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Abstract. We present a framework for multicamera video
surveillance. The framework consists of three phases: de-
tection, representation, and recognition. The detection phase
handles multisource spatiotemporal data fusion for efficiently
and reliably extracting motion trajectories from video. The
representation phase summarizes raw trajectory data to con-
struct hierarchical, invariant, and content-rich descriptions of
the motion events. Finally, the recognition phase deals with
event classification and identification on the data descriptors.
Through empirical study in a parking-lot-surveillance setting,
we show that our spatiotemporal fusion scheme and biased
sequence-data learning method are highly effective in identi-
fying suspicious events.

Keywords: Video —Image — Motion — Surveillance — Recog-
nition

1 Introduction

United States policymakers, especially in security and intelli-
gence services, are increasingly turning to video surveillance
as a means to combat terrorist threats and increase public
security. With the proliferation of inexpensive cameras and
the availability of high-speed, broadband wired/wireless net-
works, it has become economically and technically feasible
to deploy a large number of cameras for security surveillance
[38,40]. However, several important research questions must
be addressed before we can rely upon video surveillance as an
effective tool for crime prevention.

A surveillance task can be divided into three phases: event
detection, event representation, and event recognition [13].
The detection phase handles multisource spatiotemporal data
fusion for efficiently and reliably extracting motion trajec-
tories from video. The representation phase summarizes raw
trajectory data to construct hierarchical, invariant, and content-
rich representations of the motion events. Finally, the recog-
nition phase deals with event recognition and classification.
The research challenges of the three phases are summarized
as follows:

e FEvent detection from multiple cameras. Objects observed
from multiple cameras should be integrated to build spa-
tiotemporal patterns that correspond to three-dimensional
viewing. Such integration must handle spatial occlusion
and temporal shift (e.g., camera recording without tim-
ing synchronization and videotaping with differing frame
rates). In addition, a motion pattern should not be affected
by varying camera positions/poses and incidental environ-
mental factors that can alter object appearance.

e Hierarchical and invariant event description. Invariant de-
scriptions are those that are not affected by incidental
change of environmental factors (e.g., lighting) and sens-
ing configuration (e.g., camera placement). The concept of
invariancy is applicable at multiple levels of event descrip-
tion. We distinguish two types of invariancy: fine-grained
and coarse-grained. Fine-grained invariancy captures the
characteristics of an event at a detailed, numeric level.
Fine-grained invariant descriptors are therefore suitable
for “intraclass” discrimination of similar event patterns
(e.g., locating a particular event among multiple events de-
picting the same circling behavior of vehicles in a parking
lot). Coarse-grained invariancy captures the motion traits
at a concise, semantic level. Coarse-grained invariant de-
scriptions are thus suitable for “interclass” discrimination,
e.g., discriminating a vehicle’s circling behavior from, say,
its parking behavior. These two types of descriptors can
be used synergistically to accomplish a recognition task.

o Event recognition. Event characterization deals with map-
ping motion patterns to semantics (e.g., benign and sus-
picious events). Traditional machine learning algorithms
such as SVMs and decision trees cannot be directly applied
to such infinite-dimensional data, which may also exhibit
temporal ordering. Furthermore, positive events (i.e., the
sought-for hazardous events) are always significantly out-
numbered by negative events in the training data. In such
animbalanced set of training data, the class boundary tends
to skew toward the minority class and becomes very sen-
sitive to noise. (An example is presented in Sect. 4.2 to
illustrate this problem.)

For event detection and representation, we configure two-
level Kalman filters to fuse multisource video data, and
we employ a variant of dynamic programming to construct
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event descriptors. For effective event recognition, we first dis-
cretize a continuous spatiotemporal sequence. We propose
a sequence-alignment kernel, which we show to be a legit-
imate kernel function, to discriminate events. For tackling
the imbalanced-training-data problem, we propose the kernel-
boundary-alignment (KBA) algorithm, which adaptively mod-
ifies the kernel matrix according to the training-data distribu-
tion. One particular application scenario we utilize to evaluate
our algorithms is detecting suspicious activities in a parking
lot. Our empirical study shows (1) that our spatiotemporal
fusion scheme can efficiently and reliably reconstruct scene
activities even when individual cameras may have spatial or
temporal lapses and (2) that our sequence-alignment kernel
and KBA algorithm are highly effective in identifying suspi-
cious events.

The rest of the paper is organized as follows. In Sect. 2
we discuss related work. Section 3 addresses our sensor-data-
fusion scheme and sequence-data representation. Section 4
presents event characterization and recognition methods. Sec-
tion 5 contains empirical results. Finally, in Sect. 6 we offer
some concluding remarks.

2 Related work

We divide our discussion of related work into two parts. The
first part surveys related work in fusing data from multi-
ple cameras. The second part discusses related research in
sequence-data learning.

2.1 Sensor-data analysis and fusion

Sensor-data fusion from multiple cameras is an important
problem with many potential applications. The work in mul-
tisource fusion can be divided into two categories based on
camera configurations: spatially nonoverlapping and spatially
overlapping. The study of [30] attempts to fuse data from
several nonoverlapping cameras using a Bayesian reasoning
approach. Since there might be significant gaps between the
fields of view of the cameras, the precision in prediction may
suffer. Most fusion algorithms assume an overlapping cam-
era configuration and concentrate on fusing local coordinate
frames of multiple cameras into one global coordinate sys-
tem. For example, [32] assumes that only the intrinsic camera
parameters are known, and the cameras are registered into a
common frame of reference by aligning moving objects ob-
served in multiple cameras spatially and temporally [29]. The
DETER project [37] also uses an overlapping camera configu-
ration. The homography between images from two cameras is
computed, the images are mosaiced together to perform seam-
less tracking, and all data processing is then performed in the
synthesized image plane. In this paper, we use a two-level hier-
archy of Kalman filters for trajectory tracking and data fusion
from multiple cameras. The advantage of our formulation is
that it enables both bottom-up fusion and top-down guidance
and hence is robust even with partial occlusion.

The Kalman filter is an important theoretical development
for data smoothing and prediction. The traditional Kalman
filter is a linear algorithm that operates under a prediction-
correction paradigm. The quantities of a system to be esti-
mated are summarized in an internal state vector, which is
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constrained by the observation of the system’s external be-
havior. The prediction mechanism is used for propagating the
system’s internal state over time, and the correction mech-
anism is for fine-tuning the state propagation with external
observations [47].

The Kalman filter and its variants are powerful tools for
tracking inertial systems. Generally speaking, the standard
Kalman filter performs satisfactorily for tracking the position
of a moving object. However, for tracking the orientation of
an object, where the governing equations in state propagation
and observation may be nonlinear, the extended Kalman filter
(e.g., nonlinear variants of the Kalman filter) must be used [34,
35]. For example, [2] uses a standard Kalman filter to predict
the head position and an extension of it to estimate the head
orientation of a user in a virtual reality system. In this paper,
we are interested in summarizing the trajectory of a vehicle,
and hence only the position, not the orientation, of a vehicle is
needed. We have thus employed the traditional Kalman filter
for the efficient tracking purpose.

In addition to the Kalman filter, the hidden Markov model
(HMM) has been used for object tracking [4]. Both the Kalman
filter and HMM can be used to estimate the internal states of
a system. However, HMM is not an attractive online tracking
method due to its high computational intensity with respect to
the number of states. For tracking objects, where the number
of possible locations (number of states) of the tracked ob-
jects is theoretically infinite, the Kalman filter is the popular
choice [4]. In general, HMM is more suitable for recognition
tasks [42,5], where the number of states is relatively small.

2.2 Sequence-data modeling and learning

Generative and discriminative models have been proposed to
classify sequence data. The hidden Markov model (HMM) is
the most widely used generative model [3] for describing se-
quence data. The HMM requires building a model for each
pattern family. When an unknown pattern is to be classified,
the Bayes rule returns the most likely model to depict it. For
surveillance, however, building an HMM for each motion pat-
tern, benign or suspicious, may not be realistic because of the
scarcity of positive training data. (Learning an HMM, even
with a moderate number of states, requires a large number of
training instances [10].)

SVMs [44] are the most popular discriminative models;
they directly estimate a discriminant function for each class.
SVMs have been proven superior to generative models in
classification problems for both effectiveness and efficiency.
SVMs are applied to training data that reside in a vector space.
The basic form of an SVM kernel function that classifies an
input vector x is expressed as

N
f(x) = Z Qiyid(Xi) - p(x) +b

N
=3 ik (i) +, 0
i=1

where ¢ is a nonlinear mapping function that maps input vec-
tors into the feature space, operator “-”” denotes the inner prod-
uct operator, and x; is the ¢th training sample. Parameters y;
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and «; are class label and Lagrange multiplier of x;, respec-
tively. K is a kernel function, and b is the bias.

For sequence data, in particular variable-length sequences,
the basis function ¢ does not exist, nor does the feature space.
Several attempts (e.g., [9,33]) have been made to convert se-
quence data to fixed-length segments and represent them in
vector spaces, but these forced mappings of variable-length
to fixed-length segments often result in loss of information.
Furthermore, these models cannot capture the temporal rela-
tionship between spatial instances, nor do they consider sec-
ondary variables (e.g., velocity can be a secondary variable
when traveling direction is the one).

Another vector-space approach is the SVM—-Fisher kernel.
The SVM-Fisher kernel [25,26] computes features from prob-
abilistic models p(z|#), in which 6 is learned from the HMM
training. It then uses the tangent vector of the log marginal
likelihood log p(x|6) as the feature vectors. The SVM-Fisher
kernel considers only positive training instances and does not
take advantage of negative training instances in learning.

Fortunately, kernel methods (SVMs are a member of the
kernel method family) require only a positive definite ker-
nel matrix K (x;,x;), which consists of a similarity measure
between all pairs of training instances, without explicitly rep-
resenting individual instances in a vector space [27]. More
specifically, we can treat each sequence instance x; as a ran-
dom variable z;. All we need is a kernel function that gen-
erates pairwise similarity between all pairs of z; and z; and
that can ensure that the generated similarity matrix is posi-
tive definite. Put another way, as long as we have a similarity
function that can produce a positive definite kernel matrix, we
can use the kernel method to conduct sequence-data learning.
Hence, our design task is reduced to formulating a function
that can characterize the similarity between sequences, pro-
vided that the pairwise similarity matrix is positive definite.
In this paper, we borrow an idea from sequence-data (DNA,
RNA, and protein) analysis in biological science to measure
sequence similarity based on alignment. We show in Sect. 4.1
the flexibility and effectiveness of this similarity function. Fur-
thermore, we propose the sequence-alignment kernel, which
fuses symbolic summarizations (in a nonvector space) with
numeric descriptions (in a vector space). Because its ability
to fuse primary structures with secondary structures that do or
do not have a vector-space representation, our proposed kernel
features great modeling flexibility.

