Skip to main content

Advertisement

Log in

Knowledge Discovery in Multiple Spatial Databases

  • Published:
Neural Computing & Applications Aims and scope Submit manuscript

In this paper, a new approach for centralised and distributed learning from spatial heterogeneous databases is proposed. The centralised algorithm consists of a spatial clustering followed by local regression aimed at learning relationships between driving attributes and the target variable inside each region identified through clustering. For distributed learning, similar regions in multiple databases are first discovered by applying a spatial clustering algorithm independently on all sites, and then identifying corresponding clusters on participating sites. Local regression models are built on identified clusters and transferred among the sites for combining the models responsible for identified regions. Extensive experiments on spatial data sets with missing and irrelevant attributes, and with different levels of noise, resulted in a higher prediction accuracy of both centralised and distributed methods, as compared to using global models. In addition, experiments performed indicate that both methods are computationally more efficient than the global approach, due to the smaller data sets used for learning. Furthermore, the accuracy of the distributed method was comparable to the centralised approach, thus providing a viable alternative to moving all data to a central location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarevic, A., Obradovic, Z. Knowledge Discovery in Multiple Spatial Databases. Neural Comput Applic 10, 339–350 (2002). https://doi.org/10.1007/s005210200006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005210200006