Skip to main content
Log in

Comparison of Algorithmic and Machine Learning Approaches for the Automatic Fitting of Gaussian Peaks

  • Published:
Neural Computing & Applications Aims and scope Submit manuscript

Abstract

Fitting Gaussian peaks to experimental data is important in many disciplines, including nuclear spectroscopy. Nonlinear least squares fitting methods have been in use for a long time, but these are iterative, computationally intensive, and require user intervention. Machine learning approaches automate and speed up the fitting procedure. However, for a single pure Gaussian, there exists a simple and automatic analytical approach based on linearisation followed by a weighted linear Least Squares (LS) fit. This paper compares this algorithmic method with an abductive machine learning approach based on AIM 1 (Abductory Induction Mechanism). Both techniques are briefly described and their performance compared for analysing simulated and actual spectral peaks. Evaluated on 500 peaks with statistical uncertainties corresponding to a peak count of 100, average absolute errors for the peak height, position and width are 4.9%, 2.9% and 4.2% for AIM, versus 3.3%, 0.5% and 7.7% for the LS. AIM is better for the width, while LS is more accurate for the position. LS errors are more biased, under-estimating the peak position and over-estimating the peak width. Tentative CPU time comparison indicates a five-fold speed advantage for AIM, which also has a constant execution time, while LS time depends upon the peak width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Aal, R. Comparison of Algorithmic and Machine Learning Approaches for the Automatic Fitting of Gaussian Peaks. Neural Comput Applic 11, 17–29 (2002). https://doi.org/10.1007/s005210200012

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005210200012

Navigation