Skip to main content

Advertisement

Log in

E-textiles in healthcare: a systematic literature review of wearable technologies for monitoring and enhancing human health

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Integrating electronic textiles (E-Textiles) into healthcare presents significant advancements in patient monitoring and personalised care. This systematic literature review aims to assess the current state of E-Textile applications, focusing on their role in enhancing human health. Specifically, the review evaluates how E-Textiles contribute to real-time health monitoring, rehabilitation, and chronic disease management while identifying the challenges and opportunities for future implementation in healthcare systems. Following a systematic search of PubMed and IEEE Xplore, 48 studies were selected based on stringent inclusion criteria related to the design and functionality of E-Textiles for healthcare applications. These studies were analysed using the PRISMA framework, ensuring methodological rigour in selecting the most relevant literature. The review’s findings reveal that E-Textiles enable continuous, non-invasive monitoring of vital signs, improve patient engagement, and offer potential in remote healthcare delivery. Key advancements include sensor integration, IoT connectivity, and machine learning for health data analysis, which collectively enhance the personalisation and efficiency of medical interventions. However, challenges remain in areas such as cost, data privacy, and scalability within existing healthcare systems, particularly in resource-limited settings. Future applications of E-Textiles are expected to focus on expanding their use in personalised medicine, telehealth, and long-term patient care, promising a shift towards more accessible and efficient healthcare solutions. Hence, continued interdisciplinary research is essential to overcome current limitations and ensure the widespread adoption of this innovative technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

References

  1. Razack HIA, Mathew ST, Saad FFA, Alqahtani SA (2021) Artificial intelligence-assisted tools for redefining the communication landscape of the scholarly world. Sci Editing 8(2):134–144. https://doi.org/10.6087/KCSE.244

    Article  Google Scholar 

  2. Meena JS, Choi SB, Jung S-B, Kim J-W (2023) Electronic textiles: new age of wearable technology for healthcare and fitness solutions. Mat Today Bio 19:100565. https://doi.org/10.1016/j.mtbio.2023.100565

    Article  MATH  Google Scholar 

  3. Hughes-Riley T, Dias T, Cork C (2018) A historical review of the development of electronic textiles. Fibers 6(2):34. https://doi.org/10.3390/fib6020034

    Article  MATH  Google Scholar 

  4. Libanori A, Chen G, Zhao X, Zhou Y, Chen J (2022) Smart textiles for personalized healthcare. Nat Electron 5(3):142–156. https://doi.org/10.1038/s41928-022-00723-z

    Article  MATH  Google Scholar 

  5. Shuvo II, Shah A, Dagdeviren C (2022) Electronic textile sensors for decoding vital body signals: state-of-the-art review on characterizations and recommendations. Adv Intell Syst 4(4):2100223. https://doi.org/10.1002/AISY.202100223

    Article  Google Scholar 

  6. Pravin Renold A, Ranjith Kumar KV (2022) Design of internet of things enabled personalized healthcare device for vital signs monitoring. J Ambient Intell Smart Environ 14(5):375–384. https://doi.org/10.3233/AIS-220098

    Article  Google Scholar 

  7. Garg R, Garg H, Patel H, Ananthakrishnan G, Sharma S (2023) Role of machine learning in detection and classification of Leukemia: a comparative analysis. In: Solanki A, Naved M (eds) GANs for data augmentation in healthcare. Springer International Publishing, Cham, pp 1–20

    MATH  Google Scholar 

  8. Ametefe DS et al (2024) Automatic classification and segmentation of blast cells using deep transfer learning and active contours. Int J Lab Hematol. https://doi.org/10.1111/IJLH.14305

    Article  Google Scholar 

  9. Sharma A, Kumar P, Babulal KS, Obaid AJ, Patel H (2022) Categorical data clustering using harmony search algorithm for healthcare datasets. Int J E-Health Med Commun 13(4):1–15. https://doi.org/10.4018/IJEHMC.309440

    Article  MATH  Google Scholar 

  10. Fleury A, Sugar M, Chau T (2015) E-textiles in clinical rehabilitation: a scoping review. Electronics 4(1):173–203. https://doi.org/10.3390/electronics4010173

