Skip to main content
Log in

Pathologic myopia diagnosis and localization from retinal fundus images using custom CNN

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Pathologic myopia (PM) is the critical factor of irreversible visual artifacts and puts patients at risk of other severe retinal diseases such as glaucoma. Early intervention can help control the disease's progression and prevent vision loss. Due to its prevalence worldwide, automated detection of PM and its severity is essential. Deep learning-aided diagnosis has proven itself in the field of ophthalmology. The proposed study automatically classifies pathologic and non-pathologic myopia from the fundus images using a guided mini U-Net (GM-U-Net) for feature extraction integrated with a customized convolutional neural network (PMNet) explicitly designed for fundus images. The proposed GM-U-Net allows a deeper network with significantly reduced parameters than conventional U-Net for feature extraction. The proposed PMNet utilizes the features extracted by GM-U-Net to discriminate between PM and a normal retina image. The PMNet classification performance is compared with the other transfer learning models based on the features provided by the GM-U-Net. The combination of GM-U-Net and PMNet outperforms the different models for PM classification. In-depth ablation tests are conducted to realize the current form of PMNet and test its effectiveness. PMNet achieves an accuracy of 90%, average sensitivity of 93%, and specificity of 97% for binary class on the test set, demonstrating it as a valuable tool for early PM detection. Further, to localize the prominent regions in the images, colored heatmap techniques are applied to visualize the affected areas with a hotter color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ohno-Matsui K, Lai TY, Lai CC, Cheung CMG (2016) Updates of pathologic myopia. Prog Retin Eye Res 52:156–187. https://doi.org/10.1016/j.preteyeres.2015.12.001

    Article  Google Scholar 

  2. You QS, Xu L, Yang H, Wang YX, Jonas JB (2011) Five-year incidence of visual impairment and blindness in adult Chinese: the Beijing Eye Study. Ophthalmology 118(6):1069–1075. https://doi.org/10.1016/j.ophtha.2010.09.032

    Article  Google Scholar 

  3. Yamada M, Hiratsuka Y, Roberts CB, Pezzullo ML, Yates K, Takano S, Taylor HR (2010) Prevalence of visual impairment in the adult Japanese population by cause and severity and future projections. Ophthal Epidemiol 17(1):50–57. https://doi.org/10.3109/09286580903450346

    Article  Google Scholar 

  4. Grossniklaus HE, Green WR (1992) Pathologic findings in pathologic myopia. Retina 12(2):127–133

    Article  Google Scholar 

  5. Zhang Z, Cheng J, Liu J, Sheri YCM, Kong CC, Mei SS (2012) Pathological myopia detection from selective fundus image features. In: 2012 7th IEEE conference on industrial electronics and applications (ICIEA) (pp. 1742–1745). IEEE. https://doi.org/10.1109/ICIEA.2012.6361007

  6. Zhang Z, Xu Y, Liu J, Wong DWK, Kwoh CK, Saw SM, Wong TY (2013) Automatic diagnosis of pathological myopia from heterogeneous biomedical data. PLoS ONE 8(6):e65736. https://doi.org/10.1371/journal.pone.0065736

    Article  Google Scholar 

  7. Chollet F (2017).Xception deep learning with depthwise separable convolutions, https://arxiv.org/abs/1610.02357

  8. Devda J, Eswari R (2019) Pathological myopia image analysis using deep learning. Proc Comput Sci 165:239–244. https://doi.org/10.1016/j.procs.2020.01.084

    Article  Google Scholar 

  9. Li J, Wang LL, Gao Y, Liang QQ, Chen LZ, Sun XL, Yang HQ, Zhao ZF, Meng LN, Xue SY, Du Q, Zhang ZC, Lv CF, Xu HF, Guo Z, Xie GT, Xie LX (2022) Automated detection of myopic maculopathy from color fundus photographs using deep convolutional neural networks. Eye Vis 9(1):13. https://doi.org/10.1186/s40662-022-00285-3

