Skip to main content
Log in

Deep learning-based EEG emotion recognition: a comprehensive review

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Emotion recognition has been used in a wide range of different fields, such as human–computer interaction, safe driving, education and medical treatment. Compared with text, speech, expression and other physiological signals, electroencephalogram (EEG) signals can reflect an individual's emotion states more directly, objectively and accurately, and are less affected by the individual’s subjective consciousness. Following the continuous progress of EEG acquisition equipment over recent years, the acquisition of EEG signals has become increasingly convenient. Emotion recognition based on EEG signals has attracted more and more interest from a wide variety of researchers. This paper first reviews the basic theory of emotion recognition, including discrete and continuous emotion models, the development of acquisition equipment and the internal relationship between EEG signals and emotion recognition. A review of the application of deep learning algorithms to EEG emotion recognition is then presented, with a focus on the extraction of deep EEG features and emotion recognition by single deep learning models, attention-based deep learning models, hybrid deep learning models and domain adaptation-based deep learning models. Taking the public datasets SEED, DEAP, SEED-IV, DREAMER and MPED as examples, representative methods of subject-dependent and subject-independent experiments are quantitatively compared and analysed, and the significance of subject-independent research is indicated. Finally, aiming at the problems of dataset's application limitations, model optimisation and subject variability in existing research, the possible solutions to the corresponding problems are summarised, and the future development trends and prospects are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Wang Z (2006) Artificial psychology and artificial emotion. CAAI Trans Intell Syst 1:38–43

    MATH  Google Scholar 

  2. Picard RW (2000) Affective computing. MIT press, Cambrige

    Book  MATH  Google Scholar 

  3. Boehner K, DePaula R, Dourish P, et al (2005) Affect: from information to interaction. In: Proceedings of the 4th decennial conference on Critical computing: between sense and sensibility pp 59–68

  4. Kaur S, Sharma R (2021) Emotion AI: integrating emotional intelligence with artificial intelligence in the digital workplace. In: Innovations in Information and Communication Technologies (IICT-2020) Proceedings of International Conference on ICRIHE-2020, Delhi, India: IICT-2020 pp 337–343

  5. Wang S, Ji Q (2015) Video affective content analysis: a survey of state-of-the-art methods. IEEE Trans Affect Comput 6:410–430

    Article  MATH  Google Scholar 

  6. Binali H, Potdar V (2012) Emotion detection state of the art. In: Proceedings of the CUBE international information technology conference pp 501–507

  7. Yu M, Liu Z, Shi S et al (2023) Audio-video emotion recognition based on residual network and corase-fine granularity. Comput Eng Des 44(7):2192–2199

    MATH  Google Scholar 

  8. Leahu L, Schwenk S, Sengers P (2008) Subjective objectivity: negotiating emotional meaning. In: Proceedings of the 7th ACM conference on designing interactive systems pp 425–434

  9. Qin Y, Zhang Y, Zhang Y et al (2023) Application and development of EEG acquisition and feedback technology: a review. Biosensors 13:930

    Article  MATH  Google Scholar 

  10. Dadebayev D, Goh WW, Tan EX (2022) EEG-based emotion recognition: review of commercial EEG devices and machine learning techniques. J King Saud Univ-Com 34(7):4385–4401

    MATH  Google Scholar 

  11. Li X, Zhang Y, Tiwari P et al (2022) EEG based emotion recognition: a tutorial and review. ACM Comput Surv 55(4):1–57

    Article  MATH  Google Scholar 

  12. Jafari M, Shoeibi A, Khodatars, M, et al (2023) Emotion recognition in EEG signals using deep learning methods: a review. Comput Biol Med 107450

  13. Zhang G, Yu M, Liu YJ et al (2021) SparseDGCNN: recognizing emotion from multichannel EEG signals. IEEE Trans Affect Comput 14(1):537–548

    Article  MATH  Google Scholar 

  14. Tripathi S, Acharya S, Sharma R, et al (2017) Using deep and convolutional neural networks for accurate emotion classification on DEAP data. In: Proceedings AAAI conference on artificial intelligence, San Francisco, 2017, pp.4746–4752

  15. Li J, Zhang Z, He H (2018) Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn COMPUT 10:368–380

    Article  MATH  Google Scholar 

  16. Deng X, Zhu J, Yang S (2021) SFE-Net: EEG-based emotion recognition with symmetrical spatial feature extraction. In: Proceedings 29th ACM international conference on multimedia, Virtual Event, 2021, pp.2391–2400