    Article  MATH  Google Scholar 

  11. Younes B (2023) Smart E-textiles: a review of their aspects and applications. J Ind Text. https://doi.org/10.1177/15280837231215493

    Article  MATH  Google Scholar 

  12. Martinez RV (2023) “Wearables, E-textiles, and soft robotics for personalized medicine. Springer Handbooks F674:1265–1287. https://doi.org/10.1007/978-3-030-96729-1_59/COVER

    Article  MATH  Google Scholar 

  13. Ayyagari MR, Rane L, Kadam PS, Subasree N, Pant K, Yurievich SY (2023) Smart e-textiles for personalized healthcare diagnosis and management. AIP Conf Proc. https://doi.org/10.1063/5.0126237/2886685

    Article  Google Scholar 

  14. Coulter J (2023) Feeling well: using the augmented touch of E-textiles to embody emotion and environment as a ‘self-health’ intervention for female student wellbeing. J Text Des Res Pract 11(1–2):81–110. https://doi.org/10.1080/20511787.2023.2242165

    Article  Google Scholar 

  15. Zhu J, Kao HLC (2022) Scaling E-textile production: understanding the challenges of soft wearable production for individual creators. Proceedings—International Symposium on Wearable Computers, ISWC, pp. 94–99, Sep. 2022, https://doi.org/10.1145/3544794.3558475.

  16. Zaman SU, Tao X, Cochrane C, Koncar V (2021) Smart E-textile systems: a review for healthcare applications. Electronics 11(1):99. https://doi.org/10.3390/electronics11010099

    Article  Google Scholar 

  17. Chen A, Tan J, Tao X, Henry P, Bai Z (2019) Challenges in knitted E-textiles. Adv Intell Syst Comput 849:129–135. https://doi.org/10.1007/978-3-319-99695-0_16/COVER

    Article  MATH  Google Scholar 

  18. Komolafe A et al (2021) E-textile technology review-from materials to application. IEEE Access 9:97152–97179. https://doi.org/10.1109/ACCESS.2021.3094303

    Article  Google Scholar 

  19. Farraj Y, Kanner A, Magdassi S (2023) E-textile by printing an all-through penetrating copper complex ink. ACS Appl Mater Interfaces 15(17):21651–21658

    Article  Google Scholar 

  20. Alcala-Medel J, Michaelson D, Eike RJ, Li Y (2023) Durability study of e-textile electrodes for human body communication. Text Res J. https://doi.org/10.1177/00405175231197651

    Article  Google Scholar 

  21. Knowles CG, Sennik B, Ju B, Noon M, Mills AC, Jur JS (2022) E-textile garment simulation to improve ECG data quality. International Symposium on Medical Information and Communication Technology, ISMICT

  22. Ozlem K, Kuyucu MK, Bahtiyar S, Ince G (2019) Security and privacy issues for E-textile applications. UBMK 2019—Proceedings, 4th International Conference on Computer Science and Engineering, pp. 102–107 https://doi.org/10.1109/UBMK.2019.8907218

  23. Gonçalves C, Ferreira A, da Silva J, Gomes RS (2018) Wearable E-textile technologies: a review on sensors, actuators and control elements. Inventions 3(1):14. https://doi.org/10.3390/inventions3010014

    Article  MATH  Google Scholar 

  24. Lu Z (2011) PubMed and beyond: a survey of web tools for searching biomedical literature. Database 2011(0):baq036–baq036. https://doi.org/10.1093/database/baq036

    Article  Google Scholar 

  25. Liu N et al (2020) Coronavirus disease 2019 (COVID-19): an evidence map of medical literature. BMC Med Res Methodol 20(1):1–11. https://doi.org/10.1186/S12874-020-01059-Y/FIGURES/7

    Article  MathSciNet  MATH  Google Scholar 

  26. Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak 12(1):1–31. https://doi.org/10.1186/1472-6947-12-67/TABLES/12

    Article  MATH  Google Scholar 

  27. Loncar-Turukalo T, Zdravevski E, da Silva JM, Chouvarda I, Trajkovik V (2019) Literature on wearable technology for connected health: scoping review of research trends, advances, and barriers. J Med Internet Res 21(9):e14017. https://doi.org/10.2196/14017