    Article  Google Scholar 

  10. Tang JA, Yuan MZ, Tian KB et al (2022) An artificial-intelligence–based automated grading and lesions segmentation system for myopic maculopathy based on color fundus photographs. Trans Vis Sci Tech 11(6):16. https://doi.org/10.1167/tvst.11.6.16

    Article  Google Scholar 

  11. Cui J, Zhang X, Xiong F, Chen CL (2021) Pathological myopia image recognition strategy based on data augmentation and model fusion. J Healthcare Eng. https://doi.org/10.1155/2021/5549779

    Article  Google Scholar 

  12. Du R, Xie SQ, Fang YX, Igarashi-Yokoi T, Moriyama M, OgataS TT, Kamatani T, Yamamoto S, Cheng CY, Saw SM, Ting D, Wong TY, Ohno-Matsui K (2021) Deep learning approach for automated detection of myopic maculopathy and pathologic myopia in fundus images. Ophthalmol Retina 5(12):1235–1244. https://doi.org/10.1016/j.oret.2021.02.006

    Article  Google Scholar 

  13. Tan TN, Anees A, Chen C et al (2021) Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study. Lancet Digit Health 3(5):e317–e329. https://doi.org/10.1016/S2589-7500(21)00055-8

    Article  Google Scholar 

  14. Lu L, Ren P, Tang X, Yang M, Yuan M, Yu W, Han W (2021) AI-model for identifying pathologic myopia based on deep learning algorithms of myopic maculopathy classification and “plus” lesion detection in fundus images. Front Cell Dev Biol 9:719262. https://doi.org/10.3389/fcell.2021.719262

    Article  Google Scholar 

  15. Wu Z, Cai W, Xie H, Chen S, Wang Y, Lei B, Lu L (2022) Predicting optical coherence tomography-derived high myopia grades from fundus photographs using deep learning. Front Med 9:842680. https://doi.org/10.3389/fmed.2022.842680

    Article  Google Scholar 

  16. Parihar AS, Singh K, Rohilla H, Asnani G, Kour H (2020) A comprehensive analysis of fusion-based image enhancement techniques. In: 2020 4th international conference on intelligent computing and control systems (ICICCS) (pp. 823–828). IEEE. https://doi.org/10.1109/ICICCS48265.2020.9120999

  17. Maheshwari A, Gupta Y (2018) Empirical aspect of big data to enhance medical images using HIPI. In: 2018 Second international conference on intelligent computing and control systems (ICICCS) (pp. 215–220). IEEE. https://doi.org/10.1109/ICCONS.2018.8663053

  18. Zhou E, Yu W, Chen B, Ren P, Lu Q, Han W (2021) Development of deep learning-based detecting systems for pathologic myopia using retinal fundus images. Commun Biol 4(1):1225. https://doi.org/10.1038/s42003-021-02758-y

    Article  Google Scholar 

  19. Balyen L, Tunde P (2019) Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia-Pac J Ophthalmol 8(3):264–272. https://doi.org/10.22608/APO.2018479

    Article  Google Scholar 

  20. Zago GT, Andreão RV, Dorizzi B, Salles EO (2020) Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Comput Biol Med 116:103537. https://doi.org/10.1016/j.compbiomed.2019.103537

    Article  Google Scholar 

  21. Zhang J, Zou H (2024) Insights into artificial intelligence in myopia management: from a data perspective. Graefe’s Arch Clin Exp Ophthalmol 262(1):3–17. https://doi.org/10.1007/s00417-023-06101-5

    Article  Google Scholar 

  22. Tan NM, Liu J, Wong DWK, Lim JH, Zhang Z, Lu S, Li H, Saw SM, Tong L, Wong TY (2009) Automatic detection of pathological myopia using variational level set. Annu Int Conf IEEE Eng Med Biol Soc 2009(2009):3609–3612. https://doi.org/10.1109/IEMBS.2009.5333517

    Article  Google Scholar 

  23. Liu J, Wong DW, Lim JH, Tan NM, Zhang Z, Li H, Wong TY (2010) Detection of pathological myopia by PAMELA with texture-based features through an SVM approach. J Healthcare Eng 1:1–11. https://doi.org/10.1260/2040-2295.1.1.1