  17. Ji S, Xu W, Yang M et al (2012) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal 35(1):221–231

    Article  MATH  Google Scholar 

  18. Yang L, Wang Y, Yang X et al (2023) Stochastic weight averaging enhanced temporal convolution network for EEG-based emotion recognition. Biomed Signal Proces 83:104661

    Article  MATH  Google Scholar 

  19. Bai S, Kolte, JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271

  20. Wen Z, Xu R, Du J (2017). A novel convolutional neural networks for emotion recognition based on EEG signal. In: 2017 international conference on security, pattern analysis, and cybernetics (SPAC), Shenzhen, 2017, pp.672–677. IEEE

  21. Yang YX, Gao ZK, Wang XM, et al (2018) A recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEG. Chaos Interdiscip J Nonlinear Sci 28(8)

  22. Cui H, Liu A, Zhang X et al (2020) EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network. Knowl-Based Syst 205:106243

    Article  MATH  Google Scholar 

  23. Rudakov E, Laurent L, Cousin V, et al (2021) Multi-task CNN model for emotion recognition from EEG brain maps. In: 2021 4th international conference on bio-engineering for smart technologies (BioSMART), Paris/Créteil, 2021, pp.1–4. IEEE

  24. Zhang T, Cui Z, Xu C, et al (2020) Variational pathway reasoning for EEG emotion recognition. In: Proceedings of AAAI conference on artificial intelligence, New York, 2020, pp. 2709–2716

  25. Li Y, Wang L, Zheng W et al (2020) A novel bi-hemispheric discrepancy model for EEG emotion recognition. IEEE T COGN DEV SYST 13(2):354–367

    Article  MATH  Google Scholar 

  26. Li W, Wang M, Zhu J, et al (2023) EEG-based emotion recognition using trainable adjacency relation driven graph convolutional network. IEEE Trans Cogn Dev Syst

  27. Xue Y, Zheng W, Zong Y, et al (2022) Adaptive hierarchical graph convolutional network for EEG emotion recognition. In: 2022 International Joint Conference on Neural Networks (IJCNN), Padua, 2022, pp. 1–8. IEEE

  28. Zhong P, Wang D, Miao C (2020) EEG-based emotion recognition using regularized graph neural networks. IEEE Trans Affect Comput 13(3):1290–1301

    Article  MATH  Google Scholar 

  29. Yang Y, Wu Q, Qiu M, et al (2018) Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network. In: 2018 international joint conference on neural networks (IJCNN), Rio de Janeiro, 2018, pp.1–7. IEEE

  30. Kim Y, Choi A (2020) EEG-based emotion classification using long short-term memory network with attention mechanism. Sensors-Basel 20(23):6727

    Article  MATH  Google Scholar 

  31. Tao W, Li C, Song R et al (2020) EEG-based emotion recognition via channel-wise attention and self attention. IEEE Trans Affect Comput 14(1):382–393

    Article  MATH  Google Scholar 

  32. Shen F, Dai G, Lin G et al (2020) EEG-based emotion recognition using 4D convolutional recurrent neural network. Cogn Neurodyn 14:815–828

    Article  MATH  Google Scholar 

  33. Xiao G, Shi M, Ye M, et al (2022) 4D attention-based neural network for EEG emotion recognition. Cogn Neurodyn 1–14

  34. Wang M, El-Fiqi H, Hu J et al (2019) Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states. IEEE Trans Inf Foren Sec 14(12):3259–3272

    Article  MATH  Google Scholar 

  35. Zhou Y, Li F, Li Y et al (2023) Progressive graph convolution network for EEG emotion recognition. Neurocomputing 544:126262

    Article  MATH  Google Scholar 

  36. Zheng WL, Lu BL (2015) Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Mental Dev 7(3):162–175

    Article  MATH  Google Scholar 

  37. Qiu X, Wang S, Wang R, et al (2023) A multi-head residual connection GCN for EEG emotion recognition. Comput Biol Med 107126

  38. Liu S, Zhao Y, An Y et al (2023) GLFANet: a global to local feature aggregation network for EEG emotion recognition. Biomed Signal Process 85:104799

    Article  MATH  Google Scholar 

  39. Lin X, Chen J, Ma W et al (2023) EEG emotion recognition using improved graph neural network with channel selection. Comput Meth Prog Bio 231:107380