    Article  Google Scholar 

  28. Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern Part C Appl Rev 40(1):1–12. https://doi.org/10.1109/TSMCC.2009.2032660

    Article  MATH  Google Scholar 

  29. Gravina R, Fortino G (2021) Wearable body sensor networks: state-of-the-art and research directions. IEEE Sens J 21(11):12511–12522. https://doi.org/10.1109/JSEN.2020.3044447

    Article  MATH  Google Scholar 

  30. Page MJ et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906. https://doi.org/10.1016/J.IJSU.2021.105906

    Article  MATH  Google Scholar 

  31. Wolfswinkel JF, Furtmueller E, Wilderom CPM (2017) Using grounded theory as a method for rigorously reviewing literature. Eur J Inf Syst 22(1):45–55. https://doi.org/10.1057/ejis.2011.51

    Article  Google Scholar 

  32. John D, Hussin N, Shahibi MS, Ahmad M, Hashim H, Ametefe DS (2023) A systematic review on the factors governing precision agriculture adoption among small-scale farmers. Outlook Agric 52(4):469–485. https://doi.org/10.1177/00307270231205640

    Article  Google Scholar 

  33. McGuinness LA, Higgins JPT (2021) Risk-of-bias visualization (robvis): an R package and shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12(1):55–61. https://doi.org/10.1002/JRSM.1411

    Article  Google Scholar 

  34. Khandelwal G, Dahiya AS, Beniwal A, Dahiya R (2022) V2O5 anowires-coated yarn-based temperature sensor with wireless data transfer for smart textiles. IEEE J Flex Electron 2(2):119–126. https://doi.org/10.1109/JFLEX.2022.3227528

    Article  MATH  Google Scholar 

  35. Li T et al (2022) Flexible optical fiber-based smart textile sensor for human-machine interaction. IEEE Sens J 22(20):19336–19345. https://doi.org/10.1109/JSEN.2022.3201580

    Article  Google Scholar 

  36. Jiang Y, Pan K, Leng T, Hu Z (2020) Smart textile integrated wireless powered near field communication body temperature and sweat sensing system. IEEE J Electromagn RF Microw Med Biol 4(3):164–170. https://doi.org/10.1109/JERM.2019.2929676

    Article  MATH  Google Scholar 

  37. Chen X, He Y, Tian M, Lijun Qu, Fan T, Miao J (2023) Core–sheath heterogeneous interlocked conductive fiber enables smart textile for personalized healthcare and thermal management. Small. https://doi.org/10.1002/smll.202308404

    Article  Google Scholar 

  38. Liu X et al (2021) Smart textile based on 3D Stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl Mater Interfaces 13(47):56607–56619. https://doi.org/10.1021/ACSAMI.1C18828

    Article  Google Scholar 

  39. Wang L et al (2021) Customizable textile sensors based on helical core-spun yarns for seamless smart garments. Langmuir 37(10):3122–3129. https://doi.org/10.1021/ACS.LANGMUIR.0C03595

    Article  MATH  Google Scholar 

  40. Ravichandran V, Sadhu S, Convey D, Guerrier S, Chomal S, Dupre A-M, Akbar U, Solanki D, Mankodiya K (2023) iTex gloves: design and in-home evaluation of an E-textile glove system for tele-assessment of parkinson’s disease. Sensors 23(6):2877. https://doi.org/10.3390/s23062877

    Article  Google Scholar 

  41. Dore H, Aviles-Espinosa R, Luo Z, Anton O, Rabe H, Rendon-Morales E (2021) Characterisation of textile embedded electrodes for use in a neonatal smart mattress electrocardiography system. Sensors (Basel) 21(3):1–20. https://doi.org/10.3390/S21030999

    Article  Google Scholar 

  42. Kim H, Jang SJ, Lee HD, Ko JH, Lim JY (2023) Smart floor mats for a health monitoring system based on textile pressure sensing: development and usability study. JMIR Form Res 7:e47325. https://doi.org/10.2196/47325