Finally, to tackle the imbalanced-data-learning problem,
we propose the kernel-boundary-alignment (KBA) scheme.
For related work of imbalanced-data learning, please refer to
[48].

3 Event detection and representation

The particular application scenario is that of automated de-
tection and classification of suspicious activities (vehicles,
humans) from surveillance video of a parking lot or a park-
ing structure. This type of application requires solutions to
all the above-mentioned difficulties: the optimal fusion of in-
formation from multiple cameras in both spatial and tempo-
ral domains, the ability to describe objects and motions in a
way that is unaffected by camera placement and environmen-
tal variance, and the articulation of the query concept (sus-
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Fig. 1. Surveillance scenario configuration

picious vehicles) from highly skewed training datasets with
high-dimensional description vectors.

The experimental scenario is depicted in Fig. 1. Multiple
slave surveillance stations, each comprising a video camera
connected to a host PC, are positioned at different locations
to monitor the ground activities in a parking lot. There is no
restriction on the number of cameras used, their brand names,
or their capability. The camera aim can be stationary, follows
a fixed sweep pattern, or is remotely controlled by a human
operator. The view volumes of different cameras can be totally
disjoint or can overlap partially. Furthermore, the clocks on
different slave stations need not be synchronized. A single
master station communicates with slave stations over wireless
links for information gathering and fusion.

3.1 Event detection

The event-detection stage aims at achieving optimal fusion of
multisensor data spatially and temporally to derive a hierar-
chical and invariant description of the scene activities. The
sensor-data-fusion algorithm should address both the bottom-
up data-integration problem and the top-down information-
dissemination problem in a coherent framework. Several is-
sues are addressed in our event-detection and sensor-fusion
framework:

e Variability in spatial coverage: Multiple surveillance cam-
eras have different fields of view. While it is not unreasonable
to assume some overlap in the fields of view, the placement
of cameras is to provide as wide a coverage of the surveil-
lance area as possible. Hence, congruent activities must be
identified and merged from multiple cameras.

e Misalignment of temporal time stamp: Often surveillance
tapes do not come with time stamps. Even with time stamps,
they are not accurate enough to allow recordings from mul-
tiple cameras to be synchronized for analysis. For example,
a fast moving car can easily move out of view in as short as
a few seconds. Hence, misalignment by even a few seconds
temporally can have an impact on the analysis algorithm.
Temporal registration is therefore as important as spatial reg-
istration in fusing multiple sensor data.
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e Occlusion and missing data: Even with careful camera
placement, occlusion of scene objects by environmental fix-
tures is often unavoidable. This implies that trajectories can
easily break and remedial actions are needed to link and
repair broken trajectories.

In the following subsections, we will discuss our solu-
tions to these problems by proposing algorithms for spatial
and temporal registration and for sensor-data fusion using a
prediction-correction framework. Before proceeding any fur-
ther, we will make clear the notational convention used in
the ensuing discussion. Matrices and vectors are denoted by
boldface characters; scalar quantities by plain-faced charac-
ters. Two-dimensional quantities will be in lowercase and 3D
quantities in uppercase letters. We will use the tilde symbol to
denote vectors in the homogeneous coordinates [17,18], i.e.,
appending an extra 1 as the last component of a vector. Hence,
p and P denote 2D and 3D point coordinates and p and P the
same coordinates in the homogeneous form.

3.1.1 Spatial registration

This step is for determining the essential camera parameters
and the pose and aim of a camera in the environment. This is
an essential step in video interpretation (e.g., to extract metric
information from video). Camera calibration and pose regis-
tration is a topic that has been studied extensively in computer
vision, remote sensing, and photogrammetry [17,22,49]. It is
not our intention to reinvent the wheel by coming up with yet
another calibration or pose-registration algorithm.! Here, for
the sake of completeness, we provide a short description of
the algorithms that we will use and motivate and justify our
choices in this particular application domain.

The process of forming an image, using an overly sim-
plified explanation, involves the determination of two things:
where an object will appear (the geometry process) and how
an object will appear (the appearance process) in an image.
Camera calibration and pose registration are for answering the
where (or the geometry) question. The geometry of image for-
mation can be expressed mathematically as a concatenation of
several coordinate transformations and projections that bring
a 3D coordinate P = [X,Y, Z]7, specified in some global
reference frame, to a 2D coordinate p = [z, y|T, specified
in some camera coordinate frame. The process can be broken
down into three stages:

1. Tcamera%wor]d A world to camera coordinate transform:
This is specified as a 4 x 4 matrix in homogeneous coor-
dinates that maps 3D coordinates (in a homogeneous form)
specified in a global reference frame to 3D coordinates (again
in a homogeneous form) in a camera- (or viewer-) centered
reference frame. ’i‘cameraeworld is uniquely determined by a
rotation plus a translation.

2. ’i‘idem(_camera A camera to ideal image projective trans-
form: This is specified as a 3 x 4 matrix in homogeneous
coordinates that projects 3D coordinates (in a homogeneous
form) in the camera reference frame onto the image plane of
an ideal (a pinhole) camera. The model can be perspective,

' A paper published back in 1989 [20] cited a German dissertation
from 1958 that surveyed nearly 80 different solutions for camera pose
registration from the photogrammetry literature.
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paraperspective, or weak perspective [22], which models the
image formation process with differing degrees of fidelity.
We will use the full perspective model. This matrix is of a
fixed form with no unknown parameter, depending only on
the projection model used.

3. Treak—ideal An ideal image to real image transform: This
is specified as a 3 x 3 matrix in homogeneous coordinates
that takes ideal projection coordinates into real projection
coordinates. This process accounts for physical camera pa-
rameters (e.g., the center location of the image plane, the
scale factors in the x and y directions, etc.) and lens distor-
tion (e.g., spherical and achromatic aberration) in the real
image formation process [41,49]. The combination of the
aboveis _ _ B _

f)real = Treal(—idealTidealecameraTcameraeworldeorld . (2)

The parameters to be determined in the third step (’i‘rcalHdeal)
are called the intrinsic camera parameters. They are affected
only by the physical components of a camera (lens and CCD
array used) and not by the physical placement of the camera
in the surrounding environment. The process of determining
these intrinsic parameters is called calibration and is usually
performed once and offline. For this, we will use the algorithm
of [51], which requires only two views of a planar calibration
pattern, posed in relatively arbitrary orientations.

The parameters determined in the first step (’i‘camemeworld)
are the translation and rotation to align the camera and the
world coordinate frames. This process is called pose registra-
tion and may need to be performed continuously online (e.g.,
if the camera is mounted on a swivel base). The performance
of pose registration is thus more critical and time sensitive.
If the camera’s intrinsic parameters have been determined us-
ing offline calibration, then ’i‘real&ideal and ’i‘idealecamera are
known, and the three matrices in Eq. 2 can be combined into
a single one: T'ea1world:

f)real = Treal(—worldeorld . (3)

Theoretically, Trea«world in Eq. 3 is a 3 x 4 matrix with 12
unknowns. Now each landmark with known 3D world coor-
dinates P4 and its projection in the real camera coordinate
frame pPrea provides two linear constraints using Eq. 3. Hence,
a total of six point correspondences are needed for a linear
closed-form solution to pose registration.

However, such a solution is not satisfactory for both the-
oretical and practical reasons. Theoretically, the method is
computationally expensive, for it requires the inversions of a
12 x 12 matrix. Furthermore, the coefficient matrix may be
ill-conditioned, depending on the configuration of the land-
marks in space. Experience from implementing this algorithm
shows that to avoid degeneration in the computation, one has
to make sure that the six observed landmarks do not lie in the
same plane (e.g., ground).

In the real-world scenario, given a surveillance tape taken
of a parking lot at an arbitrarily chosen location, finding six
landmarks that (1) have known world coordinates, (2) are
present in the fields of view of multiple cameras, and (3) re-
main visible even with dynamic camera aims is a nontrivial
task. Hence, alternative pose registration methods that require
fewer landmarks for registration are important. However, it can
be proven that with fewer than six landmarks, it is not possible
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Fig. 2. Illustration of Church’s algorithm

to have a linear closed-form solution to the pose-registration
problem. DeMenthon and Davis [14] and Horaud et al. [22]
present iterative solutions using four 3D landmarks of known
world coordinates and their image coordinates. However, these
four landmarks should be noncoplanar for high calibration ac-
curacy, and this again presents a problem. (How do we know
how tall a lamp post or some other fixture is at an arbitrarily
chosen parking lot?)

Another alternative is to use an algorithm first devel-
oped by Earl Church back in 1945 for aerial photogrammetry.
Church’s algorithm [11] is an iterative, nonlinear optimization
technique that requires only three landmarks for pose registra-
tion. Referring to Fig. 2, the solution is based on the condition
that the face angle subtended by any two landmarks in space
is equal to the face angle subtended at their corresponding im-
age locations. The face angles («, 3, and  in Fig. 2) formed
by the camera origin (focal point) and the image projection of
the landmarks can be calculated directly in the camera coordi-
nate frame. However, because the location of the camera focal
point [(X, Y, Z) in Fig. 2] in the world coordinate system is
unknown, the face angles subtended by the landmarks in space
are unspecified.

Church’s method starts by guessing a value for the camera
origin in the world coordinate system. With this hypothesized
camera origin position [(X",Y", Z") in Fig. 2], we can form
three face angles in the world coordinate system (a”, 3", and
+" inFig. 2). These face angles will in general not match those
computed from the images unless the hypothesized camera
position is correct. By partial differentiation of the difference
between the two sets of face angles with respect to the current
hypothesized position (X", Y, Z") we can get an adjustment
(AX" AYh AZM) that is added back to the hypothesized
position. The process is iterated until the adjustment becomes
insignificant and the hypothesized position converges to the
correct position. The advantages of this algorithm are many:

e Since only three points are needed and they are necessarily
coplanar, we can use the ground plane (Earth) for registra-
tion. It is not necessary to rely on environment fixtures such
as a lamppost to establish the height information.

e For most parking lots, the marking of parking stalls is regular
with a fixed spacing. Hence, it is relatively easy to establish
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a global reference frame by (1) selecting an origin in the
repetitive parking stall marking (this can be chosen arbitrar-
ily) and (2) extending the coordinate system coverage to a
wide area based on the fixed-stall-spacing assumption. This
allows the creation of a multitude of registration landmarks
for wide spatial coverage.

e Therefore, no physical dimension measurements of environ-
ment fixtures are needed. Measurements can be expressed in
terms of the “stall-marking unit.” By extending the coordi-
nate system coverage using the “stall-marking unit” it is now
possible to register multiple cameras in the same global ref-
erence frame, even though the fields of view of the cameras
have little overlap.

e Occlusion of landmarks by parked cars is less of a problem
now as very few (a minimum of three) landmarks are needed
for pose registration and it is not necessary to always use the
same three landmarks.