    Article  MATH  Google Scholar 

  40. Jin M, Du C, He H, et al (2024) PGCN: pyramidal graph convolutional network for EEG emotion recognition. IEEE Trans Multim

  41. Dutta E, Bothra A, Chaspari T, et al (2020) Reinforcement learning using EEG signals for therapeutic use of music in emotion management. In: 2020 42nd annual international conference of the ieee engineering in medicine & biology society (EMBC), Montreal, 2020, pp.5553–5556. IEEE

  42. Yang Y, Gao Z, Li Y et al (2021) A CNN identified by reinforcement learning-based optimization framework for EEG-based state evaluation. J Neural Eng 18(4):046059

    Article  MATH  Google Scholar 

  43. Li C, Zhang Z, Song R et al (2021) EEG-based emotion recognition via neural architecture search. IEEE Trans Affect Comput 14(2):957–968

    Article  MATH  Google Scholar 

  44. Zhang Y, Pan Y, Zhang Y, et al (2023). Unsupervised time-aware sampling network with deep reinforcement learning for eeg-based emotion recognition. IEEE Trans Affect Comput

  45. Li D, Xie L, Wang Z, et al (2023) Brain emotion perception inspired eeg emotion recognition with deep reinforcement learning. IEEE Trans Neural Netw Learn Sys

  46. Lan Z, Sourina O, Wang L et al (2018) Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets. IEEE Trans Cogn Dev Syst 11(1):85–94

    Article  MATH  Google Scholar 

  47. Li J, Qiu S, Du C et al (2019) Domain adaptation for EEG emotion recognition based on latent representation similarity. IEEE Trans Cogn Dev Syst 12(2):344–353

    Article  MATH  Google Scholar 

  48. Bao G, Zhuang N, Tong L et al (2021) Two-level domain adaptation neural network for EEG-based emotion recognition. Front Hum Neurosci 14:605246

    Article  MATH  Google Scholar 

  49. He Z, Zhong Y, Pan J (2022) Joint temporal convolutional networks and adversarial discriminative domain adaptation for EEG-based cross-subject emotion recognition. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP), Singapore, 2022, pp.3214–3218. IEEE

  50. Li Z, Zhu E, Jin M et al (2022) Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition. IEEE J Biomed Health 26(12):5964–5973

    Article  MATH  Google Scholar 

  51. Li W, Hou B, Li X et al (2023) TMLP+ SRDANN: a domain adaptation method for EEG-based emotion recognition. Measurement 207:112379

    Article  MATH  Google Scholar 

  52. Guo W, Xu G, Wang Y (2023) Multi-source domain adaptation with spatio-temporal feature extractor for EEG emotion recognition. Biomed Signal Proces 84:104998

    Article  Google Scholar 

  53. Guo W, Xu G, Wang Y (2022) Horizontal and vertical features fusion network based on different brain regions for emotion recognition. Knowl-Based SysT 247:108819

    Article  Google Scholar 

  54. Chen H, Jin M, Li Z et al (2021) MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition. Front Neurosci-Switz 15:778488

    Article  Google Scholar 

  55. Wang Y, Qiu S, Li D et al (2022) Multi-modal domain adaptation variational autoencoder for eeg-based emotion recognition. IEEE/CAA J Autom Sin 9(9):1612–1626

    Article  MATH  Google Scholar 

  56. Li Y, Zheng W, Zong Y et al (2018) A bi-hemisphere domain adversarial neural network model for EEG emotion recognition. IEEE Trans Affect Comput 12(2):494–504

    Article  MATH  Google Scholar 

  57. Li Y, Zheng W, Wang L et al (2019) From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition. IEEE Trans Affect Comput 13(2):568–578

    Article  MATH  Google Scholar 

  58. Li C, Bian N, Zhao Z et al (2024) Multi-view domain-adaptive representation learning for EEG-based emotion recognition. Inf Fusion 104:102156

    Article  MATH  Google Scholar 

  59. Li X, Chen C L P, Chen B, et al (2024) Gusa: graph-based unsupervised subdomain adaptation for cross-subject eeg emotion recognition. IEEE Trans Affect Comput