    Article  Google Scholar 

  43. Quartinello F et al (2019) Smart textiles in wound care: functionalization of cotton/PET blends with antimicrobial nanocapsules. J Mater Chem B 7(42):6592–6603. https://doi.org/10.1039/C9TB01474H

    Article  MATH  Google Scholar 

  44. da Silva A et al (2023) Development of smart clothing to prevent pressure injuries in bedridden persons and/or with severely impaired mobility: 4Nopressure research protocol. Healthcare 11(10):1361. https://doi.org/10.3390/healthcare11101361

    Article  MATH  Google Scholar 

  45. Ghosh S et al (2020) A multifunctional smart textile derived from merino wool/nylon polymer nanocomposites as next generation microwave absorber and soft touch sensor. ACS Appl Mater Interfaces 12(15):17988–18001. https://doi.org/10.1021/ACSAMI.0C02566

    Article  Google Scholar 

  46. Nie X, Wu S, Huang F, Wang Q, Wei Q (2021) Smart textiles with self-disinfection and photothermochromic effects. ACS Appl Mater Interfaces 13(2):2245–2255. https://doi.org/10.1021/ACSAMI.0C18474

    Article  MATH  Google Scholar 

  47. Hamdi M, Elkashlan AM, Hammad MA, Ali IH (2023) SARS-CoV-2 papain-like protease responsive ZnO/daclatasvir-loaded chitosan/Gelatin nanofibers as smart antimicrobial medical textiles: in silico, in vitro and cell studies. Pharmaceutics 15(8):2074. https://doi.org/10.3390/pharmaceutics15082074

    Article  Google Scholar 

  48. Govindan T, Palaniswamy SK, Kanagasabai M, Kumar S, Marey M, Mostafa H (2022) Design and analysis of a flexible smart apparel MIMO antenna for bio-healthcare applications. Micromachines 13(11):1919. https://doi.org/10.3390/mi13111919

    Article  Google Scholar 

  49. Teferra MN, Hobbs DA, Clark RA, Reynolds KJ (2021) Preliminary analysis of a wireless and wearable electronic-textile EASI-based electrocardiogram. Front Cardiovasc Med. https://doi.org/10.3389/FCVM.2021.806726/PDF

    Article  Google Scholar 

  50. Liu M, Wang S, Xiong Z, Zheng Z, Ma N, Li L, Gao Q, Ge C, Wang Y, Zhang T (2023) Perspiration permeable, textile embeddable microfluidic sweat sensor. Biosens Bioelectron 237:115504. https://doi.org/10.1016/j.bios.2023.115504

    Article  Google Scholar 

  51. Mariani F et al (2021) Advanced wound dressing for real-time pH monitoring. ACS Sens 6(6):2366–2377

    Article  MATH  Google Scholar 

  52. Avellar L, Filho CS, Delgado G, Frizera A, Rocon E, Leal-Junior A (2022) AI-enabled photonic smart garment for movement analysis. Sci Rep. https://doi.org/10.1038/s41598-022-08048-9

    Article  Google Scholar 

  53. Spanu A, Botter A, Zedda A, Cerone GL, Bonfiglio A, Pani D (2021) Dynamic surface electromyography using stretchable screen-printed textile electrodes. IEEE Trans Neural Syst Rehabil Eng 29:1661–1668. https://doi.org/10.1109/TNSRE.2021.3104972

    Article  Google Scholar 

  54. Joyce K (2019) Smart textiles: transforming the practice of medicalisation and health care. Sociol Health Illn 41(1):147–161. https://doi.org/10.1111/1467-9566.12871

    Article  MATH  Google Scholar 

  55. Shi X et al (2021) Large-area display textiles integrated with functional systems. Nature 591(7849):240–245. https://doi.org/10.1038/S41586-021-03295-8

    Article  MATH  Google Scholar 

  56. Cao YM et al (2021) Smart textiles based on MoS2 hollow nanospheres for personal thermal management. ACS Appl Mater Interfaces 13(41):48988–48996. https://doi.org/10.1021/ACSAMI.1C13269

    Article  Google Scholar 

  57. Zhuo E et al (2023) Wearable smart fabric based on hybrid E-fiber sensor for real-time finger motion detection. Polymers (Basel). https://doi.org/10.3390/POLYM15132934