Our experience with Church’s algorithm is that it is very
accurate and converges to the correct pose solution extremely
fast with few iterations (less than five in most cases). The
algorithm is very efficient to implement, and, with the current
PC technology, it is possible to achieve thousands of pose
updates per second.

Even though there is no universally applicable theoreti-
cal analysis on the accuracy and the rate of convergence of
iterative nonlinear optimization techniques, fast and accurate
convergence is often possible if a good initial guess to the fi-
nal solution can be obtained. A good initial guess ensures the
success of even simple and naive gradient descent optimiza-
tion without expensive exhaustive search. For estimating time-
varying camera aim and pose, it is always possible to obtain
a good initial guess on the camera pose by using the camera
pose at the previous frame. Given that the video frame rate (30
frames/s) is much faster than the servoing speed of a surveil-
lance camera (panning of less than a few degrees/second), the
initial guess from the previous frame is almost always close
to the true solution. Hence, Church’s algorithm is readily ap-
plicable in this application scenario.

Fig. 3. lllustration of the temporal alignment algorithm
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3.1.2 Temporal alignment

Our temporal alignment algorithm is illustrated graphically
in Fig. 3. The same 3D trajectory is observed by multiple
cameras. The same trajectory appears differently in different
cameras’ images because of the projective distortion. If we
can somehow derive a unique, or invariant, “signature” of a
3D trajectory from its 2D projections, regardless of the par-
ticular way an image is generated, then we can correlate these
invariant trajectories from different sensors to establish the
time shift and, hence, solve the temporal registration problem.
More specifically, let C(t) = [z(t),y(t), 2(t)]T be a 3D
motion trajectory, which is observed as c(t) = PC(t) =
[z(t),y(t)] (where P denotes the projection matrix and, to
simplify the math, we adopt the parallel projection model). The
same motion, captured from a different viewpoint, is expressed

as
c(t) =PRC(t — 1) + T), O]

where R and T denote the rotation and translation resulting
from a different camera placement, and ¢, denotes the change
in the camera’s clock.”

The motion curve ¢’(t) can be recognized as the same as
c(t) if we can derive the same signature for both in a way that
is insensitive to changes in R, T, and ¢,,.

Under the parallel projection model and the far field as-
sumption (where the object size is small relative to the distance
to the camera, an assumption that is generally true for outdoor
surveillance applications), it can be easily shown that

d(t) = A Bg:i” n ﬁﬂ —Ac(t—t,)+t, (5

where A represents an affine transform and t the image-
position shift. To derive a signature for a motion trajectory, we
will extend the 2D image trajectory into the space by append-
ing a third component, time, as [c, |7 = [z,y,t]T (Fig. 3).
One can imagine that appending a third component ¢ is like
placing a slinky toy flat on the ground (the z-y plane) and
then pulling and extending it up in the third (height) dimen-
sion. Now, it is well known in differential geometry [43] that
a 3D curve is uniquely described (up to a rigid motion) by its
curvature and torsion vectors with respect to its intrinsic arc
length, where curvature and torsion vectors are defined as

d

= (G xC1)  ©

K(t) = C(t), (1)
or curvature and torsion vectors form a locally defined signa-
ture of a space curve. In computer vision jargon, (x, 7) form an
invariant parameter space — or a Hough transform space — and
local structures are “hashed” into such a space independently
of variations in the object’s placement and rigid motion. Such
a mapping is also insensitive to variation in the temporal shift,
as the same pattern will show up sooner or later. It is also toler-
ant to occlusion, as the signature is computed locally, and the

2 It is assumed that video cameras have the same sampling rate,
e.g., 30 frames/s for the NTSC standard. If the sampling rates are
different, then it is necessary to incorporate a factor « in Eq. 4 to
account for that, ¢’(t) = P(RC(*2) 4+ T). It is still possible to
derive unique signatures in this case [50], but the formulation will
not be presented here.
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signature for the part of the trajectory that is not occluded will
remain invariant. Hence, the recording using (x, 7) in Eq. 6 is
then insensitive to time shifts or partial occlusion. Itis a simple
invariant signature one can define on a motion trajectory.

To make such a hashing process invariant to difference in
camera poses (A and t), more processing of such trajectories
is needed. In particular, variation in camera parameters has
a tendency to change the magnitude of area quantities of a
projection, or

dmc'(t) d’c(t —t,)
pr— > .
an AT =l @

By massaging the derivatives, we can derive many invariant
expressions that do not depend on the camera pose (A and t).
For example,
dn+30/(t) d‘n,+1cl(t)
| [ dtn+3 dtn+1 ] |
| [dn+2c/(t) d”c/(t) ] |
anF T dn

U'(t) =

B |[AdnJrSC(tfto)Adn+1c(t7to)}|

dgn¥3 dtn¥1
=U(t —t,) )
n+2c(t—t, ne(t—t, )
[[A Lol g dhelizlo)))

which forms an invariant local expression insensitive to affine
pose change, as A and t do not appear in Eq. 8. The expression
in Eq. 8 represents the ratio of the determinants of two 2 x 2
matrices, and the columns of the matrices are the derivatives
of varying degrees of the observed curves. In our experiment,
we used n = 0.

3.1.3 Sensor-data fusion

Here we present the methods we employ for sensor-data fu-
sion. We use a hierarchical master-slave sensing configuration
as shownin Fig. 4. At the bottom level, each slave station tracks
the movements of scene objects semi-independently. The local
trajectories (each represented as a state vector comprising the

Master station
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x= ea&ewwfﬂx p V im reii«ewor[ax
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Fig. 4. Two-level hierarchical Kalman filter configuration

Slave station
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estimated position, velocity, and acceleration of the tracked
object) are then relayed to a master station for fusing into a
consistent, global representation. This represents a “bottom-
up” analysis paradigm. Furthermore, as each individual cam-
era has a limited field of view, and occlusion occurs due to
scene clutter, we also employ a “top-down” analysis module
that disseminates fused information from the master station to
slave stations that might lose track of an object.

At slave stations we employ two different mechanisms
for event detection and tracking, both based on the powerful
hypothesis-and-verification paradigm. The difference is in the
number of hypotheses maintained. When the state prior and
noise processes can both be modeled as unimodal Gaussian
processes, a single state is maintained. The Kalman filter has
proven to be very effective in such situations. If the state prior
or the noise processes have a more complicated form, then it is
necessary to sample the state space in a more elaborate manner.
We employ a formulation that is similar to the importance-
based condensation algorithm [23] in this case. We describe
these two mechanisms in more detail below.

Kalman-filter-based tracking

We use the Kalman filter [6,36] as the tool for fusing infor-
mation spatially and temporally from multiple cameras for
motion event detection. The Kalman filter is an optimal linear
data-smoothing and prediction algorithm. It has been applied
extensively in control, signal processing, and navigation ap-
plications since its introduction in 1960. Our contribution is
in using two-level Kalman filters to fuse data from multiple
sources.

The Kalman filter has been widely used to estimate the
internal state of a system based on the observation of the sys-
tem’s external behavior [6,36]. Furthermore, a system’s state
estimate can be computed and then updated by incorporat-
ing external measurements iteratively — without recomputing
the estimate from scratch each time a new measurement be-
comes available. Such an iterative process is optimal in the
sense that the Kalman filter incorporates all available infor-
mation from past measurements, weighted by their precision.
Optimal information fusion is achieved by combining three
factors: (1) knowledge of the system and measurement device
dynamics; (2) the statistical description of the system noises,
measurement errors, and uncertainty in the system model; and
(3) relevant initial-state description [36]. While the Kalman
filter is optimal only among linear estimators, and when cer-
tain assumptions about the noise processes are valid, it is easy
to implement and is efficient at runtime. Work has also been
done on relaxing some of the assumptions, such as the Gaus-
sian noise assumption and the linearity assumption [28].

Suppose that a vehicle is moving in a parking lot. Its tra-
jectory is described in the global reference system by

The trajectory may be observed in camera ¢ as
pi(t) = [z:(t), s (1)]",

where ¢ = 1,--- , m (m is the number of cameras used). The
question is then how to best estimate P(¢) given p;(t),i =

1,...’m_
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We formulate the solution as a two-level hierarchy of the
Kalman filters. Referring to Fig. 4, at the bottom level of the
hierarchy we employ for each camera a Kalman filter to es-
timate, independently, the position p;(t), velocity p;(t), and
acceleration p;(t) of the vehicle, based on the tracked im-
age trajectory of the vehicle in the local camera reference
frame. Or in Kalman filter jargon, the position, velocity, and
acceleration vectors establish the “state” of the system while
the image trajectory serves as the “observation” of the sys-
tem state. At the top level of the hierarchy, we use a single
Kalman filter to estimate the vehicle’s position P(t), veloc-
ity P(t), and acceleration P(t) in the global world reference
frame —this time using the estimated positions, velocities, and
accelerations from multiple cameras (p;(t), pi(t), P:(t)) as
observations (solid feed-upward lines in Fig. 4). This is pos-
sible because we address the spatial and temporal registration
problems in Sects. 3.1.1 and 3.1.2. We also allow dissemina-
tion of fused information to individual cameras (dashed feed-
downward lines in Fig. 4) to help to guide image processing.

Specifically, for each camera we create a system state vec-

D;(t)
tor for each observed vehicle as %;(t) = | p,(t) | , where we

B (1)

use the hat notation X to denote our best estimate to the true
state x.> The goal is then to generate and update this state es-
timate X; (t) recursively over time. The Kalman filter answers
this question: Supposing that we already have an estimate of
the system state at time ¢ — A¢, what can we say about the
state at time ¢? The question is answered using the following
two mechanisms: (1) By extrapolating the state from ¢t — At to
t (accomplished by a state prediction equation) and (2) by in-
corporating new observation of the system’s behavior at time
t. This is accomplished by an observation equation and an
update mechanism.

