Skip to main content
Log in

Stabilization and extraction of 2D barcodes for camera phones

  • Original Research
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

With the ubiquity of cellular phones, mobile applications with 2D barcodes have drawn a lot of attentions in recent years. When a user takes a barcode image with the camera in a mobile device, the captured image tends to be blurred due to camera shaking when the user presses the shutter. In addition, the captured image includes part of the complex background of the page with the barcode. In this paper, we point out that the above two issues, which have not been identified in previous works, deteriorate the accuracy of barcode recognition in the mobile computing. We then propose an efficient and effective algorithm to restore and extract 2D barcode from a complex background in a camera-shaken image. Compared with previous approaches, our algorithm outperforms in not only smaller running time but also higher accuracy of the barcode recognition in the mobile computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. The noise is random additive noise. The Gaussian white noise is a special case of random additive noise. In most cases, since the blur is generally much more significant than the noise, we can adopt the Gaussian white noise to model the noise for simplicity [29].

  2. Since the frequency response of PSF contains very small values, the small noise is greatly emphasized in the frequency domain, where \(\frac{1}{F(h(i,j))}\) is very large [26].

  3. The regularization parameter λ controls the degree of smoothness (i.e., degree of bias) of the solution, and is usually small. Analytical methods for choosing an optimal parameter λ are discussed in [39].

  4. Hadamard [12] defined ill-posed problems whose solution does not exist or it is not unique or it if is not stable under perturbations on data, it was with the intent of saving mathematicians and computational scientists substantial time and trouble.

  5. In fact, the inverse of the block-Toeplitz matrix H almost exists [45].

  6. In this paper, the accuracy is defined as the number of successfully decoded barcodes over the total number of testing images.

References

  1. Ayatsuka, Y., Rekimoto, J.: Active cybercode: a directly controllable 2d code. In: ACM Special Interest Group on Computer-Human Interaction (2006)

  2. Burger, W., Burge, M.J.: Digital Image Processing—An Algorithmic Introduction Using Java, pp. 156–171. Springer, Berlin (2008)

    Google Scholar 

  3. Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications, pp. 196–237. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  4. Cannon, M.: Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoust. Speech Signal Process. 24(1), 58–63 (1976)

    Article  Google Scholar 

  5. Chan, R.H., Nagy, J.G., Plemmons, R.J.: Fft-based preconditioners for Toeplitz-block least squares problems. SIAM J. Numer. Anal. 30(6), 1740–1768 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chu, C.-H., Yang, D.-N., Chen, M.-S.: Image stabilization for 2d barcodes on camera phones. In: Proceedings of ACM International Conference on Multimedia (2007)

  7. Driggers, R.G.: Encyclopedia of Optical Engineering: Abe-las, pp. 412–427. CRC Press, Boca Raton (2003)

    Google Scholar 

  8. D.W. INCORPORATED. http://www.denso-wave.com/qrcode/index-e.html

  9. Ebrahim, Y., Abdelsalam, W., Ahmed, M., Chau, S.-C.: Proposing a hybrid tag-camera-based identification and navigation aid for the visually impaired. In: IEEE International Conference on Consumer Communications and Networking Conference (2004)

  10. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Springer, Berlin (2000)

    Google Scholar 

  11. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  12. Hadamard, J.: Sur les Problemes aux Derivees Partielles et leur Signification Physique, pp. 49–52. Princeton University Bulletin, NJ (1902)

    Google Scholar 

  13. Hadar, O., Rotman, S.R., Kopeika, N.S.: Target acquisition modeling of forward-motion considerations for airborne reconnaissance over hostile territory. Opt. Eng. (SPIE) 33(9) (1994)

  14. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images Matrices, Spectra and Filtering, pp. 71–86. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Hong, H., Zhang, T.: Fast restoration approach for rotational motion blurred image based on deconvolution along the blurring paths. Photo-Opt. Instrum. Eng. 12(42), 3471–3486 (2003)

    Google Scholar 

  16. ISO/IEC 18004:2000: Information technology—automatic identification and data capture techniques—bar code symbology-QR Code (2000)

  17. Kamijo, K., Kamijo, N., Sakamoto, M.: Electronic clipping system with invisible barcodes. In: Proceedings of ACM International Conference on Multimedia (2006)

  18. Kato, H., Tan, K.-T.: 2d barcodes for mobile phones. In: IEEE International Conference on Mobile Technology, Applications and Systems, p. 8 (2005)

  19. Krahmer, F., Lin, Y., McAdoo, B., Ott, K., Wang, J., Widemann, D., Wohlberg, M.B.: Blind image deconvolution: motion blur estimation. In: Mathematical Modeling in Industry (2006)

  20. Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems (NIPS) (2006)

  21. Li T.-H., Lii, K.-S.: A joint estimation approach for two-tone image deblurring by blind deconvolution. IEEE Trans. Image Process. 11, 847–858 (2002)