    Article  MATH  Google Scholar 

  58. Ferrer-Vilanova A et al (2021) Sonochemical coating of prussian blue for the production of smart bacterial-sensing hospital textiles”. Ultrason Sonochem. https://doi.org/10.1016/J.ULTSONCH.2020.105317

    Article  Google Scholar 

  59. Ozturk O, Golparvar A, Acar G, Guler S, Yapici MK (2023) Single-arm diagnostic electrocardiography with printed graphene on wearable textiles. Sens Actuators A Phys. https://doi.org/10.1016/J.SNA.2022.114058

    Article  Google Scholar 

  60. Oliveira A, Dias D, Lopes EM, Vilas-Boas MDC, Cunha JPS (2020) SnapKi-an inertial easy-to-adapt wearable textile device for movement quantification of neurological patients. Sensors (Basel) 20(14):1–20. https://doi.org/10.3390/S20143875

    Article  MATH  Google Scholar 

  61. Liu Y, Duo Xu, Ge C, Gao C, Wei Y, Chen Z, Ziyi Su, Liu K, Weilin Xu, Fang J (2024) Bifunctional smart textiles with simultaneous motion monitoring and thermotherapy for human joint injuries. Adv Sci. https://doi.org/10.1002/advs.202305312

    Article  MATH  Google Scholar 

  62. Zhao X et al (2020) Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14(7):8793–8805. https://doi.org/10.1021/ACSNANO.0C03391

    Article  MATH  Google Scholar 

  63. Huang J, Li Y, Zijie Xu, Li W, Binbin Xu, Meng H, Liu X, Guo W (2019) An integrated smart heating control system based on sandwich-structural textiles. Nanotechnology 30(32):325203. https://doi.org/10.1088/1361-6528/ab15e8

    Article  MATH  Google Scholar 

  64. Shi S et al (2023) An intelligent wearable filtration system for health management. ACS Nano 17(7):7035–7046. https://doi.org/10.1021/ACSNANO.3C02099/SUPPL_FILE/NN3C02099_SI_002.AVI

    Article  MATH  Google Scholar 

  65. Fang Y, Zou Y, Jing Xu, Chen G, Zhou Y, Deng W, Zhao X, Roustaei M, Hsiai TK, Chen J (2021) Ambulatory cardiovascular monitoring via a machine‐learning‐assisted textile triboelectric sensor. Adv Mater. https://doi.org/10.1002/adma.202104178

    Article  Google Scholar 

  66. Lou M et al (2020) Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl Mater Interfaces 12(17):19965–19973. https://doi.org/10.1021/ACSAMI.0C03670

    Article  Google Scholar 

  67. Zhu M, Shi Q, He T, Yi Z, Ma Y, Yang B, Chen T, Lee C (2019) Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano. https://doi.org/10.1021/acsnano.8b08329

    Article  Google Scholar 

  68. Zhou Z et al (2020) Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens Bioelectron 155:112064. https://doi.org/10.1016/j.bios.2020.112064

    Article  MATH  Google Scholar 

  69. Chun S et al (2019) Water-resistant and skin-adhesive wearable electronics using graphene fabric sensor with octopus-inspired microsuckers. ACS Appl Mater Interfaces 11(18):16951–16957. https://doi.org/10.1021/ACSAMI.9B04206

    Article  Google Scholar 

  70. Patiño AG, Khoshnam M, Menon C (2020) Wearable device to monitor back movements using an inductive textile sensor. Sensors 20(3):905. https://doi.org/10.3390/s20030905

    Article  MATH  Google Scholar 

  71. Liu J, Wang P, Li G, Yang L, Wei Y, Meng C, Guo S (2022) A highly stretchable and ultra-sensitive strain sensing fiber based on a porous core–network sheath configuration for wearable human motion detection. Nanoscale 14(34):12418–12430. https://doi.org/10.1039/D2NR03277E

    Article  Google Scholar 

  72. El-Naggar ME, Abu OA, Ali DI, Saleh M-S, Khattab TA (2021) Preparation of green and sustainable colorimetric cotton assay using natural anthocyanins for sweat sensing. Int J Biol Macromol 190:894–903. https://doi.org/10.1016/j.ijbiomac.2021.09.049