  60. Koelstra S, Muhl C, Soleymani M et al (2011) Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31

    Article  MATH  Google Scholar 

  61. Zheng WL, Zhu JY, Lu BL (2017) Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans Affect Comput 10(3):417–429

    Article  MATH  Google Scholar 

  62. Ekman P, Friesen WV (1971) Constants across cultures in the face and emotion. J Pers Soc Psychol 17:124

    Article  MATH  Google Scholar 

  63. Ortony A, Clore GL, Collins A (2022) The cognitive structure of emotions. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  64. Lazarus RS (1993) From psychological stress to the emotions: a history of changing outlooks. Annu Rev Psychol 44:1–22

    Article  MATH  Google Scholar 

  65. Cowie R, Cornelius RR (2003) Describing the emotional states that are expressed in speech. Speech Commun 40:5–32

    Article  MATH  Google Scholar 

  66. Borth D, Chen T, Ji R, et al (2013) Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content. In: Proc. 21st ACM international conference on Multimedia, Barcelona, 2013, pp. 459–460

  67. Plutchik R (1980) A general psychoevolutionary theory of emotion. Theories of emotion. Academic press, New York, pp 3–33

    Chapter  Google Scholar 

  68. Zheng WL, Liu W, Lu Y et al (2018) Emotionmeter: a multimodal framework for recognizing human emotions. IEEE Trans Cybern 49(3):1110–1122

    Article  MATH  Google Scholar 

  69. Russell JA (1980) A circumplex model of affect. J Pers Soc Psychol 39:1161

    Article  MATH  Google Scholar 

  70. Mehrabian A (1996) Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr Psychol 14:261–292

    Article  MATH  Google Scholar 

  71. Fontaine JR, Scherer KR, Roesch EB et al (2007) The world of emotions is not two-dimensional. Psychol Sci 18:1050–1057

    Article  MATH  Google Scholar 

  72. Cambria E, Livingstone A, Hussain A (2012) The hourglass of emotions. In: cognitive behavioural systems: Cost 2102 international training school, Dresden, Germany, February 21–26, 2011, pp. 144–157

  73. Li JY, Du XB, Zhu ZL et al (2021) Deep learning for EEG-based emotion recognition: a survey. J Softw 34:255–276

    MATH  Google Scholar 

  74. Wang Y, Qiu S, Ma X et al (2021) A prototype-based SPD matrix network for domain adaptation EEG emotion recognition. Pattern Recogn 110:107626

    Article  MATH  Google Scholar 

  75. Katsigiannis S, Ramzan N (2017) DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J Biomed Health 22(1):98–107

    Article  Google Scholar 

  76. Hinrichs H, Scholz M, Baum AK et al (2020) Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci Rep-UK 10(1):5218

    Article  MATH  Google Scholar 

  77. Grozea C, Voinescu CD, Fazli S (2011) Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J Neural Eng 8(2):025008

    Article  Google Scholar 

  78. Huang YJ, Wu CY, Wong AMK et al (2014) Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans Bio-Med Eng 62(1):256–263

    Article  MATH  Google Scholar 

  79. Hairston WD, Whitaker KW, Ries AJ et al (2014) Usability of four commercially-oriented EEG systems. J Neural Eng 11(4):046018

    Article  Google Scholar 

  80. Rahma R, Nurhadi J (2017) Measurement of concentration duration on reading activity: eeg analysis with openbci ganglion board. Available at SSRN 3174465

  81. Datta P, Kaur A, Sassi N et al (2024) An evaluation of intelligent and immersive digital applications in eliciting cognitive states in humans through the utilization of Emotiv Insight. MethodsX 12:102748

    Article  Google Scholar 

  82. Krigolson OE, Hammerstrom MR, Abimbola W et al (2021) Using Muse: rapid mobile assessment of brain performance. Front Neurosci-Switz 15:634147

    Article  MATH  Google Scholar 

  83. Ratti E, Waninger S, Berka C et al (2017) Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front Hum Neurosci 11:398

    Article  Google Scholar 

  84. Zhao LM, Yan X, Lu BL (2021) Plug-and-play domain adaptation for cross-subject EEG-based emotion recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2021, pp.863–870

  85. Liu M, Liu CH, Zheng S et al (2021) Reexamining the neural network involved in perception of facial expression: a meta-analysis. Neurosci Biobehav R 131:179–191

    Article  MATH  Google Scholar 

  86. Wang M, Huang Z, Li Y et al (2021) Maximum weight multi-modal information fusion algorithm of electroencephalographs and face images for emotion recognition. Comput Electr Eng 94:107319

