Skip to main content
Log in

Perceptual image preview

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Image preview is a convenient way to browse large or multiple images on small displays. However, current signal-level image resampling algorithms may remove many features of interest in the preview image. In this paper, we propose perceptual image preview which retains more perceptual features such that users can inspect features of interest by viewing the preview image only and without zooming in. This technology has two components, structure enhancement and perceptual feature visualization. Structure enhancement enhances the image structure while suppressing subtle details using a gradient modulation method, thus making the succedent perceptual features more apparent. For perceptual feature visualization, features of interest detected in the picture is visualized on the structure enhanced preview image. We demonstrate with two examples of most commonly used image quality features, image blur and noise. The effectiveness of the proposed method is validated by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26(3), 10 (2007)

    Article  Google Scholar 

  2. Burton, C., Johnston, J., Sonenberg, E.: Case study: an empirical investigation of thumbnail image recognition. In: Proceedings of Information Visualization, pp. 115–121 (1995)

  3. Caviedes, J., Oberti, F.: A new sharpness metric based on local kurtosis, edge and energy information. Signal Process. Image Commun. 19(2), 147–161 (2004)

    Article  Google Scholar 

  4. Chen, L.Q., Xie, X., Fan, X., Ma, W.Y., Zhang, H.J., Zhou, H.Q.: A visual attention model for adapting images on small displays. ACM Multimed. Syst. J. 9(4), 353–364 (2003)

    Article  Google Scholar 

  5. Chiang, M.C., Boult, T.E.: Local blur estimation and super- resolution. In: CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, pp. 821–826 (1997)

  6. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Infor. Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699–717 (1998)

    Article  Google Scholar 

  8. Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2gray: salience-preserving color removal. ACM Trans. Graph. 24(3), 634–639 (2005)

    Article  Google Scholar 

  9. Greene, N., Heckbert, P.: Creating raster omnimax images from multiple perspective views using the elliptical weighted average filter. IEEE Comput. Graph. Appl. 6(6), 21–27 (1986)

    Article  Google Scholar 

  10. Heckbert, P.: Fundamentals of texture mapping and image warping. Master’s thesis, CS Division, UCB/CSD 89/516, U.C. Berkeley (1989)

  11. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process 29, 1153–1160 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, X.: Edge directed statistical inference with applications to image processing. Ph.D. thesis, Princeton University, Princeton (2000)

  13. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 57–60 (2002)

  14. McCormack, J., Perry, R., Farkas, K.I., Jouppi, N.P.: Feline: fast elliptical lines for anisotropic texture mapping. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 243–250 (1999)

  15. Meijering, E.H.W., Niessen, W.J., Viergever, M.A.: Piecewise polynomial kernels for image interpolation: a generalization of cubic convolution. In: Proceedings of IEEE International Conference of Image Processing, pp. 25C28 (1999)

  16. Muňoz, A., Blu, T., Unser, M.: Least-squares image resizing using finite differences. IEEE Trans. Image Process. 10(9), 1365–1378 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Muresan, D., Parks, T.: Adaptively quadratic (aqua) image interpolation. IEEE Trans. Image Process. 13(5), 690–698 (2004)

    Article  Google Scholar 

  18. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Article  Google Scholar 

  19. Setlur, V.R.: Optimizing computer imagery for more effective visual communication. Ph.D. thesis, Northwestern University, Evanston (2005)

  20. Suh, B., Ling, H., Bederson, B.B., Jacobs, D.W.: Automatic thumbnail cropping and its effectiveness. In: UIST ’03: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 95–104 (2003)

  21. Thévenaz, P., Blu, T., Unser, M.: Image Interpolation and Resampling. Academic, New York (2000)

    Google Scholar 

  22. Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Trans. Signal Process. 16, 22–38 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wan.

Additional information

Communicated by Changsheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, L., Feng, W., Lin, Z. et al. Perceptual image preview. Multimedia Systems 14, 195–204 (2008). https://doi.org/10.1007/s00530-008-0114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-008-0114-4

Keywords

Navigation