    Article  Google Scholar 

  73. Zhang T, Ratajczak AM, Chen H, Terrell JA, Chen C (2022) A step forward for smart clothes–fabric-based microfluidic sensors for wearable health monitoring. ACS Sens 7(12):3857–3866. https://doi.org/10.1021/ACSSENSORS.2C01827

    Article  MATH  Google Scholar 

  74. Salgueiro-Oliveira A et al (2023) Design of innovative clothing for pressure injury prevention: end-user evaluation in a mixed-methods study. Int J Environ Res Public Health 20(18):6773. https://doi.org/10.3390/ijerph20186773

    Article  MATH  Google Scholar 

  75. Zhang X, Wang J, Xing Yi, Li C (2019) Woven wearable electronic textiles as self‐powered intelligent tribo‐sensors for activity monitoring. Global Chall. https://doi.org/10.1002/gch2.201900070

    Article  MATH  Google Scholar 

  76. He X, Fan C, Xu T, Zhang X (2021) Biospired janus silk E-textiles with wet-thermal comfort for highly efficient biofluid monitoring. Nano Lett 21(20):8880–8887. https://doi.org/10.1021/ACS.NANOLETT.1C03426

    Article  MATH  Google Scholar 

  77. Kim H et al (2020) Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable E-textile applications. ACS Nano 14(12):17213–17223. https://doi.org/10.1021/ACSNANO.0C07143

    Article  Google Scholar 

  78. Yoon JH et al (2019) Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor. ACS Appl Mater Interfaces 11(49):46165–46175. https://doi.org/10.1021/ACSAMI.9B16829

    Article  Google Scholar 

  79. Chen S-W et al (2022) A facile, fabric compatible, and flexible borophene nanocomposites for self‐powered smart assistive and wound healing applications. Adv Sci. https://doi.org/10.1002/advs.202201507

    Article  Google Scholar 

  80. Lian Y, He Yu, Wang M, Yang X, Zhang H (2020) Ultrasensitive wearable pressure sensors based on silver nanowire-coated fabrics. Nanoscale Res Lett. https://doi.org/10.1186/s11671-020-03303-2

    Article  MATH  Google Scholar 

  81. Min WK et al (2023) Strain‐driven negative resistance switching of conductive fibers with adjustable sensitivity for wearable healthcare monitoring systems with near‐zero standby power. Adv Mater. https://doi.org/10.1002/adma.202303556

    Article  Google Scholar 

  82. Azeem M, Shahid M, Masin I, Petru M (2024) Design and development of textile-based wearable sensors for real-time biomedical monitoring; a review. J Text Inst. https://doi.org/10.1080/00405000.2024.2318500

    Article  MATH  Google Scholar 

  83. Hussain T, Ullah S, Fernández-García R, Gil I (2023) Wearable sensors for respiration monitoring: a review. Sensors 23(17):7518. https://doi.org/10.3390/s23177518

    Article  MATH  Google Scholar 

  84. Vidhya CM, Maithani Y, Singh JP (2023) Recent advances and challenges in textile electrodes for wearable biopotential signal monitoring: a comprehensive review. Biosensors 13(7):679. https://doi.org/10.3390/bios13070679

    Article  Google Scholar 

  85. De Fazio R, Mastronardi VM, De Vittorio M, Visconti P (2023) Wearable sensors and smart devices to monitor rehabilitation parameters and sports performance: an overview. Sensors 23(4):1856. https://doi.org/10.3390/s23041856

    Article  Google Scholar 

  86. Yang K, Isaia B, Brown LJE, Beeby S (2019) E-textiles for healthy ageing. Sensors 19(20):4463. https://doi.org/10.3390/s19204463

    Article  MATH  Google Scholar 

  87. Ruckdashel RR, Khadse N, Park JH (2022) Smart E-textiles: overview of components and outlook. Sensors 22(16):6055. https://doi.org/10.3390/s22166055

    Article  Google Scholar 

  88. Simegnaw AA, Malengier B, Rotich G, Tadesse MG, Van Langenhove L (2021) Review on the integration of microelectronics for E-textile. Materials 14(17):5113. https://doi.org/10.3390/ma14175113

