Skip to main content
Log in

A two-level queueing system for interactive browsing and searching of video content

  • Regular paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents a two-level queueing system for dynamic summarization and interactive searching of video content. Video frames enter the queueing system; some insignificant and redundant frames are removed; the remaining frames are pulled out of the system as top-level key frames. Using an energy-minimization method, the first queue removes the video frames that constitute the gradual transitions of video shots. The second queue measures the content similarity of video frames and reduces redundant frames. In the queueing system, all key frames are linked in a directed-graph index structure, allowing video content to be accessed at any level-of-detail. Furthermore, this graph-based index structure enables interactive video content exploration, and the system is able to retrieve the video key frames that complement the video content already viewed by users. Experimental results on four full-length videos show that our queueing system performs much better than two existing methods on video key frame selection at different compression ratios. The evaluation on video content search shows that our interactive system is more effective than other systems on eight video searching tasks. Compared with the regular media player, our system reduces the average content searching time by half.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aner, A., Kender, J.R.: Video summaries through mosaic-based shot and scene clustering. In: European Conference on Computer Vision, pp. 388–402, 2002

  2. Ardizzone, E., Hacid, M.-S.: A semantic modeling approach for video retrieval by content. In: IEEE International Conference on Multimedia Computing and Systems, pp. 158–162, 1999

  3. Chang H.S., Sull S., Lee S.U. (1999): Efficient video indexing scheme for content-based retrieval. IEEE Trans. Circuits Syst. Video Technol. 9(8): 1269–1279

    Article  Google Scholar 

  4. Chang, S.-F., Chen W., Meng, H., Sundaram, H.: VideoQ: an automated content based video search system using visual cues. In: ACM Multimedia, pp. 313–324, 1997

  5. Chua T.-S., Ruan L.-Q. (1995): A video retrieval and sequencing system. ACM Trans. Inf. Syst. 13(4): 373–407

    Article  Google Scholar 

  6. Fan J., Luo H., Elmagarmid A. (2004): Concept-oriented indexing of video database towards more effective retrieval and browsing. IEEE Trans. Image Proces. 13(7): 974–992

    Article  Google Scholar 

  7. Girgensohn, A., Boreczky, J.: Time-Constrained Keyframe Selection Technique. In: IEEE International Conference on Multimedia Computing and Systems, pp. 756–761, 1999

  8. Hanjalic A., Lagendijk R.L., Biemond J. (1999): Automated high-level movie segmentation for advanced video-retrieval systems. IEEE Trans. Circuits Syst. Video Technol. 9(4): 580–588

    Article  Google Scholar 

  9. Hibino, S., Rundensteiner, E.A.: MMVIS: design and implementation of a multimedia visual information seeking environment. In: ACM Multimedia, pp. 75–86, 1996

  10. Irani, M., Anandan, P., Hsu, S.: Mosaic based representations of video sequences and their applications. In: International Conference on Computer Vision, pp. 605–611, 1995

  11. Janvier, B., Bruno, E., Marchand-Maillet, S., Pun, T.: Information-theoretic framework for the joint temporal partitioning and representation of video data. In: Proceedings of the 3rd Workshop on Content-Based Multimedia Indexing, 2003

  12. Koh, J.-L., Lee, C.-S., Chen, A.L.: Semantic video model for content-based retrieval. In: IEEE International Conference on Multimedia Computing and Systems, pp. 472–478, 1999

  13. Lienhart R. (2001): Reliable transition detection in videos: a survey and practitioner’s guide. Int. J. Image Graph. 1(3): 469–486

    Article  Google Scholar 

  14. Lienhart R., Effelsberg W., Jain R. (2000): VisualGREP:a systematic method to compare and retrieve video sequences. Multimed. Tools Appl. 10(1): 48–71

    Article  Google Scholar 

  15. Liu, T., Kender, J.R.: Time-constrained dynamic semantic compression for video indexing and interactive searching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 531–538, 2001

  16. Liu, T., Kender, J.R.: Semantic mosaic for indexing and compressing instructional videos. In: International Conference on Image Processing, pp. 921–924, 2003

  17. Mandal M.K., Idris F., Panchanathan S. (1999): A critical evaluation of image and video indexing techniques in compressed domain. Image Vis. Comput. 17, 513–529

    Article  Google Scholar 

  18. Mentzelopoulos, M., Psarrou, A.: Key-frame extraction algorithm using entropy difference. In: Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 39–45, 2004

  19. Naphade, M.R., Smith, J.R.: On the detection of semantic concepts at TRECVID. In: Proceedings of ACM Multimedia, pp. 660–667, 2004

  20. OpenVideo. The open video digital library. http://www.open-video.org/

  21. Rui, Y., Huang, T.S.: A novel relevance feedback technique in image retrieval. In: ACM Multimedia, pp. 67–70, 1999

  22. Slaughter L., Marchionini G., Geisler G. (2000): Open Video: a framework for a test collection. J. Netw. Comput. Appl. 23(3): 219–245

    Article  Google Scholar 

  23. Smeaton, A.F., Over, P., Kraaij, W.: TRECVID: evaluating the effectiveness of infromation retrieval tasks on digital videos. In: Proceedings of ACM Multimedia, pp. 652–655, 2004

  24. Smith, M., Kanade, T.: Video skimming and characterization through the combination of image and language understanding techniques. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 755–781, 1997

  25. Sundaram, H., Chang, S.-F.: Constrained utility maximization for generating visual skims. In: IEEE International Worksop on Content-based Access of Image and Video Libraries, pp. 124–131, 2001

  26. Syeda-Mahmood, T., Srinivasan, S.: Detecting topical events in digital video. In: ACM Conference on Multimedia, pp. 85–94, Dec. 2000.

  27. Tsekeridou S., Pitas I. (2001): Content-based video parsing and indexing based on audio-visual interaction. IEEE Trans. Circuits Syst. Video Technol. 11(4): 522–535

    Article  Google Scholar 

  28. VISGegie. The video-based information visualization system. http://www.ee.columbia.edu/~ywang/Research /VisGenie/index.html

  29. Wang, Y., Xie, L., Chang, S.-F.: Visgenie: a generic video visualization. In: Columbia University ADVENT Technical Report 210-2005-4, 2005

  30. Yeung, M., Liu, B.: Efficient matching and clustering of video shots. In: Proceedings of the International Conference on Image Processing, pp. 338–341, 1995

  31. Yeung M., Yeo B.-L. (1998): Segmentation of video by clustering and graph analysis. Comput. Vis. Image Underst. 71(1): 94–109

    Article  Google Scholar 

  32. Zhang H., Low C.Y., Smoliar S.W. (1995): Video parsing and browsing using compressed data. Multimed. Tools Appl. 1(1): 89–111

    Article  Google Scholar 

  33. Zhang, H.J., Low, C.Y., Smoliar, S.W., Wu. J.H.: Video parsing, retrieval and browsing: an intergrated and content-based solution. In: ACM Multimedia, pp. 15–24, 1995

  34. Zhuang, Y., Rui, Y., Huang, T.S., Mehrotra, S.: Adaptive key frame extraction using unsupervised clustering. In: IEEE International Conference on Image Processing, pp. 866–870, 1998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiecheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Katpelly, R. A two-level queueing system for interactive browsing and searching of video content. Multimedia Systems 12, 289–306 (2007). https://doi.org/10.1007/s00530-006-0053-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-006-0053-x

Keywords