By using Taylor series expansion, we can write the state
prediction equation as

)ACZ'(t_) = Ai)’\(i(t — At) + Wi(t)
p,(t” Iy Aty 221, [Pilt— A1)
p;(t7) | = |03 I3 Atlz| | pi(t—At) | +wi(t),
p.(t7)] L0 0 Lol fpt—ar

©))

where 03 and I3 represent 3 X 3 null and identity matrices,
respectively. The minus sign in X;(¢~) implies that the state
at time ¢ is estimated by extrapolating the state estimate at
time t — At, before any new measurements at time ¢ are in-
corporated. w;(t) represents the model prediction uncertainty
(using a few terms in the Taylor series expansion). We as-
sume that w;(¢) is a random variable with a zero mean and a
covariance matrix Q;(t) = E[w;(t)wl (t)].

Now when a new measurement (a new image) is acquired
and the vehicle’s trajectory is computed, we incorporate this
new observation to update our estimate of the system state.
This update requires two equations: (1) a measurement equa-

3 To avoid complicating the notation, we will use a single subscript
1 to denote the camera number, instead of double subscript 7 ; to denote
the jth vehicle in the ith camera. The Kalman estimation mechanism
is the same for all vehicles.
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tion that relates the system’s external behavior to its internal
state and (2) an update equation that properly weighs the state
estimates from the state extrapolation process (Eq. 9) and the
external observation process (Eq. 10) to generate a new state
estimate. The measurement equation in our case is simple:
We estimate a vehicle’s position, velocity, and acceleration by
taking equivalent finite difference approximations from the
corresponding trajectory:

) W = 83 (1)3 (I)3 f)l(t)

P, (t)—2p,(t—At)+p, (t—2A¢t 2

P (t)—2p,( At2)+p1( ) 303 13 D, (1)
+vi(t), (10)

where z; () represents the external observation (i.e., vehicle’s
image trajectory) and v;(¢) represents the uncertainty in such
an observation. We assume that v;(¢) is zero mean with a
covariance matrix R;(t) = E[v;(t)v] (t)]. To merge the esti-
mates from state extrapolation (Eq. 9) and external observation

(Eq. 10), we use an update equation:
%:(t7) =%:(t7) + Ki(f)(zi(t) — Hi%;(t7)) . (11)

This implies that the state estimate after incorporating the new
measurement [X;(¢7)] is a weighted sum of the state esti-
mate from the extrapolation process [%X; (¢ ) in Eq. 9] and the
“novel” or “original” part of the current observation [z;(t)]
that cannot be explained by the state extrapolation [H;X; (¢ )]
(called “innovation” in Kalman filter jargon).

The only thing left, then, is to determine the weighting
factor K;(t) (or the Kalman gain in Kalman filter jargon),
which is summarized in the following three equations:

K;(t) = Ei(t7)H] (1)

x [H; ()i (t7)H (1) + Ra(t)] ", (12)
Ei(t7) = AEi(t — At)AT + Qu(t), (13)
E,(t") =[I-K;t)H;(H)E;(t7), (14)

where E;(t) = E[(x;(t) — %i(t))(x;(t) — %;(¢))T] repre-
sents the error covariance matrix in the state estimation pro-
cess. Equation 12 computes the weighting factor by properly
weighting the uncertainty (or error) in the observation [R;(¢)]
and the state propagation [E; (¢~)]. Equations 13 and 14 show
how this error covariance can be propagated from time ¢ — At
to ¢ before the new measurement is incorporated (Eq. 13) and
after the new measurement is incorporated (Eq. 14). The six
Eqgs. 9-14 summarize the recursive operations of the Kalman
filter. Interested readers can consult books [6,36], survey pa-
pers, and online tutorials (e.g., [46]) for details.

For the global trajectory, we create a global state vector

Pt)

for each observed vehicle as X(t) = f)(t) . Then we can

B(1)
write the state prediction equation for the global trajectory
as follows (this is identical to the individual camera case, in
which we propagate the state vector forward using the Taylor
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series expansion):

X(t+ At) = AX(t) + W(¢)

I;(t—i—At) I, AtL, 221, f;(t)

P(t+At) | = |04 L Aty | [P@) | +W(t),(15)
3 0, O I 2

P(t+At) R =10

where 04 and I represent 4 x 4 null and and identity matrices,
respectively. For writing the global measurement equation, we
use the state vectors estimated from individual cameras as the
“observables” to constrain the global state. Through camera
calibration, we should have derived the Timage« worla matrix,
which allows { from an individual camera to be related to P in
the global reference system. Hence the measurement equation
can be written as

Z(t) = HX(t) + V(1)
(3)

5&1 t image, <—world

s 3

X2 (t) = image,, <—world X(t) + V(t) ; (16)

X (T (3)

m( ) Timagemeworld

where

(3) Timage,i<—world 0 0
Timagei<—world = 0 Timageieworld 0 R

0 0 Timagei <—world

(i=1,---,m) an

where Timage, +world is the 7th camera’s calibration matrix.

Some discussion points are in order:

o First, why is a two-stage hierarchical approach taken? Why
not just combine image trajectories from all cameras directly
in a single filter to estimate the global state? There are many
reasons, but most notably it has to do with the efficiency
in processing and communication. The state prediction and
measurement equations (Egs. 9 and 10) are much smaller for
individual cameras than for their global counterparts (Egs. 15
and 16). In particular, Hin Eq. 16 can be as large as 9m x 12.
Hence, it would be best to do some processing locally and
relay only essential information (instead of raw data) to a
centralized fusion point to reduce the communication and
computation load on the single server. (For example, if local
processing can determine that no movement is observed in
the ith camera’s field of view, X; does not have to be used in
Eq. 16.)

Furthermore, we envision future surveillance systems will
be fairly “compartmentalizable.” A surveillance station can
be made up of a camera and associated mounting device,
controlled by an inexpensive PC with a digitizer card and
disk storage. A complete surveillance system then comprises
many such individualized stations to achieve scalability. In
this scenario, we should take advantage of the processing
power of individual surveillance stations to parallel process
video footage instead of using one big server to achieve in-
tegration from raw data.

e Second, the hierarchy of Kalman filters allows for two-way
communication. What we illustrated above is for fusing in-
formation from multiple cameras into a global state estimate



152

(a bottom-up process). It is also possible to employ a top-
down process for information dissemination from the global
Kalman filter to individual cameras. This process is useful,
say, in a scenario where a vehicle is circling a parking lot
and may move in and out of the view of a surveillance cam-
era. When a vehicle moves out of a camera’s view, the error
in measurement (Eq. 10) increases quickly to infinity and
the future state estimates will rely on the state extrapolation
(Eq. 9). However, according to the theory of Taylor series
expansion [7], the error in such extrapolation grows with
time [in our case, the error grows O(At?)]. Hence, soon the
state estimate will become highly unreliable without obser-
vation of the vehicle’s movement (e.g., without valid video
footage, we will not know if a car made a turn outside the
field of view of the camera).

Much more reliable information on the vehicle’s movement
can be gathered from other cameras whose fields of view
still include the vehicle of interest. Since the information is
fused at the global Kalman filter, that information can be
relayed to the camera that has lost sight of the vehicle. The
following equation (similar to Eq. 16)

%:(t) = T

image; <—world

X(t) (18)

can be used for this purpose, with a prediction error of
E;(t)

= E[(xi(t) — %i(t)) (xi(t) — %(t))"]

E[(X(t) = X()(X(t) - X(1))"]

3
= Timzlgeieworld
3"
X Timzlgeieworld
(3) (3)"
= TimageieworldE(t)Timagel<—w0rld ' (19)

This time, X (£) acts as the “observation” to constrain ; (t),
the state of the camera that loses its view of the vehicle.

Multihypothesis tracking

While the Kalman filter is a simple and powerful mechanism
for state estimation, its validity is challenged if the assumption
on the prior and noise is not valid. Furthermore, there are
situations where multiple hypotheses have to be kept until a
later time when more visual evidence is gathered to validate
some and discredit others. For example, if two or more persons
enter the field of view of a camera in such a way that their
silhouettes overlap, the tracking algorithm will not know in
general whether such a moving region corresponds to a single
person or multiple persons. Only when the group of people
split later and head in different directions can the single-person
hypothesis be safely discarded.

Our approach here is to employ a robust, yet still real-
time, control and fail-over mechanism — on top of low-level
frame-differencing- and correlation-based tracking — to deal
with noise, scene clutter, short periods of absence and merg-
ing of silhouettes, and long periods of occlusion of activi-
ties from a camera’s field of view, situations that can easily
fail simple Kalman-filter-based tracking. Our formulation is
based on the powerful hypothesis-and-verification paradigm,
which has been alternatively christened as Monte Carlo filter-
ing [31], particle filtering [39], genetic algorithms [21], con-
densation (conditional density propagation) [23], and Icon-
densation (importance-based condensation) [24]. The utility
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of such a hypothesis-verification formulation over traditional
linear state estimation algorithms such as Kalman filtering is
that the noise processes do not have to be Gaussian and state
propagation does not have to be unimodal. This allows mul-
tiple competing hypotheses to be maintained and contribute
to the state estimation process. If we denote sensor data as z,
then multiple hypotheses allow us not to assume a particu-
lar parametric form of p(x|z). Instead, p(x|z) can be learned
by sampling with multiple hypotheses using Bayesian rule
[p(x|z) x p(z|x)p(x)]. In this sense, hypothesis verification
is akin to a Bayesian estimator instead of a maximum likeli-
hood estimator [15].

Different incarnations of the same hypothesis-verification
principle all comprise the following essential components:*
(1) A collection of candidate states and their likelihood esti-
mates that are initialized, propagated, and updated over time;
(2) a state-propagation mechanism; (3) a state-verification
mechanism using sensor feedback; and (4) a renormalization
process to refresh and/or regenerate the collection of candi-
date states and their associated likelihood. Step 1 represents
sampling the prior distribution p(x), step 2 is for evolving the
prior distribution over time, step 3 is for computing associated
conditional p(z|x), and, finally, step 4 is used for computing
p(x|z) x p(z|x)p(x) and regenerating state vectors based on
updated p(x|z). We describe below our formulation in relation
to these four steps.