    Article  Google Scholar 

  22. Liebgott, H., Wilhjehm, J., Jensen, J., Vray, D., Delachartre, P.: PSF dedicated to estimation of displacement vectors for tissue elasticity imaging with ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 746–756 (2007)

    Article  Google Scholar 

  23. Lin, W., Wehrli, F., Song, H.K.: Correcting bulk in-plane motion artifacts in mri using the point spread function. IEEE Trans. Med. Imaging 24, 1170–1176 (2005)

    Article  Google Scholar 

  24. Liu, X., Doermann, D., Li, H.: Vcode expervasive data transfer using video barcode. IEEE Trans. Multimed. 10(3), 361–372 (2008)

    Article  Google Scholar 

  25. Lv, P., Lai, S., Liu, L., Zhuo, Y., Liu, K.: Research and implementation of automatic recognition of two dimensional barcode mobile computing. In: IEEE International Conference on Mobile Technology, Applications and Systems (2005)

  26. Mery, D., Filbert, D.: A fast non-iterative algorithm for the removal of blur caused by uniform linear motion in X-ray images. In: 15th World Conference on Nondestructive Testing (2000)

  27. Michael, N., Denis, K.: Fundamentals of noise and vibration analysis for engineers, pp. 344–364. Cambridge University Press, London (2003). ISBN 0521499135

  28. Moghaddam, M., Jamzad, M.E.: Finding point spread function of motion blur using radon transform and modeling the motion length. In: Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology (2004)

  29. Nagy, J.G., Palmer, K.M., Perrone, L.: Iterative methods for image deblurring: a matlab object-oriented approach. Numer. Algorithms 36(1), 73–93 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nguyen, N., Milanfar, P.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans. Image Process. 10(9), 1299–1308 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nixon, M.S., Aguado, A.S.: Feature Extraction and Image Processing, 2nd edn, pp. 195–241. Academic Press, London (2008)

    Google Scholar 

  32. Ohbuchi, E., Hanaizumi, H., Hock. L.A.: Barcode readers using the camera device in mobile phones. In: IEEE International Conference on Cyberworlds (CW04) (2004)

  33. Parikh, T.S., Lazowska, E.D.: Designing an architecture for delivering mobile information services to the rural developing world. In: Proceedings of ACM International Conference on World Wide Web WWW (2006)

  34. Prasad, S.: Statistical-information-based performance criteria for Richardson-Lucy image deblurring. J. Opt. Soc. Am. 19, 1286–1296 (2002)

    Article  Google Scholar 

  35. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing, pp. 261–361. Pearson Prentice Hall, Englewood Cliffs (2007)

    Google Scholar 

  36. QR-code encoder and decoder. http://www.psytec.co.jp.

  37. QuickMark. http://diy.quickmark.com.tw/

  38. Rafael, R.E.W., Gonzalez, C.: Digital Image Processing, pp. 199–300. Prentice-Hall, Englewood Cliffs (2008)

    Google Scholar 

  39. Reaves, S., Mersereau, R.: Optimal regularization parameter estimation for image reconstruction. In: Proceedings of the SPIE Conference on Image Processing Algorithms and Techniques, pp. 127–137 (1991)

  40. Reeves, S.J.: Fast image restoration without boundary artifacts. IEEE Trans. Image Process. 14(10), 1448–1453 (2005)

    Article  Google Scholar 

  41. Rekimoto, J., Ayatsuka, Y.: Cybercode: designing augmented reality environments with visual tags. In: Proceedings of ACM International Conference on Designing Augmented Reality Environments (2000)

  42. Sondhi, M.M.: Image restoration: the removal of spatially invariant degradations. Proc. IEEE 60(7), 842–853 (1972)

    Article  Google Scholar 

  43. Sorel, M., Flusser, J.: Blind restoration of images blurred by complex camera motion and simultaneous recovery of 3d scene structure. In: IEEE International Symposium on Signal Processing and Information Technology (2005)

  44. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 1035–1038 (1963)

  45. Wax, M., Kailath, T.: Efficient inversion of Toeplitz-block toeplitz matrix. IEEE Trans. Acoust. Speech Signal Process. 31(5), 1218–1221 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  46. Y. in Japan. http://event.mobile.yahoo.co.jp/mobile/

  47. Yitzhaky, Y., Kopeika, N.S.: Identification of blur parameters from motion blurred images. CVGIP Graph. Models Image Process. 59(5), 321–332 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the National Science Council of Taiwan, ROC, under Contracts NSC 96-2628-E-002-038-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hua Chu.

Additional information

Communicated by Changsheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CH., Yang, DN., Pan, YL. et al. Stabilization and extraction of 2D barcodes for camera phones. Multimedia Systems 17, 113–133 (2011). https://doi.org/10.1007/s00530-010-0206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-010-0206-9

Keywords

Navigation