    Article  MATH  Google Scholar 

  89. Choudhry NA, Arnold L, Rasheed A, Khan IA, Wang L (2021) Textronics—a review of textile-based wearable electronics. Adv Eng Mater 23(12):2100469. https://doi.org/10.1002/ADEM.202100469

    Article  Google Scholar 

  90. Plakantonaki S, Kiskira K, Zacharopoulos N, Chronis I, Coelho F, Togiani A, Kalkanis K, Priniotakis G (2023) A review of sustainability standards and ecolabeling in the textile industry. Sustainability 15(15):11589. https://doi.org/10.3390/su151511589

    Article  Google Scholar 

  91. Veske P, Ilén E (2021) Review of the end-of-life solutions in electronics-based smart textiles. J Text Inst 112(9):1500–1513. https://doi.org/10.1080/00405000.2020.1825176

    Article  MATH  Google Scholar 

  92. Cesarelli G, Donisi L, Coccia A, Amitrano F, D’Addio G, Ricciardi C (2021) The E-textile for biomedical applications: a systematic review of literature. Diagnostics 11(12):2263. https://doi.org/10.3390/diagnostics11122263

    Article  Google Scholar 

  93. Naik N et al (2022) Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front Surg 9:862322. https://doi.org/10.3389/FSURG.2022.862322/BIBTEX

    Article  MATH  Google Scholar 

  94. Khatib M, Zohar O, Haick H (2021) Self-healing soft sensors: from material design to implementation. Adv Mater 33(11):2004190. https://doi.org/10.1002/ADMA.202004190

    Article  Google Scholar 

  95. Shah KW, Huseien GF (2020) Biomimetic self-healing cementitious construction materials for smart buildings. Biomimetics 5(4):47. https://doi.org/10.3390/biomimetics5040047

    Article  MATH  Google Scholar 

  96. Tadesse MG, Loghin C, Dulgheriu I, Loghin E (2021) Comfort evaluation of wearable functional textiles. Materials 14(21):6466. https://doi.org/10.3390/ma14216466

    Article  MATH  Google Scholar 

  97. Barman J et al (2022) The role of nanotechnology based wearable electronic textiles in biomedical and healthcare applications. Mater Today Commun 32:104055. https://doi.org/10.1016/J.MTCOMM.2022.104055

    Article  MATH  Google Scholar 

  98. Yang K, McErlain-Naylor SA, Isaia B, Callaway A, Beeby S (2024) E-textiles for sports and fitness sensing: current state, challenges, and future opportunities. Sensors 24(4):1058. https://doi.org/10.3390/s24041058

    Article  Google Scholar 

  99. Rotzler S, von Krshiwoblozki M, Schneider-Ramelow M (2021) Washability of E-textiles: current testing practices and the need for standardization. Text Res J 91(19–20):2401–2417. https://doi.org/10.1177/0040517521996727

    Article  Google Scholar 

  100. Osama M et al (2023) Internet of medical things and healthcare 4.0: trends, requirements, challenges, and research directions. Sensors 23(17):7435. https://doi.org/10.3390/s23177435

    Article  MATH  Google Scholar 

  101. Hasan MM, Hossain MM (2021) Nanomaterials-patterned flexible electrodes for wearable health monitoring: a review. J Mater Sci 56(27):14900–14942. https://doi.org/10.1007/s10853-021-06248-8

    Article  MATH  Google Scholar 

  102. Shi HH et al (2023) Sustainable electronic textiles towards scalable commercialization. Nat Mater 22(11):1294–1303. https://doi.org/10.1038/s41563-023-01615-z

    Article  MATH  Google Scholar 

  103. Kan C-W, Lam Y-L (2021) Future trend in wearable electronics in the textile industry. Appl Sci 11(9):3914. https://doi.org/10.3390/app11093914

    Article  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Divine Senanu Ametefe or Suqi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Fu, L., Ametefe, D.S. et al. E-textiles in healthcare: a systematic literature review of wearable technologies for monitoring and enhancing human health. Neural Comput & Applic 37, 2089–2111 (2025). https://doi.org/10.1007/s00521-024-10947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-10947-z

Keywords