State vector: We employ simple frame differencing and re-
gion growing for the initial detection of presence of activities.
When a moving region is identified in a camera’s image, multi-
ple hypotheses (up to the number allowed for real-time execu-
tion) are postulated. A single-object hypothesis is to represent
such aregion as a single moving object, characterized by a state
comprising the estimated position, velocity, and acceleration
of the moving region. Alternatively, the region might represent
a group of up to n objects, with their silhouettes merged into
a single composite region in an image. Hence, for a camera,
multiple state vectors [P;; (t),f)ij (t),ﬁij WF,0<j<i<n
are created. The likelihood of the hypothesis 7;, 1 <7 < nis
initialized as some fixed constant or dependent on the size or
color of the region.

State propagation: Given a state vector at time t — At, we
propagate the state vector to time ¢ as

P (t) = Pt — At) + p(t — At) At + %ﬁ(t — At)At?

+ N(Oa Ep)a
P (t) = p(t — At) + p(t — At)At + N(0,%,), and
p (1) =p(t — At) + N(0, Z,), (20)

where N is Gaussian noise processes of a zero mean and suit-
able covariance matrices X, X, and X,. The minus super-
script denotes the state before correction or validation using
sensor data. Again, how many such X~ states we can generate
depends on the real-time processing requirement.

* The difference is in the exact mechanism for realizing these.
For example, standard condensation algorithms generate and up-
date candidate states based strictly on the Bayesian formula, while
importance-based condensation allows auxiliary information (e.g.,
from sensors) to be brought in to better position candidate states for
efficiently exploring the state space.
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State validation: We employ a validation mechanism in the
spirit of Icondensation and regularization, which allows multi-
ple sources of information to be used. Specifically, to update a
state, i.e., to go from X~ to X", where “+” denotes states after
sensor information is incorporated, we employ two sources of
information: (1) sensor data from the particular sensor and (2)
sensor data from other sensors. Both information sources can
be exploited in a high-resolution or a low-resolution form.

Referring to Fig. 4, if we are successful in locating the
object at time ¢ in the kth camera’s image, then the tracked
object position is recovered as zgk) = (x,gk)7 yt( k))T, where the
subscript ¢ indicates “tracked” position. However, the camera
might lose track of the object under two scenarios: (1) the
tracked object is still in the field of view of the camera, but
its movement is so swift or jerky as to make its position fall
outside the “attention window” of the tracking algorithm; or
(2) the tracked object is simply not identifiable, either because
of a high degree of occlusion and scene clutter or because the
object has moved out of the camera’s field of view. What we
need here are mechanisms to either reacquire the object (sce-
nario 1 above) or to solicit help from other sensors (scenario 2
above).

To efficiently reacquire the object, it is necessary to en-
large the attention window of the tracking algorithm to search
a bigger neighborhood for the presence of the object. We ac-
complish this by downsampling the current frame, looking for
telltale signs of the tracked object in the downsampled image
(based on color and texture similarity with the tracked ob-
ject) and remapping potential locations back to the original
resolution. We denote candidate locations found through this
reacquisition process as zﬁk) (subscript r represents reacquired
position) to distinguish them from zgk)
found by successful tracking.

Simultaneously, the master fusion station shown in Fig. 4
is queried. The fused, consensus object location (from the most
recent time instance) is projected back into the particular cam-
era’s frame of reference to generate candidate object positions,
using

, candidate locations

i}k) = Timagekeglobalf) ) (21)

where subscript frepresents positions predicted by the consen-
sus through information fusion and Tiyage, +global 1S @ Matrix
that relates global coordinate and local camera coordinate (es-
timated through the camera calibration process).

State normalization: The available computing power at a
slave station allows updating and tracking only a finite number
of states in real time. Hence, the available computing power
must be distributed judiciously among all moving regions with
some reserved for detecting possible appearance (or reappear-
ance) of new moving objects. For a particular moving region,
its allocated share of computing resources must be used in an
optimal way, which, according to Bayesian rule, means gen-
erating tracking hypotheses based on the posterior. If we are
successful in maintaining tracking, then we can update the
confidence as

7(t) = (&~ (1)]z4(1))
o plzd (1)[% (1)(t — Ab). 22)

Here, we assume that p(X(t)|z:(t),z:(t — At),---) =
p(X(t)|z¢(t)). By collecting = from multiple hypotheses of
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the same object, we generate a discrete, sampled version of
p(x|z). We then integrate the density function to generate the
mass function P(x|z) = [ p(x|z)dx and redistribute states
(X*) based on golden-rule sampling (i.e., more states for
places of the state spaces with higher densities).

However, if the camera somehow loses track of the object,
such a simple Bayesian formula is not applicable. We have
to refresh candidate states using z, and z; as well. This is to
refocus the processing power on the parts of the state space that
are likely to contain valid candidates, based on information
gathered from a cursory search of the current image (z,.) and
that supplied by other sensors (z ).

Hence, the decision for regenerating/refreshing state vec-
tors is made as follows: (1) If the low-level tracker gives a
high-confidence measurement in tracking, the states are re-
freshed mostly based on z;. Additional states (based on z,.)
can be generated if 7 calculated based on the above equation
is low. (2) Otherwise, the states are regenerated based on z,.
and z;.

3.2 Hierarchical, invariant representation

The raw trajectory data derived above are in terms of either
local or global Cartesian coordinates. Such a representation
suffers from at least two problems: (1) the same motion tra-
jectory observed by different cameras will have different rep-
resentations and (2) the representation is difficult for a human
operator to understand. Our solution is to summarize such
raw trajectory data using syntactic and semantic descriptors
that are not affected by incidental changes in environmental
factors and camera poses. We briefly describe our semantic
descriptors here.

We first segment a raw trajectory fused from multiple
cameras into fragments. Using a constrained optimization ap-
proach under the EM (expectation-maximization) framework,
we then label these fragments semantically (e.g., a fragment
representing a left turn action). We approximate the acceler-
ation trajectory of a vehicle as a piecewise constant (zeroth-
order) or linear (first-order) function in terms of its direction
and its magnitude. When the magnitude of acceleration is first
order [r(t) = r, + try in Eq. 23], it gives rise to a motion
trajectory that is a concatenation of piecewise polynomials
that can be as high as third order (cubic). This is often con-
sidered sufficient to describe a multitude of motion curves in
the real world (e.g., in computer-aided design [16] and com-
puter graphics [18], piecewise third-order Hermite, BeZier,
and B-spline curves are universally used for design and man-
ufacturing). We chop the whole acceleration trajectory P(t)
from ¢ = tpin tO tmax (Where [tmin, tmax] 1S the time interval
that a vehicle is observed by one or more of the surveillance
cameras) into, say, k pieces such thatt, < t; < --- <t and
to = tmin, tk = tmax:

P(t) = r(t)e®,  where

r(t) = rg,i_) or T 4+ trgi)

0(t) =05 or 605 + ¢l
tigt<t1‘+1,i:0,"'7k71. (23)

We use lowercase r here to avoid confusion because uppercase
R was used earlier to denote a rotation matrix. While one might
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Fig. 5. An example motion pattern classification

argue that this assumption is restrictive or that more general
acceleration patterns exist, we made this assumption for the
following reasons:

We employ an iterative expectation and maximization
(EM) algorithm [15] to segment trajectories. The EM algo-
rithm consists of two stages: (1) The E-stage hypothesizes the
number of segments with their start and stop locations, and
(2) the M-stage optimizes the fitting parameters based on the
start and stop locations and the number of segments derived
from the E-stage. These two steps iterate until the solution
converges. Table 1 sketches the pseudocode of the algorithm
(using fitting (¢) as an illustration).

We label each segmented fragment based on its accelera-
tion and velocity statistics. More specifically, we denote the
initial vehicle velocity when each segment starts as V,, which
can be either zero or nonzero. The acceleration (Eq. 23) can
be either of a constant or linearly varying magnitude and/or
of a constant or a linearly varying direction. For example,
if |r| &~ 0, the motion pattern is either “constant speed” or
“stop.” Segmentation based on 6 is meaningful and neces-
sary only when |r| > 0. If |r| > 0, possible motion patterns
include “speed up,” “slow down,” “left turn,” and “right turn.”
“Speed up” and “slow down” can be determined by the sign of
P . P. “Left turn” and “right turn” are determined by the sign
of (P x P),.If (P x P), > 0, it is a right turn; otherwise, it
is a left turn.

In Fig. 5, we sketch different motion patterns based on
the assumption made on the acceleration (P in Eq. 23) and
V,. For example, the stop condition is identified as zero
acceleration and zero initial velocity. If the initial velocity is
zero, if the magnitude of the acceleration is not zero (constant
or changes linearly), and if the direction of acceleration is
constant, we label such an action a start action. A half
turn (a vehicle making a turn of approximately 90°) is often
observed at a crossroad or when a vehicle is pulling into a
parking stall. It can be modeled as an acceleration of a constant
direction that is roughly perpendicular to the direction of the
initial velocity.

It should be noted that Fig. 5 does not sketch out all pos-
sible scenarios. For example, when the angle of the acceler-
ation is linear § = 601t + 6, the possible motion trajectories
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have many variations, depending on the relative orientation
and size of 64, r,, and V,. Some of them are quite coun-
terintuitive with unnatural twists and bents. Another example
is that when V,, and P are antiparallel and P is a constant,
the velocity will decrease to zero and then increase again, but
in the opposite direction. We label this a “slow-down” ac-
tion, not a “slow-down-then-speed-up-in-the-other-direction”
action. This is because for a vehicle to accelerate in the oppo-
site direction, it is necessary to shift gears, which often breaks
the continuum in motion. Hence, we consider only the cases
that make sense semantically. For example, if r is in the di-
rection of V, and |r| is increasing, it indicates either a fast
acceleration (r and V, are parallel) or an emergency stop (r
and V,, are antiparallel).

4 Event recognition

Let us recap our discussion in Sect. 3. Our descriptors summa-
rize a motion trajectory as an ordered sequence of labels, and
each label corresponds to a motion segment with a humanly
understandable action. Recognizing and identifying events on
such descriptors must handle the ordered nature of the de-
scriptors. Furthermore, in a surveillance setting, positive (sus-
picious) events are always significantly outnumbered by neg-
ative events. As we will explain shortly through an example,
this imbalanced training-data situation can skew the decision
boundary toward the minority class and hence cause high rates
of false negatives (i.e., failure to identify suspicious events).
In this section, we first design a sequence-alignment kernel
function to work with SVMs for correlating events. We then
propose using kernel-boundary alignment (KBA) to deal with
the imbalanced-training-data problem.