    Article  MATH  Google Scholar 

  87. Sun M, Cui W, Yu S et al (2022) A dual-branch dynamic graph convolution based adaptive transformer feature fusion network for EEG emotion recognition. IEEE Trans Affect Comput 13:2218–2228

    Article  MATH  Google Scholar 

  88. Zhang Y, Yan G, Chang W et al (2023) EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition. Biomed Signal Proces 79:104157

    Article  Google Scholar 

  89. Choong WY, Khairunizam W, Mustafa WA, et al (2021) Correlation analysis of emotional EEG in alpha, beta and gamma frequency bands. J Phys Conf Series, pp. 012029

  90. Lew WCL, Wang D, Ang KK et al (2022) Eeg-video emotion-based summarization: learning with EEG auxiliary signals. IEEE Trans Affect Comput 13:1827–1839

    Article  MATH  Google Scholar 

  91. Sai CY, Mokhtar N, Arof H et al (2017) Automated classification and removal of EEG artifacts with SVM and wavelet-ICA. IEEE J Biomed Health 22(3):664–670

    Article  Google Scholar 

  92. Alsolamy M, Fattouh A (2016) Emotion estimation from EEG signals during listening to Quran using PSD features. In: 2016 7th international Conference on computer science and information technology (CSIT), Amman, 2016, pp. 1–5

  93. Hwang S, Hong K, Son G et al (2020) Learning CNN features from DE features for EEG-based emotion recognition. Pattern Anal Appl 23:1323–1335

    Article  MATH  Google Scholar 

  94. Zhang T, Zheng W, Cui Z et al (2018) Spatial–temporal recurrent neural network for emotion recognition. IEEE Trans Cybern 49(3):839–847

    Article  MATH  Google Scholar 

  95. Lucey P, Cohn J F, Kanade T, et al (2010). The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops, pp. 94–101. IEEE

  96. Yan C, Zhang X, Zhang J, et al (2023) EEG emotion recognition combined with attention mechanism and feature fusion 1DCNN. J Comput Eng Appl 59(13)

  97. Guo W, Li Y, Liu M et al (2024) Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition. Knowl-Based Syst 283:111199

    Article  Google Scholar 

  98. Chai B, Li DD, Wang Z et al (2021) EEG emotion recognition based on frequency and channel convolutional attention. Comput Sci 48:312–318

    MATH  Google Scholar 

  99. Song T, Zheng W, Lu C et al (2019) MPED: a multi-modal physiological emotion database for discrete emotion recognition. IEEE Access 7:12177–12191

    Article  MATH  Google Scholar 

  100. Song T, Liu S, Zheng W et al (2021) Variational instance-adaptive graph for EEG emotion recognition. IEEE T Affect Comput 14(1):343–356

    Article  MATH  Google Scholar 

  101. Arjun A, Rajpoot AS, Panicker MR (2021) Introducing attention mechanism for EEG signals: emotion recognition with vision transformers. In: 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC), Mexico, 2021, pp.5723–5726. IEEE

  102. Lu W, Tan TP, Ma H (2023) Bi-branch vision transformer network for EEG emotion recognition. IEEE Access

  103. Wang Z, Wang Y, Hu C et al (2022) Transformers for EEG-based emotion recognition: a hierarchical spatial information learning model. IEEE Sens J 22(5):4359–4368

    Article  MATH  Google Scholar 

  104. Wei Y, Liu Y, Li C et al (2023) TC-Net: a transformer capsule network for EEG-based emotion recognition. Comput Biol Med 152:106463

    Article  MATH  Google Scholar 

  105. Liu J, Wu H, Zhang L, et al (2022) Spatial-temporal transformers for EEG emotion recognition. In: Proceeding of the 6th International Conference on Advances in Artificial Intelligence, Birmingham, 2022, pp.116–120

  106. Song T, Zheng W, Song P et al (2018) EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans Affect Comput 11(3):532–541

    Article  MATH  Google Scholar 

  107. Liu S, Zheng W, Song T, et al (2019) Sparse graphic attention LSTM for EEG emotion recognition. In: International conference on neural information processing, Sydney, 2019, pp.690–697. Cham: Springer International Publishing

  108. Gong L, Li M, Zhang T et al (2023) EEG emotion recognition using attention-based convolutional transformer neural network. Biomed Signal Proces 84:104835

