Skip to main content
Log in

Hybrid and forward error correction transmission techniques for unreliable transport of 3D geometry

  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract.

The continual improvement in computer performance together with the prevalence of high-speed network connections having high throughput and moderate latencies enables the deployment of multimedia applications, such as collaborative virtual environments, over wide area networks (WANs). These applications can serve as simulated environments in scenarios such as emergency response training to catastrophic disasters, military training, and entertainment. Many of these systems use 3D graphics for display and may be required to distribute geometric models on demand between participants. Progressive meshes provide an attractive mechanism for such distribution. Previous uses of progressive meshes have sent data using reliable protocols (TCP). However, such protocols have disadvantages in on-demand settings, in that they: (1) use flow control, which limits performance in WANs; (2) add additional bandwidth when there is loss; (3) treat all loss as an indication of congestion; and (4) require feature-rich multicast support, which is not always available. In this paper, we modify progressive mesh models to allow reconstruction even in the event of packet loss. We use these modifications in two transmission schemes, a hybrid transmission that uses TCP and UDP to send packets and a forward error correction transmission scheme that uses redundancy to decode the information sent. We assess the performance of these transmission schemes when deployed on network testbeds that simulate wide area and wireless characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Regib G, Altunbasak Y (2002) An unequal error protection method for packet loss resilient 3-D mesh transmission. In: Proceedings of INFOCOM 2002

  2. Allen AD (2001) Optimal delivery of multi-media content over networks. In: 9th ACM Multimedia, Ottawa, ON, Canada, pp 79-88

  3. Alliez P, Desbrun M (2001) Progressive compression for lossless transmission of triangle meshes. In: Proceedings of ACM SIGGRAPH 2001, pp 195-202

  4. Aspert N, Santa-Cruz D, Ebrahimi T (2002) MESH: Measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the IEEE international conference on multimedia and expo (ICME), pp 705-708. http://mesh.epfl.ch

  5. Bischoff S, Kobbelt L (2002) Streaming 3D geometry over lossy communication channels. In: Proceedings of the IEEE international conference on multimedia and expo

  6. Blake S, Black DL, Carlson MA, Davies E, Wang Z, Weiss W (1998) An architecture for differentiated services. Internet Engineering Task Force, RFC 2475, December 1998. http://www.ietf.org/rfc/rfc2475.txt

  7. Braden R, Clark D, Shenker S (1994) Integrated services in the internet architecture: an overview. Internet Engineering Task Force, RFC 1633, June 1994. http://www.ietf.org/rfc/rfc1633.txt

  8. Byers JW, Luby M, Mitzenmacher M, Rege A (1998) A digital fountain approach to reliable distribution of bulk data. In: ACM SIGCOMM’98. Applications, technologies, architectures and protocols for computer communication, Vancouver, BC, Canada. Comput Commun Rev 28(4):55-67

    Google Scholar 

  9. Casner S, Deering S (1992) First IETF Internet audiocast. Comput Commun Rev 22(3):92-97

    Google Scholar 

  10. Chen B-Y, Nishita T (2002) Multiresolution streaming mesh with shape preserving and QoS-like controlling. In: Proceedings of the 7th international conference on 3D Web technology, pp 35-42

  11. Chen Z, Bodenheimer B, Barnes JF (2003) Extending progressive meshes for use over unreliable networks. In: Proceedings of the IEEE conference on multimedia and expo, Baltimore, MD, July 2003, 3:253-256

  12. Chen Z, Bodenheimer B, Barnes JF (2003) Robust transmission of 3D geometry over lossy networks. In: Proceedings of the 8th international conference on 3D Web technology, St Malo, France, pp 161-173

  13. Conrad, PT, Caro A, Amer P (2001) ReMDoR: Remote multimedia document retrieval over partial order transport. In: 9th ACM Multimedia, Ottawa, ON, Canada, pp 169-180

  14. Floyd S (2003) HighSpeed TCP for large congestion windows. Internet Engineering Task Force, RFC 3649, December 2003. http://www.ietf.org/rfc/rfc3649.txt

  15. Floyd S, Jacobson V, Liu C-G, McCanne S, Zhang L (1997) A reliable multicast framework for light-weight sessions and application level framing. IEEE/ACM Trans Network 5(6):784-803

    Google Scholar 

  16. Frécon E, Greenhalgh C, Stenius M (1999) The DiveBone -- an application-level network architecture for Internet-based CVEs. In: Proceedings of the ACM symposium on virtual reality software and technology (VRST), London, pp 58-65

  17. Gandoin P-M, Devillers O (2002) Progressive lossless compression of arbitrary simplicial complexes. ACM Trans Graph 21(3):372-379. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002)