4.1 Sequence-alignment learning

In the previous section, we labeled each segmented fragment
of a trajectory with a semantic label and its detailed attributes
including velocity and acceleration statistics. For convenience,
we use a symbol to denote the semantic label. We use “C”
for “Constant speed,” “D” for “slow Down,” “L” for “Left
turn,” “R” for “Right turn,” and “U” for “speed Up.” We label
each segment with a two-level descriptor: a primary segment
symbol and a set of secondary variables (e.g., velocity and
acceleration). We use s to denote a sequence that comprises
the concatenation of segment symbols s; € A, where A is
the legal symbol set. We use v; to denote the vector of the ith
secondary variable.

The following example depicts a sequence with this two-
level descriptor. Sequence s denotes the segmented trajectory
with v, representing the velocity and vo the acceleration. For
velocity and acceleration, we use their average values in a
segment.

s: C D u ¢C L R R L
vi: 07 05 08 08 07 08 06 0.5
vg: 00 -02 03 00 -01 01 -02 -0.1

Now, the trajectory-learning problem is converted to the
problem of sequence-data learning with secondary variables.
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Table 1. The motion event segmentation process
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(1) Initialization. Compute a linear fit to the 6(¢) curve between the specified end points, denoted as [tmin, tmax). Using the notation

emax = e(tmax) and Gmin = G(tmin)y we have

(Gmax - emin)t + (tmin -

tmax)e + (amin - emax)tmin + (tmax -

tmin)emin =0. (24)

(2) Refinement. Compute location tmaxdev between tmin and tmax as the largest deviation of the true acceleration curve from the fitting

tmaxdev = argmaxs|(Omax —

mazrdev = ‘(emax - emin)tmaxdev + (tmin -

where A = \/(amax - 01nin)2 + (tmax - tmin)z-

emin)t + (tmin - tmax)e(t) + (emin -

tmax)e(tmaxdev) + (emin -

emax)tmin + (tmax - tmin)emin‘/A ) (25)

amax)tmin + (tmax - tmin)emin‘/A ’ (26)

(3) Iteration. If maxdev is above a preset threshold, break the curve into two sections [tmin, tmaxdev) and [Emaxdev, tmax) and repeat the first

two steps using these two new intervals.

For this purpose, we construct a new sequence-alignment ker-
nel that can be applied to measure the pairwise similarity be-
tween sequences with secondary variables.

4.1.1 Tensor product kernel

The sequence-alignment kernel will take into consideration
both the degree of conformity of the symbolic summariza-
tions and the similarity between the secondary numerical
descriptions (i.e., velocity and acceleration) of the two se-
quences. Two separate kernels are used for these two criteria
and are then combined into a single sequence-alignment ker-
nel through a tensor product. These are explained below.

Let x € X be a composite structure and z1, . .., x5 be its
“parts,” where x,, € X, X = X} X --- x Xy, and N is a
positive integer. For our sequence data, x is a sequence with
both primary segment symbols and secondary variables. Let
21 denote its primary symbol sequence, and every other x; be
its (¢ — 1)th secondary vector. Assume that X, X,...,Xy are
nonempty sets. We define the tensor product kernel as follows:

Definition 1. Tensor product kernel. Given x =
(x1,...,zn) € X and X' = (z,...,20y) € X.If
Ki,...,Kn are (positive definite) kernels defined on X; x
Xy,..., Xy X XN respectively, then their tensor product,

Ki®: - ® Ky, defined on X x X, is
K1 [ ®KN(X,XI) = Kl(xl,]}/l) ---KN(I‘N,J)/N).D

Since kernels are closed under product [45], it is easy to
see that the tensor product kernel is positive definite if each
individual kernel is positive definite.

4.1.2 Sequence-alignment kernel

To measure the similarity between two sequences, our idea
is to first compare their similarity at the symbol level. After
the similarity is computed at the primary level, we consider
the similarity at the secondary variable level. We then use the
tensor product kernel to combine the similarity at the primary
and secondary level.

At the primary (segment-symbol) level, we use kernel
K(s,s') to measure symbol-sequence similarity. We define
K(s,s’) as ajoint probability distribution (p.d.) that assigns a

higher probability to more similar sequence pairs. We employ
pairs-HMM (PHMM) [45], a generative probability model,
to model the joint p.d. of two symbol sequences. (Note that
PHMM is different from HMM, which aims to model the evo-
lution of individual sequence data. PHMM is one of many
dynamic-programming-based methods that one can employ
to perform string alignment.)

A realization of PHMM is a sequence of states, starting
with START and finishing with END; and in between there
are three possible states: AB, A, and B. State AB emits two
symbols, state A emits one symbol for sequence a only, and
state B emits one symbol for sequence b only. State AB has an
emission probability distribution pa;,}, for emitting an aligned
a; : b;, and states A and B have distributions ¢, and gy, re-
spectively, for emitting a symbol against a gap, such as a; :
‘—"and ‘—: b;. Parameter ¢ denotes the transition probabil-
ity from AB to an insert gap state A or B, ¢ the probability
of staying in an insert state, and 7 the probability of a tran-
sition into the END state. Any particular pair of sequences a
and b may be generated by exponentially many different real-
izations. The dynamic programming algorithms can sum over
all possible realizations to calculate the joint probability of
any two sequences. The overall computational complexity is
O(mn), in which m and n are the lengths of the two sequences
respectively.

To compute the similarity at the secondary level, we can
concatenate all variables into one vector and employ a tra-
ditional vector-space kernel such as an RBF function. Let
K, (v,v’) denote such a kernel measuring the distance be-
tween v and v’. (Notice that vectors v and v’ may differ in
length since s and s’ may have different lengths. We will dis-
cuss shortly how we align two vectors into the same length
via an example.) Finally, we define the tensor product on
(Ex8) x (VxV)as

(Ks @ K,)((s,v), (s',v") = Ky(s,8 ) K, (v, V). (27)

In the following discussion we present an example to show
the steps of computing similarity between two sequences using
our sequence-alignment kernel.

Example 1. Suppose we have two sequences (s, v) and (s', v')
as depicted next. The similarity between the sequences is com-
puted in the following three steps:
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s: ¢ D U C L R R L
v: 07 05 08 08 07 08 06 0.5
s: ¢ U C L R L C
vi: 05 04 04 05 06 06 0.6

Step 1. Primary symbol-level similarity computation:
K(s,s').

By using PHMM, we can obtain the joint p.d. K,(s,s’) be-
tween symbol sequences s and s’. As a part of the PHMM
computation, two sequences are aligned as follows:

¢ DU C L R R L -

¢ - U ¢ L R - L C
Step 2. Secondary variable-level similarity computation:
K,(v,v").

The unaligned positions in v and v’ are padded by zero. We
obtain two equal-length vectors and can compute their simi-
larity by using a traditional SVM kernel, e.g., an RBF func-
tion. Note that the unaligned positions will not be counted
in the calculation since we do not want to double penalize
the unaligned symbols (we already penalize them at the first
step of symbolic-level similarity measurement).

07 05 08 08 07 08 06 05 0.0
05 00 04 04 05 06 00 06 0.6

Step 3. Tensor fusion: (K, ® K,)((s,v),(s’,v’)). O

There are three advantages to the above sequence-
alignment kernel. First, it can use any sequence-alignment al-
gorithms to obtain a pairwise probability distribution for mea-
suring variable-length sequence similarity. (Again, we em-
ploy PHMM to perform the measurement.) Second, the ker-
nel considers not only the alignment of symbol strings but also
secondary variables, making the similarity measurement be-
tween two sequences more informative. Third, compared with
the SVM-Fisher kernel (discussed in Sect. 2), our sequence-
alignment kernel adds the ability to learn from negative train-
ing instances as well from positive training instances.
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4.2 Imbalanced learning via kernel-boundary alignment

Skewed class boundary is a subtle but severe problem that
arises in using an SVM classifier — in fact in using any classi-
fier — for real-world problems with imbalanced training data.
To understand the nature of the problem, let us consider itin a
binary (positive vs. negative) classification setting. Recall that
the Bayesian framework estimates the posterior probability us-
ing the class conditional and the prior [19]. When the training
data are highly imbalanced, it can be inferred that the state of
the nature favors the majority class much more than the other.
Hence, when ambiguity arises in classifying a particular sam-
ple because of similar class conditional densities for the two
classes, the Bayesian framework will rely on the large prior in
favor of the majority class to break the tie. Consequently, the
decision boundary will skew toward the minority class.

To illustrate this skew problem graphically, we use a 2D
checkerboard example. The checkerboard divides a 200 x 200
square into four quadrants. The top-left and bottom-right quad-
rants contain negative (majority) instances while the top-right
and bottom-left quadrants are occupied by positive (minor-
ity) instances. The lines between the classes are the “ideal”
boundary that separates the two classes. In the rest of the pa-
per, we will use positive when referring to minority instances
and negative when referring to majority instances.

Figure 6 exhibits the boundary distortion between the two
left quadrants in the checkerboard under two different neg-
ative/positive training-data ratios, where a black dot with a
circle represents a support vector, and its radius represents the
weight value a; of the support vector. The bigger the circle, the
larger the ;. Figure 6a shows the SVM class boundary when
the ratio of the number of negative instances (in the quadrant
above) to the number of positive instances (in the quadrant
below) is 10 : 1. Figure 6b shows the boundary when the ra-
tio increases to 10,000 : 1. The boundary in Fig. 6b is much
more skewed toward the positive quadrant than the bound-
ary in Fig. 6a and hence causes a higher incidence of false
negatives.

C =1000 and Sigma = 31.62

C =1000 and Sigma = 10.0

! ! !

110 110
1051 1 105}
0]
0]
N ° o o
100~—— o 100
0] \
0]
95 95!
90 1 1 1 1 1
0 20 40 60 80 100 900 20
(a) 10:1

Fig. 6. Boundaries of different ratios

40 60 80 100
(b) 10,000:1
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While the Bayesian framework gives the optimal results (in
terms of the smallest average error rate) in a theoretical sense,
one has to be careful in applying it to real-world applications.
In a real-world application such as security surveillance, the
risk (or consequence) of mispredicting a positive event (a false
negative) far outweighs that of mispredicting a negative event
(afalse positive). It is well known that in a binary classification
problem, Bayesian risks are defined as

R(ap[x) = AppP(wp|x) + Apn P(wnx) ,
R(0m]X) = Anp P(wp]X) + A Pwn]x) | 28)

where p and n refer to the positive and negative events, respec-
tively, A, refers to the risk of a false negative, and \,,, refers
to the risk of a false positive. Which action («a, or av,,) to take
— or which action has a smaller risk — is affected not just by
the event likelihood (which directly influences the misclas-
sification error), but also by the risk of mispredictions (A
and \pp).