    Article  Google Scholar 

  109. Guo JY, Cai Q, An JP et al (2022) A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels. Physica A 603:127700

    Article  Google Scholar 

  110. Song Y, Zheng Q, Liu B et al (2022) EEG conformer: Convolutional transformer for EEG decoding and visualization. IEEE Trans Neural Sys Reh 31:710–719

    Article  MATH  Google Scholar 

  111. Sun J, Wang X, Zhao K et al (2022) Multi-channel EEG emotion recognition based on parallel transformer and 3D-convolutional neural network. Mathem-Basel 10(17):3131

    MATH  Google Scholar 

  112. Li J, Pan W, Huang H et al (2023) STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition. Front Hum Neurosci 17:1169949

    Article  Google Scholar 

  113. Soleymani M, Lichtenauer J, Pun T et al (2011) A multimodal database for affect recognition and implicit tagging. IEEE Trans Affect Comput 3(1):42–55

    Article  MATH  Google Scholar 

  114. Abadi MK, Subramanian R, Kia SM et al (2015) DECAF: MEG-based multimodal database for decoding affective physiological responses. IEEE Trans Affect Comput 6(3):209–222

    Article  Google Scholar 

  115. Liu YJ, Yu M, Zhao G et al (2017) Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Trans Affect Comput 9(4):550–562

    Article  MATH  Google Scholar 

  116. Subramanian R, Wache J, Abadi MK et al (2016) ASCERTAIN: Emotion and personality recognition using commercial sensors. IEEE Trans Affect Comput 9(2):147–160

    Article  Google Scholar 

  117. Li T H, Liu W, Zheng W L, et al (2019). Classification of five emotions from EEG and eye movement signals: discrimination ability and stability over time. In: 2019 9th international IEEE/EMBS conference on neural engineering (NER), San Francisco, 2019, pp. 607–610. IEEE

  118. Miranda-Correa JA, Abadi MK, Sebe N et al (2018) Amigos: a dataset for affect, personality and mood research on individuals and groups. IEEE Trans Affect Comput 12(2):479–493

    Article  MATH  Google Scholar 

  119. Liu W, Zheng WL, Li Z et al (2022) Identifying similarities and differences in emotion recognition with EEG and eye movements among Chinese, German, and French People. J Neural ENG 19(2):026012

    Article  Google Scholar 

  120. Jha S K, Suvvari S, Kumar M (2024). EEG-based Emotion Recognition: An In-depth Analysis using DEAP and SEED Datasets. In: 2024 11th international conference on computing for sustainable global development (INDIACom), pp. 1816–1821. IEEE

  121. Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701

  122. Du G, Zhou W, Li C et al (2020) An emotion recognition method for game evaluation based on electroencephalogram. IEEE Trans Affect Comput 14(1):591–602

    Article  MATH  Google Scholar 

  123. Izmailov P, Podoprikhin D, Garipov T, et al (2018) Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407

  124. Värbu K, Muhammad N, Muhammad Y (2022) Past, present, and future of EEG-based BCI applications. Sensors-Basel 22(9):3331

    Article  MATH  Google Scholar 

  125. Xu T, Wang H, Lu G et al (2021) E-key: an EEG-based biometric authentication and driving fatigue detection system. IEEE Trans Affect Comput 14(2):864–877

    Article  MATH  Google Scholar 

  126. Li D, Liu J, Yang Y et al (2022) Emotion recognition of subjects with hearing impairment based on fusion of facial expression and EEG topographic map. IEEE Trans Neur Sys Reh 31:437–445

    Article  MATH  Google Scholar 

  127. Sethi C, Dabas H, Dua C, et al (2018) EEG-based attention feedback to improve focus in e-learning. In: Proceedings of the 2018 2nd international conference on computer science and artificial intelligence, pp. 321–326

  128. Kim M, Kim MK, Hwang M et al (2019) Online home appliance control using EEG-Based brain–computer interfaces. Electronics-Switz 8(10):1101

    MATH  Google Scholar 

Download references

Funding

This work was supported in part by the Natural Science Foundation of Hebei Province (Grant No.F2019202464), in part by the National Natural Science Foundation of China (Grant No.62102129 and No.62276088) and in part by Beijing-Tianjin-Hebei Basic Research Cooperation Project (Grant No. J230040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Shi.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Shi, S. & Hao, X. Deep learning-based EEG emotion recognition: a comprehensive review. Neural Comput & Applic 37, 1919–1950 (2025). https://doi.org/10.1007/s00521-024-10821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-10821-y

Keywords