    Article  Google Scholar 

  24. Ronneberger O, Fischer P, Brox T (2015). U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, Cham.http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net

  25. Du R, Ohno-Matsui K (2022) Novel uses and challenges of artificial intelligence in diagnosing and managing eyes with high myopia and pathologic myopia. Diagnostics 12(5):1210. https://doi.org/10.3390/diagnostics12051210

    Article  Google Scholar 

  26. Zhang Y, Li Y, Liu J, Wang J, Li H, Zhang J, Xiaobing Y (2023) Performances of artificial intelligence in detecting pathologic myopia: a systematic review and meta-analysis. Eye. https://doi.org/10.1038/s41433-023-02551-7

    Article  Google Scholar 

  27. Singh LK, Khanna M, Garg H, Singh R (2024) Emperor penguin optimization algorithm-and bacterial foraging optimization algorithm-based novel feature selection approach for glaucoma classification from fundus images. Soft Comput 28(3):2431–2467. https://doi.org/10.1007/s00500-023-08449-6

    Article  Google Scholar 

  28. Shyamalee T, Meedeniya D (2022) Attention U-Net for glaucoma identification using fundus image segmentation. Int Conf Decis Aid Sci Appl. https://doi.org/10.1109/DASA54658.2022.9765303

    Article  Google Scholar 

  29. Shyamalee T, Meedeniya D (2022) Glaucoma detection with retinal fundus images using segmentation and classification. Mach Intell Res. https://doi.org/10.1007/s11633-022-1354-z

    Article  Google Scholar 

  30. Zahangir AM et al (2019) Recurrent residual U-Net for medical image segmentation. J Med Imag 6(1):014006–014006. https://doi.org/10.1117/1.JMI.6.1.014006

    Article  Google Scholar 

  31. Zhang S, Zheng R, Luo Y, Wang X, Mao J, Roberts CJ, Sun M (2019) Simultaneous arteriole and venule segmentation of dual-modal fundus images using a multi-task cascade network. IEEE Access 7:57561–57573. https://doi.org/10.1109/ACCESS.2019.2914319

    Article  Google Scholar 

  32. Shen J, Li T, Hu C, He H, Liu J (2019) Automatic cell segmentation using mini-u-net on fluorescence in situ hybridization images. Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109502T. https://doi.org/10.1117/12.2513394

  33. IslamMA, Naha S, Rochan M, Bruce N, Wang Y (2017) Label refinement network for coarse-to-fine semantic segmentation.https://arxiv.org/abs/1703.00551

  34. https://www.kaggle.com/datasets/andrewmvd/ocular-disease-recognition-odir5k.

  35. https://www.kaggle.com/datasets/linchundan/fundusimage1000.

  36. https://www.kaggle.com/c/aptos2019-blindness-detection

  37. https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification

  38. Ayhan MS et al (2023) Multitask learning for activity detection in neovascular age-related macular degeneration. Transl Vis Sci Technol 12(4):12–12. https://doi.org/10.1101/2022.06.13.22276315

    Article  Google Scholar 

  39. Thabtah F, Hammoud S, Kamalov F, Gonsalves A (2020) Data imbalance in classification: experimental evaluation. Inf Sci 513:429–441. https://doi.org/10.1016/j.ins.2019.11.004

    Article  MathSciNet  Google Scholar 

  40. Li Z, Kamnitsas K, Glocker B (2021) Analyzing overfitting under class imbalance in neural networks for image segmentation. IEEE Trans Med Imaging 40(3):1065–1077. https://doi.org/10.1109/TMI.2020.3046692

    Article  Google Scholar 

Download references

Funding

There is no source of funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyank Saxena.

Ethics declarations

Data availability

The dataset shall be made available to the authors on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Saxena, P. Pathologic myopia diagnosis and localization from retinal fundus images using custom CNN. Neural Comput & Applic 36, 14309–14325 (2024). https://doi.org/10.1007/s00521-024-09851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-09851-3

Keywords

Navigation