For security surveillance, positive (suspicious) events of-
ten occur much less frequently than negative (benign) events.
This fact causes imbalanced training data and thereby results in
higher incidence of false negatives. To remedy this boundary-
skew problem, we propose an adaptive conformal transforma-
tion algorithm. In the remainder of this section, we first outline
how our prior work [48] deals with the problem in a vector
space (Sect. 4.2.1). We then present our solution to sequence-
data learning where a discretized variable-length sequence
may not have a vector-space representation (Sect. 4.2.2).

4.2.1 Conformally transforming K

In [48], we proposed feature-space adaptive conformal trans-
formation (ACT) for imbalanced-data learning. We showed
that conducting conformal transformation adaptively to data
distribution and adjusting the degree of magnification based
on feature-space distance (rather than on input-space distance
as proposed by [1]) can remedy the imbalanced-data learning
problem.

A conformal transformation, also called a conformal map-
ping, is a transformation 7 that takes the elements X € D
to elements Y € T'(D) while preserving the local angles be-
tween the elements after mapping, where D is a domain in
which the elements X reside [12].

Kernel-based methods, such as SVMs, introduce a map-
ping function @ that embeds the input space I into a high-
dimensional feature space F' as a curved Riemannian man-
ifold .S where the mapped data reside [1,8]. A Riemannian
metric g;;(x) is then defined for S, which is associated with
the kernel function K (x, x’) by

[ 9*K(x,X)
o= (),

The metric g;; shows how a local area around x in I is magni-
fied in F' under the mapping of @. The idea of conformal trans-
formation in SVMs is to enlarge the margin by increasing the
magnification factor g;;(x) around the boundary (represented
by support vectors) and to decrease it around the other points.
This could be implemented by a conformal transformation of
the related kernel K (x,x’) according to Eq. 29, so that the
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spatial relationship among the data would not be affected too
much [1]. Such a conformal transformation can be depicted as

K(x,x') = D(x)D(x') K (x,x'). (30)
In the above equation, D(x) is a properly defined positive
conformal function. D(x) should be chosen in such a way
that the new Riemannian metric §;;(x) associated with the

new kernel function K (x, x') has larger values near the deci-
sion boundary. Furthermore, to deal with the skew of the class
boundary caused by imbalanced classes, we magnify §;;(x)
more in the boundary area close to the minority class. In [48],
we demonstrate that an RBF distance function such as

D) = 3 exp(~ X224, 31)

-
kesSv k

is a good choice for D(x).

In Eq. 31, we can see that, if 7;;’s are fixed for all support
vectors X;’s, D(x) would be very dependent on the density
of support vectors in the neighborhood of @(x). To alleviate
this problem, we adaptively tune 77 according to the spatial
distribution of support vectors in F' [48]. This goal can be
achieved by the following equation:

% = AVGic (|o(x) (00 |2 <M, i 21}
x (|lD(x:) — D(xx)]1%) - (32)

In this equation, the average on the right-hand side comprises
all support vectors in @(xy,)’s neighborhood within the radius
of M but having a different class label. Here, M is the av-
erage distance of the nearest and the farthest support vectors
from &(xy,). Setting 77 in this way takes into consideration
the spatial distribution of the support vectors in F'. Although
the mapping @ is unknown, we can play the kernel trick to
calculate the distance in F":

1®(x:) — D(xx)|1?
= K(x3,%;) + K(xp,xx) — 2 % K(x;,Xg). (33)

Substituting Eq. 33 into Eq. 32, we can then calculate the 77
for each support vector, which can adaptively reflect the spatial
distribution of the support vector in F', not in /.

When the training dataset is very imbalanced, the class
boundary would be skewed toward the minority class in the
input space I. We hope that the new metric §;;(x) would fur-
ther magnify the area far away from a minority support vector
x; so that the boundary imbalance could be alleviated. Our
algorithm thus assigns a multiplier for the 77 in Eq. 32 to re-
flect the boundary skew in D(x). We tune 772 as 1,77 if X,
is a minority support vector; otherwise, we tune it as 7,77
Examining Eq. 31, we can see that D(x) is a monotonously
increasing function of 7. To increase the metric §;;(x) in an
area that is not very close to the support vector xy, it would
be better to choose a larger 7, for the 7',3 of a minority sup-
port vector. For a majority support vector, we can choose a
smaller 7,, so as to minimize influence on the class boundary.
We empirically demonstrate that 7, and 7,, are proportional

to the skew of support vectors, or 7, as O(E:’,—;l), and 7,
as O( ‘lgzil‘ ), where [SV ™| and |[SV ~ | denote the number of

minority and majority support vectors, respectively. (Please
see [48] for the details of ACT.)
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4.2.2 Moditying K

For data that do not have a vector-space representation (e.g.,
sequence data), ACT may not be applicable. In this work we
thus propose KBA, which modifies kernel matrix K based
on training-data distribution. Kernel matrix K contains the
pairwise similarity information between all pairs of instances
in a training dataset. Hence, in kernel-based methods, all we
need is a kernel matrix to learn the classifier; even the data
do not reside in a vector space. Notice that KBA is certainly
applicable to data that do have a vector-space representation
since K = (kxw) = K(x,%).

Now, since a training instance x might not be a vector, in
this paper we introduce a term, support instance, to denote
x if its embedded point via K is a support vector.’ In this
situation, we cannot choose D (x) asin Eq. 31. (Itis impossible
to calculate the Euclidean distance |x —x;| for nonvector data.)
In Sect. 4.2.1, we show that D(x) should be chosen in such
a way that the spatial resolution of the manifold .S would be
magnified around the support instances. In other words, if x
is close to a support instance X, in F' (or in its neighborhood),
we hope that D(x) would be larger so as to achieve a greater
magnification. In KBA, we use the pairwise similarity Ky, to
measure the distance of x from x;, in F'. Therefore, we choose

D(x) as
L1
Dx)= " exp (—"%) (34)

keSI

where SI denotes the support-instance set and 77 controls the
magnitude of D(x).

Figure 7 illustrates a D (x) for a given support instance xy,
where we can see that D(x) (y-axis) becomes larger when an
instance x is more similar to x, (alarger kxx, on the x-axis), so
that there would be more magnification on the spatial resolu-
tion around the support vector embedded by xj, in F'. Notice
in the figure that D(x) can be shaped very differently with
different 2. We thus need to adaptively choose 77 as

7_]? = AVGiE{Dist2(x73,xk)<J\4, YiZYk }
« (Dist? (x1,x1)) . (35)

D(x)=exp(-1/2(1/K, (x,)-1))
1 T T IIUSTEEE R
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Kiex (X Xk)

Fig. 7. D(x) with different 7

5 In the KBA algorithm, if x is a support instance, we call both x
and its embedded support vector via K in F' a support instance.
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where the distance Dist?(x;,x;) between two support in-
stances x; and xy, is calculated via the kernel trick as

Dist®(xi,Xk) = iy + Frxe — 2% k- (36)

The neighborhood range M in Eq. 35 is chosen as the average
of the minimal distance Dist2. and the maximal distance
Dist?,, from x. In addition, 77 is scaled in the same way
as in Sect. 4.2.1 for dealing with the imbalanced-training-data
problem.

Figure 8 summarizes the KBA algorithm. We apply KBA
on the training dataset X, until the testing accuracy on Xieg
cannot be further improved. In each iteration, KBA adaptively
calculates 77 for each support instance (step 10), based on
the distribution of support instances in feature space F'. KBA
scales the 77 according to the negative-to-positive support-
instance ratio (steps 11 to 14). Finally, KBA updates the kernel

matrix and performs retraining on X, (steps 15 to 18).

Input:

Xtrains Xtests K;

0; I* stopping threshold */

T'; I* maximum running iterations */
Output:

C; I* output classifier */

Variables:

SI; /* support-instance set */

M; I* neighborhood range */

s; /* a support instance */

s.T; /* parameter of s */

s.y; I* class label of s */

Function Calls:

SVMTrain(Xain, K); /* train classifier C */
SVMClassify(Xiest, C); /* classify Xiese by C */

ExtractSI(C); /* obtain SI from C */
ComputeM(s, SI);  /* compute M */
Begin

1) C < SVMTrain(X yain, K);

2) Eold ¢ 00;

3) €new  SVMClassify(Xiest, C);

4) t <+ 0;

5) while ((goid — new > 0)&&(t < T)) {
6) SI«+ExtractSI(C);

- +
7 O(f5Er): 1 + O(GE1);
8) foreachs e SI{

9) M <ComputeM(s, SI);

10) S.T < \/AVGie{Distz(si,s)<1\/I¢ s; . Yy#s.y} (DZSt2 (s’i? S));
11) ifs € SIT then /* a minority */
12) S.T < /Tp X 8.T;
13) else /* a majority */
14) S.T 4 /T X 8.7}

1
15) D(X) = ZSESI exp (_ k;(.ﬁ‘rzl)
16) for each k;; in K{
17) kij < D(XZ) X D(Xj) X kjij;}
18) C + SVMTrain(Xain, K);
19) Eold < Enews
20) enew  SVMClassify(Xies, C);
21) t+t+1;}
22) return C;
End

Fig. 8. The KBA algorithm
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5 Experimental results

We have conducted experiments on detecting suspicious
events in a parking-lot setting to validate the effectiveness of
our proposed methods. We recorded 1.5h of video at parking
lot 20 on the UCSB campus using two cameras. We collected
trajectories depicting five motion patterns: circling, zigzag
pattern or M pattern, go-straight, back and forth, and park-
ing. We classified these events into benign and suspicious cat-
egories. The benign-event category consists of patterns go-
straight and parking, and the suspicious-event category con-
sists of the other three patterns. We are most interested in
detecting suspicious events accurately. Specifically, we would
like to answer the following three questions:

1. Can the use of the two-level Kalman filter successfully
reconstruct motion patterns?

2. Can our sequence-data characterization and learning
methods (in particular, the tensor product kernel) work ef-
fectively to fuse the degree of conformity of the symbolic
summarizations and the similarity between the secondary
descriptions?

