Skip to main content
Log in

Shape alignment and shape orientation analysis-based 3D shape retrieval system

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In this paper, we realized an efficient 3D shape retrieval system based on shape alignment and shape orientation analysis. In this system, we suggest extracting the spatial orientation of the polygon surfaces as the feature of one 3D shape. This information is analyzed by multi-resolution wavelet analysis, and the low frequency components are applied to the feature vector. In the preprocessing stage, we adopt four methods of shape alignment including principal component analysis, continuous principal component analysis, normal-based principal component analysis, and plane reflection symmetry analysis (PRSA). We investigated the influence of four alignment methods on retrieval performance. In the orientation sampling stage, the sampling planes are placed on a cube and a dodecahedron, respectively. We also investigated the influence of this two sampling methods on retrieval performance. Finally, one shape descriptor based on plane reflection symmetry analysis and dodecahedron sampling plane (PRSA-DOD) is proposed. We compare this novel shape descriptor, PRSA-DOD descriptor, with the previous methods on Princeton shape benchmark, and results show that this method achieves the higher retrieval performance. This PRSA-DOD descriptor is selected to construct the search engine of system; in the system, the retrieval interface and search engine are implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: IEEE International Conference on Shape Modeling and Applications. Genoa, Italy, pp. 167–178 (2004)

  2. Zaharia, T., Preteux, F.: 3D shape-based retrieval within the MPEG-7 framework. In: SPIE Conference on Nonlinear Image Processing and Pattern Analysis, vol. 430, pp. 133–145 (2001)

  3. van Rijsbergen, C.K.: Information retrieval. Butterworths, London (1975)

    Google Scholar 

  4. Leifman, G., Katz, S., Tal, A., Meir, R.: Signatures of 3D models for retrieval. Technical Report, February 2001, pp. 159–163 (2001)

  5. Jarvelin, K., Kekalainen, J.: IR evaluation methods for retrieving highly relevant documents. In: ACM SIGIR Conference on Research and Development in Information Retrieval, Athens, Greece, pp. 41–48 (2000)

  6. Tangelder, J.-W.H., Veltkamp, R.-C.: A survey of content based 3D shape retrieval methods. in: IEEE International Conference on Shape Modeling and Applications, Genoa, Italy, Jun 2004, pp. 145–156 (2004)

  7. Funkhouser, T., Kazhdan, M.: Shape-based retrieval and analysis of 3D models. In: ACM SIGGRAPH, Los Angeles, USA (2004)

  8. Tangelder, J.-W.H., Veltkamp, R.-C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)

    Article  Google Scholar 

  9. Ankerst, M., Kastenmuller, G., Kriegel, H.P., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: 6th International Symposium on Spatial Databases, Hongkong, China, pp. 207–226 (1999)

  10. Vranic, D.V., Saupe, D.: 3D model retrieval. In: Spring Conference on Computer Graphics and its Applications, Budmerice, Slovakia, pp. 89–93 (2000)

  11. Hilaga, M., Shinagawa, Y., Kohmura, V., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: ACM SIGGRAPH, Louisiana, USA, Aug 2001, pp. 203–212 (2001)

  12. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)

    Article  Google Scholar 

  13. Ohbuchi, R., Minamitani, T., Takei, T.: Shape-similarity search of 3D models by using enhanced shape functions. Int. J. Comput. Appl. Technol. 23(2), 70–85 (2005)

    Article  Google Scholar 

  14. Liu, Y., Zha, H., Qin, H.: The generalized shape distributions for shape matching and analysis. In: IEEE International Conference on Shape Modeling and Applications, Matsushima, Japan, Jun 2006, pp. 96–107 (2006)

  15. Ohbuchi, R., Otagiri, T., Ibato, M., Takei, T.: Shape-similarity search of three-dimensional models using parameterized statistics. In: IEEE International Conference on Pacific Graphics, Beijing, China, Oct 2002, pp. 265–274 (2002)

  16. Vranic, D.V., Saupe, D., Richter, J.: Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In: IEEE Workshop on Multimedia Signal Processing, French Riviera, France, Oct 2001, pp. 1–6 (2001)

  17. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83–105 (2003)

    Article  Google Scholar 

  18. Vranic, D.V.: An improvement of rotation invariant 3D shape descriptor based on functions on concentric spheres. In: IEEE International Conference on Image Processing, Barcelona, Spain, Sep 2003, pp. 757–760 (2003)

  19. Shum, H.: On 3D shape similarity. In: IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, USA, Jun 1996, p. 526 (1996)

  20. Novotni, M., Klein, R.: 3D Zernike descriptors and content based shape retrieval. In: 8th ACM Symposium on Solid Modeling and Applications, Washington, DC, pp. 216–225 (2003)

  21. Chen, D.Y., Ouhyoung, M., Tian, X.P., Shen, Y.T.: On visual similarity based on 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  22. Chaouch, M., Blondet, A.V.: 3D model retrieval based on depth line descriptor. In: IEEE International Conference on Multimedia and Expo, Hannover, Germany, Jul 2007, pp. 599–602 (2007)

  23. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3D shapes. ACM Trans. Graph. 25(3), 549–559 (2006)