    Google Scholar 

  18. Garlick LL, Rom R, Postel JB (1977) Reliable host-to-host protocols: problems and techniques. In: Proceedings of the 5th symposium on data communications. Applications, technologies, architectures, and protocols for computer communication, Snowbird, UT

  19. Hoppe H (1996) Progressive meshes. In: Proceedings of SIGGRAPH 96, New Orleans, pp 99-108. ISBN 0-201-94800-1

  20. Hoppe H (1997) View-dependent refinement of progressive meshes. In: Proceedings of SIGGRAPH 97, Los Angeles, pp 99-198. ISBN 0-89791-896-7

  21. Hoppe H (1998) Efficient implementation of progressive meshes. Comput Graph 22(1):27-36. ISSN 0097-8493

    Article  Google Scholar 

  22. Jin C, Wei D, Low SH (2003) FAST TCP: from theory to experiments. In: Proceedings of IEEE Infocom, Hong Kong, March 2004, pp 694-702

  23. Kelley JL (1955) General topology. In: Graduate texts in mathematics, no. 27. Springer, Berlin Heidelberg New York

  24. Kelly T (2002) Scalable TCP: Improving performance in highspeed wide area networks. ACM SIGCOMM Comput Commun Rev 32(2):83-91 http://www-lce.eng.cam.ac.uk/~ctk21/scalable/#publications

  25. Khodakovsky A, Schröder P, Sweldens W (2000) Progressive geometry compression. In: Proceedings of ACM SIGGRAPH 2000, pp 271-278. ISBN 1-58113-208-5

  26. Macedonia MR, Zyda MJ, Pratt DR, Brutzman DP, Barham PT (1995) Exploiting reality with multicast groups. IEEE Comput Graph Appl 15(5):38-45

    Google Scholar 

  27. Nguyen GT, Katz RH, Noble B, Satyanarayanan M (1996) A trace-based approach for modeling wireless channel behavior. In: Proceedings of the winter simulation conference, Coronado, Canada

  28. Padhye J, Firoiu V, Towsley D, Kurose J (1998) Modeling TCP throughput: a simple model and its empirical validation. In: ACM SIGCOMM’98. Applications, technologies, architectures and protocols for computer communication, Vancouver, BC, Canada. Comput Commun Rev 28(4):303-314

    Google Scholar 

  29. Pajarola R, Rossignac J (2000) Compressed progressive meshes. IEEE Trans Vis Comput Graph 6(1):79-93. ISSN 1077-2626

    Google Scholar 

  30. Park K, Kim G, Crovella M (1996) On the relationship between file sizes, transport protocols, and self-similar network traffic. In: Proceedings of the 4th international conference on network protocols (ICNP’96)

  31. Pejhan S, hao Chiang T, Zhang Y-Q (1999) Dynamic frame rate control for video streams. In: 7th ACM Multimedia, Orlando, FL

  32. Popović J, Hoppe H (1997) Progressive simplicial complexes. In: Proceedings of SIGGRAPH 97, Los Angeles, pp 217-224. ISBN 0-89791-896-7

  33. Postel J (1981) Transmission control protocol. RFC 793, http://www.rfc-editor.org/rfc/rfc793.txt

  34. Rejaie R, Handley M, Estrin D (1999) Quality adaptation for congestion controlled video playback over the internet. In: ACM SIGCOMM. Applications, technologies, architectures and protocols for computer communications, Cambridge, MA. Comput Commun Rev 29(4):189-200

    Google Scholar 

  35. Rizzo L (1997a) Dummynet: a simple approach to the evaluation of network protocols. ACM SIGCOMM Comput Commun Rev 27(1):31-41

    Google Scholar 

  36. Rizzo L (1997b) Effective erasure codes for reliable computer communication protocols. Comput Commun Rev 27(2):24-36

    Google Scholar 

  37. Sinha P, Nandagopal T, Venkitaraman N, Sivakumar R, Bharghavan V (2002) WTCP: a reliable transport protocol for wireless wide-area networks. Wireless Netw 8(2/3)

  38. Taubin G, Gueziec A, Horn W, Lazarus F (1998) Progressive forest split compression. In: Proceedings of SIGGRAPH 98, Orlando, FL, pp 123-132. ISBN 0-89791-999-8

  39. Zhang L, Deering S, Estrin D, Shenker S, Zappala D (1993) RSVP: A new resource ReSerVation Protocol. IEEE Netw 7(5):8-18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Chen.

Additional information

Published online: 9 February 2005

Correspondence to : Bobby Bodenheimer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Barnes, J.F. & Bodenheimer, B. Hybrid and forward error correction transmission techniques for unreliable transport of 3D geometry. Multimedia Systems 10, 230–244 (2005). https://doi.org/10.1007/s00530-004-0154-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-004-0154-3

Keywords:

Navigation