3. Can KBA reduce the incidence of false negatives while
maintaining a low incidence of false positives?

We use specificity and sensitivity as the evaluation criteria.
We define the sensitivity of a learning algorithm as the ra-
tio of the number of true positive (TP) predictions over the
number of positive instances (TP+FN) in the test set, or
Sensitivity = TP/(TP+FN). The specificity is defined as the
ratio of the number of true negative (TN) predictions over
the number of negative instances (TN+FP) in the test set. For
surveillance applications, we care more about the sensitivity
and at the same time hope that the specificity will not suffer
too much from the other side.

Table 2 depicts the two datasets, balanced and skewed, that
we used to conduct the experiments. The balanced dataset was
produced from the recorded video. We then added synthetic
trajectories to produce the skewed dataset. For each experi-
ment, we chose 60% of the data as the training set and the re-
maining 40% as our testing data. We used PHMM for sequence
alignment and selected an RBF function for K,(v,v’) that
works the best on the dataset. (The kernel and the parameter-
selection processes are rather routine, so we do not report
them here.) We employed the best parameter settings obtained
through running a fivefold cross validation and report average
class-prediction accuracy.

Here, we describe our experimental procedures on sensor
registration and sensor data fusion and present some prelimi-
nary results.

Experiment #1: Spatial registration.
After an initial, one-time camera calibration to determine
the intrinsic camera parameters, we performed continuous

Table 2. Datasets

Balanced dataset
# of instances

Skewed dataset

Motion pattern # of instances

Circling 22 30
M pattern 19 22
Back and forth 38 40
Benign event 41 3,361
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spatial registration using Church’s algorithm with three cal-
ibration points to update ’i‘real&woﬂd. These three landmarks
were preselected, so their positions in the world coordinate
system were known. As mentioned before, Church’s algo-
rithm performs iterative nonlinear optimization for pose es-
timation. It usually took more iterations to establish an initial
pose estimate (or this initial value could be estimated using
a closed-form linear algorithm with more landmarks). For
continuous pose update, movement of the camera (pan and
tilt) between adjacent frames taken at the video frame rate
(30 frames/s) was usually small. Hence, a good initial guess
as to the current camera pose was that at the previous frame.
The convergence was fast and our experiments indicated that
the algorithm converged usually after a single iteration, or a
few at most. The most time-consuming part of spatial reg-
istration was spent on tracking the registration landmarks.
Because of the slow and predictable camera movement, the
search area for the current location of a landmark could be
quite small (in our experiments, we found the maximum dis-
placement was less than eight pixels). Hence, we were able
to perform spatial registration in real time.

The accuracy of spatial registration was affected by the pre-
cision of camera calibration and that of the tracking algo-
rithm. To verify the accuracy of spatial registration, we used
another known landmark (one that was not used in the al-
gorithm) as a testing point. That is, we computed this new
landmark’s projected location in the image plane using the
calibration matrix, ’i‘realeworld, established using Church’s
algorithm. We then compared this predicted position with
that established through manual tracking. Figure 9 shows
a sample error curve in this validation process for a 20-s
video. The discrepancy in a landmark’s predicted positions
and those from manually tracking was computed once every
30 frames. As can be seen that the maximum error was less
than two pixels, which is quite acceptable in our applications.
Figure 10 shows yet another test of spatial registration: Three
image frames with different spatial coverage were used with
the transformation among them established using our algo-

05

0.5

8 w12 14 8 18 2
%30 frames

o
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Fig. 9. Typical error in spatial registration. The horizontal axis is
time. The vertical axis is the discrepancy in a landmark’s predicted
position (estimated using Church’s algorithm) and its true location
(established through manual tracking)
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Fig. 10. Image mosaic. The upper row shows three input video frames
of different spatial coverages. The bottom row shows the mosaic
image constructed from the three input images that covers the whole
parking lot

rithm. We then stitched these three frames together to obtain
a mosaic image that covered the whole parking lot. This im-
age mosaic provided a seamless background for the panning
camera to aid the tracking process (discussed later).
Experiment #2: Temporal registration.

Figure 11 shows the aligned invariant signatures of the same
trajectory observed by two different cameras, the expression
of which is given in Eq. 8 withn = 0. Although the observed
trajectories from different cameras were distorted by the pro-
jection and image formation process and appeared different,
their invariant signatures were quite similar to each other.
Hence the invariant signatures could be used for aligning
trajectories temporally.

Experiment #3: Sensor-data fusion.

We use both the Kalman filter and the more general multihy-
pothesis tracking algorithm for object tracking and sensor-
data fusion. The running time of the Kalman filter was con-
stant. Our experience also indicated that the precision of

v B ® @ 8 W O & W

b Camera 2

a Camera 1

¢ Invariant signature

Fig. 11. Using invariant signatures for temporal registration. a Tra-
jectory as observed from camera 1. b Trajectory as observed from
camera 2. ¢ Invariant signatures, green for the trajectory from camera
1 and red for the trajectory from camera 2
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Fig. 12. Precision results of the multihypothesis tracking algorithm.

The x-axis represents the number of states kept, and the y-axis rep-

resents the average discrepancy between multihypothesis tracking

results and the ground truth (manual tracking)

the Kalman filter was acceptable, barring serious occlusion
and scene clutter. For example, results of the Kalman filter
tracking were within four pixels of the ground truth (manual
tracking) in a short video of about 1 min during which a ve-
hicle made a full circle in the parking lot. The Kalman filter
tracking added only about 3% overhead in the running time
(most time was spent on image processing).

The precision and running time of the multihypothesis track-
ing algorithm were determined by the number of candidate
states kept. Figure 12 shows the tracking precision of the
multihypothesis algorithm using different numbers of states,
where the x-axis represents the number of states kept and
the y-axis represents the average discrepancy between mul-
tihypothesis tracking results and the ground truth (manual
tracking). It can be seen that the tracking precision increased
quickly with the increase in the number of states used, but the
effect tapered off when the number of states became large

30 — T T T T T
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Fig. 13. Timing results of the multihypothesis tracking algorithm
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(over 100 in our experiments). Figure 13 shows the over-
head in keeping and updating multiple candidate states. In
each group of bars, the first bar was the constant overhead
in video processing, which did not change regardless of the

number of states kept. The second bar was the overhead of

the multihypothesis algorithm. From Fig. 13 we see that the
overhead of keeping multiple candidate states was almost
linear in the number of states used. Considering both the
precision and the running time, using 150 states seemed to

be a good compromise with an expected tracking error of

about 2.8 pixels from the ground truth and a running time
overhead of about 7%.

Experiment #4: Feature respresentation.

Figure 14 shows a sample parking pattern and its fused,
invariant representation derived from multiple sensors. We

Left Right  :Fight
wn G5 gm wm C3 tum  tum

"% Right  Rignt ——
cs ' sStop time

e

Fig. 14. A parking pattern. a, b Condensed video footage from left
camera. ¢ Condensed video footage from right camera. d Trajectory
with segment boundaries and labels. e Acceleration curves used in
segmentation
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used figure-background separation to detect moving objects.
For a fixed camera, the background was treated as station-
ary. If the camera was moving, we registered and mapped
time-varying video content into the mosaic image (e.g.,
Fig. 10) and then performed figure-background separation.
Figures 14a,—c show raw vehicle trajectories from two cam-
eras. Figure 14d is the fused and segmented trajectory and
its semantic representation. Figure 14e depicts the 6, |r|,
and and (P X P)z curves used in segmentation. The 6 and
|r| curves estimated from Kalman filter are shown in black,
while the piecewise linear approximations of those using EM
algorithm described earlier are shown in red. Vertical lines
show the beginning and end of each segment. The result
demonstrates that our tracking and segmentation algorithms
worked properly.

Experiment #5: Sequence-alignment kernel evaluation.
We used the balanced dataset to conduct this experiment. We
compared the classification accuracy between when we used
the primary segment symbols and when we also considered
secondary description velocity. Figures 15a and b show that
when the secondary structure was considered, both sensi-
tivity and specificity were improved. The improvement is
marked (about 6%) in sensitivity. In the remaining experi-
ments, we thus considered both the primary and secondary
information.

Experiment #6: KBA evaluation.

In this experiment, we examined the effectiveness of KBA
on two datasets of different benign/suspicious ratios. The
balanced dataset (second column in Table 2) has a be-
nign/suspicious ratio of about 50%. Figures 15¢ and d show
that the employment of KBA improves sensitivity signifi-
cantly by 39%, whereas it degrades specificity by just 4%.
Next, we repeated the KBA test on the skewed dataset (third
column in Table 2), where the benign/suspicious ratio is less
than 3%. Figures 15e and f show that the average sensitivity
suffers a drop of 68% to 35%. After applying KBA, the av-
erage sensitivity improved to 70% by giving away just 3%
in specificity.

6 Conclusions

In this paper, we have presented methods for (1) fusing mul-
ticamera surveillance data, (2) characterizing motion patterns
and their secondary structure, and (3) conducting statistical
learning in an imbalanced-training-data setting for detecting
rare events. For fusing multisource data from cameras with
overlapping spatial and temporal coverage, we proposed us-
ing a two-level hierarchy of Kalman filters. For efficiently
summarizing motion events, we studied hierarchical and in-
variant descriptors. For characterizing motion patterns, we
proposed our sequence-alignment kernel, which uses tensor
product to fuse a motion sequence’s symbolic summariza-
tions (e.g., left turn and right turn, which cannot be repre-
sented in a vector space) and its secondary numeric charac-
teristics (e.g., velocity, which can be represented in a vector
space). When the positive training instances (i.e., suspicious
events) are significantly outnumbered by the negative training
instances, we showed that kernel methods can suffer from high
event-detection errors. To remedy this problem, we proposed
an adaptive conformal transformation algorithm to work with
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Fig. 15. Sensitivity and specificity of three test cases

our sequence-alignment kernel. Through extensive empirical
study in a parking-lot surveillance setting, we showed that our
system is highly effective in identifying suspicious events.
We are currently building a surveillance system with low-
resolution Web cams and high-resolution zoom/tilt/pan cam-
eras. We are particularly interested in testing the scalability
of our multicamera fusion scheme (the hierarchical Kalman
filter scheme) with respect to both the number of cameras and
the number of objects that are simultaneously tracked. We also
plan to investigate more robust parameter-tuning methods for
enhancing our kernel-boundary-alignment (KBA) algorithm.
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