    Article  Google Scholar 

  24. Bespalov, D., YiuIp, C., Regli, C.W., Shaffer, J.: Benchmarking CAD search techniques. In: ACM symposium on Solid and Physical Modeling, Massachusetts, USA, pp. 275–286 (2005)

  25. Laga, H., Takahashi, H., Nakajima, M.: Spherical wavelet descriptors for content-based 3D model retrieval. In: IEEE International Conference on Shape Modeling and Applications, Matsushima, Japan, Jun 2006, pp. 15–25 (2006)

  26. Liu, Z., Mitani, J., Fukui, Y., Nishihara, S.: A 3D shape retrieval method based on continuous spherical wavelet transform. In: The 9th International Conference on Computer Graphics and Imaging, Innsbruck, Austria, Feb 2007, pp. 21–26 (2007)

  27. Mademlis, A., Darasb, P., Tzovarasb, D., Strintzis, M.G.: 3D object retrieval using the shape impact descriptor. Pattern Recognit. 42(11), 2447–2459 (2009)

    Article  MATH  Google Scholar 

  28. Tung, T., Schmitt, F.: The augmented multiresolution Reeb graph approach for content-based retrieval of 3D shapes. Int. J. Shape Model. 11(1), 91–120 (2005)

    Article  Google Scholar 

  29. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput. Aided Des. 39(5), 398–407 (2007)

    Article  Google Scholar 

  30. Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. In: Eurographics Workshop on 3D Object Retrieval, Crete, Greece, Apr 2008, pp. 1–8 (2008)

  31. McGill 3D shape database. http://www.cim.mcgill.ca/-shape/

  32. Sun, C., Sherrah, J.: 3D symmetry detection using the extended gaussian image. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 164–168 (1997)

    Article  Google Scholar 

  33. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Symmetry descriptors and 3D shape matching. In: ACM SIGGRAPH Symposium on Geometry Processing, Nice, France, Jul 2004, pp. 117–126 (2004)

  34. Rustamov, R.: Augmented symmetry transforms. In: IEEE International Conference on Shape Modeling and Applications, Lyon, France, Jun 2007, pp. 13–20 (2007)

  35. Chaouch, M., Blondet, A.V.: A novel method for alignment of 3D models. In: IEEE International Conference on Shape Modeling and Applications, New York, USA, Jun 2008, pp. 187–195 (2008)

  36. Liu, Z., Mitani, J., Fukui, Y., Nishihara, S.: A new 3D shape retrieval method using spherical healpix. J. Inf. Process. Soc. Jpn. 49(12), 4056–4066 (2008)

    Google Scholar 

  37. Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd edn. Prentice-Hall, Englewood Cliffs (2008)

    Google Scholar 

  38. http://google.stanford.edu/

  39. Eichmann, D.: The RBSE spider: balancing effective search against Web load. In: First World Wide Web Conference, Geneva, Switzerland, May 1994, pp. 113–120 (1994)

  40. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M.: Focused crawling using context graphs. In: 26th International Conference on Very Large Databases, Cairo, Egypt, pp. 527–534 (2000)

  41. Ipeirotis, P., Ntoulas, A., Cho, J., Gravano, L.: Modeling and managing content changes in text databases. In: IEEE International Conference on Data Engineering, Tokyo, Japan, Apr 2005, pp. 606–617 (2005)

  42. http://www.alipr.com/

  43. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

    Google Scholar 

  44. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 986–1002 (2008)

    Google Scholar 

  45. http://shape.cs.princeton.edu/search.html

  46. Igarashi, T., Matsuoka, S., Tanaka, H.: A sketching interface for 3d freeform design. In: ACM SIGGRAPH, Los Angeles, USA, Aug 1999, pp. 409–416 (1999)

  47. http://gicl.cs.drexel.edu/

  48. http://rcsb.org/pdb/

  49. http://vcad-hpsv.riken.jp/

  50. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, USA, Jun 2005, pp. 947–954 (2005)

  51. Vranic, D.V., Saupe, D.: Description of 3D-shape using complex function on the sphere. In: IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, Aug 2002, pp. 177–180 (2002)

  52. Liu, X., Sun, R., Kang, S., Shum, H.: Directional histogram model for three dimensional shape similarity. In: IEEE International Conference on Computer Vision and Pattern Recognition, Madison, WI, Jun 2003, pp. 813–820 (2003)

  53. Ichida, H., Itoh, Y., Kitamura, Y., Kishino, F.: Interactive retrieval of 3D shape models using physical objects. In: ACM International Conference on Multimedia, New York, USA, Oct 2004, pp. 692–699 (2004)

  54. Zhang, J., Wong H., Yu, Z.: 3D model retrieval based on volumetric extended gaussian image and hierarchical self organizing map. In: ACM International Conference on Multimedia, Santa Barbara, USA, Oct 2006, pp. 121–124 (2006)

  55. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1004 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wang, Z., Ma, C. et al. Shape alignment and shape orientation analysis-based 3D shape retrieval system. Multimedia Systems 16, 319–333 (2010). https://doi.org/10.1007/s00530-010-0193-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-010-0193-x

Keywords