1109/JIOT.2014.2368356
Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learning. HotNets ’16, pp 50–56. Association for computing machinery, New York, NY, USA . https://doi.org/10.1145/3005745.3005750
Lin S-C, Akyildiz IF, Wang P, Luo M (2016) Qos-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach. In: 2016 IEEE international conference on services computing (SCC), pp 25–33. https://doi.org/10.1109/SCC.2016.12
Huang R, Chu X, Zhang J, Hu YH (2015) Energy-efficient monitoring in software defined wireless sensor networks using reinforcement learning: A prototype. Int J Distrib Sens Netw. https://doi.org/10.1155/2015/360428
Salahuddin MA, Al-Fuqaha A, Guizani M (2016) Reinforcement learning for resource provisioning in the vehicular cloud. IEEE Wirel Commun 23(4):128–135. https://doi.org/10.1109/MWC.2016.7553036
Mestres A, Rodriguez-Natal A, Carner J, Barlet-Ros P, Alarcón E, Solé M, Muntés-Mulero V, Meyer D, Barkai S, Hibbett MJ, Estrada G, Ma’ruf K, Coras F, Ermagan V, Latapie H, Cassar C, Evans J, Maino F, Walrand J, Cabellos A (2017) Knowledge-defined networking. SIGCOMM Comput Commun Rev 47(3):2–10. https://doi.org/10.1145/3138808.3138810
Kim S, Son J, Talukder A, Hong CS (2016) Congestion prevention mechanism based on q-leaning for efficient routing in sdn. In: 2016 international conference on information networking (ICOIN), pp 124–128. https://doi.org/10.1109/ICOIN.2016.7427100
Casas-Velasco DM, Rendon OMC, Fonseca NLS (2021) Intelligent routing based on reinforcement learning for software-defined networking. IEEE Trans Netw Serv Manage 18(1):870–881. https://doi.org/10.1109/TNSM.2020.3036911
Radoglou-Grammatikis P, Rompolos K, Sarigiannidis P, Argyriou V, Lagkas T, Sarigiannidis A, Goudos S, Wan S (2022) Modeling, detecting, and mitigating threats against industrial healthcare systems: a combined software defined networking and reinforcement learning approach. IEEE Trans Industr Inf 18(3):2041–2052. https://doi.org/10.1109/TII.2021.3093905
Ridley A (2018) Machine learning for autonomous cyber defense. Next Wave 22(1):7–14
Hammar K, Stadler R (2020) Finding effective security strategies through reinforcement learning and self-play. CoRR arxiv:2009.08120
Berner C, Brockman G, Chan B, Cheung V, Debiak P, Dennison C, Farhi D, Fischer Q, Hashme S, Hesse C, Józefowicz R, Gray S, Olsson C, Pachocki J, Petrov M, Oliveira Pinto HP, Raiman J, Salimans T, Schlatter J, Schneider J, Sidor S, Sutskever I, Tang J, Wolski F, Zhang S (2019) Dota 2 with large scale deep reinforcement learning. CoRR arxiv:1912.06680
Bowling M, Veloso MM (2002) Scalable learning in stochastic games
Li S, Wu Y, Cui X, Dong H, Fang F, Russell S (2019) Robust multi-agent reinforcement learning via minimax deep deterministic policy gradient. AAAI Press https://doi.org/10.1609/aaai.v33i01.33014213
Hammar K, Stadler R (2021) Learning intrusion prevention policies through optimal stopping. CoRR arxiv:2106.07160
Walter E, Ferguson-Walter K, Ridley A (2021) Incorporating deception into cyberbattlesim for autonomous defense. CoRR arxiv:2108.13980
Mokube I, Adams M (2007) Honeypots: concepts, approaches, and challenges. In: ACM-SE 45: Proceedings of the 45th annual southeast regional conference, pp 321–326
Andrew A, Spillard S, Collyer J, Dhir N (2022) Developing optimal causal cyber-defence agents via cyber security simulation
Aglietti V, Dhir N, González J, Damoulas T (2021) Dynamic causal bayesian optimization
Foley M, Hicks C, Highnam K, Mavroudis V (2022) Autonomous network defence using reinforcement learning. In: Proceedings of the 2022 ACM on Asia conference on computer and communications security. ASIA CCS ’22, pp 1252–1254. Association for computing machinery, New York, NY, USA. https://doi.org/10.1145/3488932.3527286
Foley M, Wang M, MZ, Hicks C, Mavroudis V (2023) Inroads into autonomous network defence using explained reinforcement learning
Zhu Z, Chen M, Zhu C, Zhu Y (2024) Effective defense strategies in network security using improved double dueling deep q-network. Comput Secur 136:103578. https://doi.org/10.1016/j.cose.2023.103578
Kiely M, Bowman D, Standen M, Moir C (2023) On autonomous agents in a cyber defence environment
Cyber Autonomy Gym for Experimentation Challenge 2. GitHub. Created by Maxwell Standen, David Bowman, Son Hoang, Toby Richer, Martin Lucas, Richard Van Tassel, Phillip Vu, Mitchell Kiely (2022)
Adawadkar AMK, Kulkarni N (2022) Cyber-security and reinforcement learning - a brief survey. Eng Appl Artif Intell 114:105116. https://doi.org/10.1016/j.engappai.2022.105116
Sewak M, Sahay SK, Rathore H (2022) Deep Reinforcement learning for cybersecurity threat detection and protection: a review. Springer, Berlin, pp 51–72 https://doi.org/10.1007/978-3-030-97532-6_4
Wang W, Sun D, Jiang F, Chen X, Zhu C (2022) Research and challenges of reinforcement learning in cyber defense decision-making for intranet security. Algorithms. https://doi.org/10.3390/a15040134
Huang Y, Huang L, Zhu Q (2022) Reinforcement learning for feedback-enabled cyber resilience. Annu Rev Control 53:273–295. https://doi.org/10.1016/j.arcontrol.2022.01.001
Fard NE, Selmic RR, Khorasani K (2023) A review of techniques and policies on cybersecurity using artificial intelligence and reinforcement learning algorithms. IEEE Technol Soc Mag 42(3):57–68. https://doi.org/10.1109/MTS.2023.3306540
Baillie C, Standen M, Schwartz J, Docking M, Bowman D, Kim J (2020) Cyborg: an autonomous cyber operations research gym. CoRR arxiv:2002.10667
Schwartz J (2022) Network Attack Simulator. https://github.com/Jjschwartz/NetworkAttackSimulator
Tian Z, Shi W, Wang Y, Zhu C, Du X, Su S, Sun Y, Guizani N (2019) Real time lateral movement detection based on evidence reasoning network for edge computing environment. CoRR arxiv:1902.04387
Bohara A, Noureddine MA, Fawaz A, Sanders WH (2017) An unsupervised multi-detector approach for identifying malicious lateral movement. In: 2017 IEEE 36th symposium on reliable distributed systems (SRDS), pp 224–233. https://doi.org/10.1109/SRDS.2017.31
Fawaz A, Bohara A, Cheh C, Sanders WH (2016) Lateral movement detection using distributed data fusion. In: 2016 IEEE 35th symposium on reliable distributed systems (SRDS), pp 21–30 . https://doi.org/10.1109/SRDS.2016.014
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mohamed Ahmed, A., Nguyen, T.T., Abdelrazek, M. et al. Reinforcement learning-based autonomous attacker to uncover computer network vulnerabilities. Neural Comput & Applic 36, 14341–14360 (2024). https://doi.org/10.1007/s00521-024-09668-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00521-024-09668-0